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Towards An 
Exact 

Quantum 
Mechanics

John Bell, 1989



What is the problem 
of 

quantum mechanics?



Erwin Schrödinger 
(1887 – 1961)

the measurement problem?







the deeper problem  
(of which the 
measurement 

problem is just a 
manifestation)...
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 (1928 – 1990)



This is the problem
Non-Relativistic 
Quantum Mechanics

All the variants of 
Quantum Field Theory 
(Cut-offs, Algebraic, 
etc.)
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Are there solutions of 
the  the problem?

Yes!
There are many, 

indeed!
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“The terminology, be-able 
as against observ-able, is 
not designed to frighten 
with metaphysic those 
dedicated to realphysic. It 
is chosen rather to 
h e l p i n m a k i n g 
explicit some notions 
already implicit in, 
and basic to, ordinary 
quantum theory. For, in 
the words of Bohr, 'it is 
decisive to recognize that, 
however far the phenomena 
transcend the scope of 
c l a s s i c a l p h y s i c a l 
explanation, the account of 
a l l ev idence mus t be 
expressed in c lass ica l 
terms'.”   

A algebra of operators on H

A ∈ A Z

operators as observables

macroscopic variables

classical variables

< Z >ψ=

〈ψ, Aψ〉

〈ψ, ψ〉

Beables



“The concept of 'observable' lends itself to very 
precise mathematics when identified with 'self-
adjoint operator'. But physically, it is a rather 
wooly concept. It is not easy to identify precisely 
which physical processes are to be given status 
of 'observations' and which are to be relegated 
to the limbo between one observation and 
another. So it could be hoped that some increase 
in precision might be possible by concentration 
on the beables, which can be described in 
'classical terms', because they are there. The 
beables must include the settings of switches and 
knobs on experimental equipment, the currents in 
co i l s , and the read ings o f i n s t ruments . 
' O b s e r v a b l e s ' m u s t b e m a d e , 
somehow, out of beables. The theory 
of local beables should contain, and 
give precise physical meaning to, the 
algebra of local observables.” 

(ψt, Z)

(ψt, X)

LOCAL BEABLES

EXACT (on all scales)



When von Bortkewitch collected 
statistics on the kicking of soldiers to 
death by horses, in the Prussian army, in 
different years, he found a Poisson 
distribution. Now, you don’t go out into 
the world looking for the Poisson 
distribution, you go out looking for 
soldiers and horses and kicks.



BM 
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universal wave function
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and natural way.
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↑

↓
(ψ, Z)

Ψ

Q

universal wave function

up to the universal 
scale

down to the microscopic 
scale

(Q,Ψ)

Q variables: what the 
theory is fundamentally 
about 

for example, particles, 
fields, strings, et.

expressing the laws which govern the 
behavior of the  Q variables in a simple 
and natural way.

Q = (X,Y )

ψ(x) = Ψ(x, Y )

Z = F (Q)

X

Y

system

environment

< Z >ψ=

〈ψ, Aψ〉

〈ψ, ψ〉
Z −→ A|Ψ|2



The first guess people make usually turns
out to be wrong (maybe not here!).

The right guess:

plug the actual configuration Y of the
environment into the second slot of Ψ (x, y)
to obtain a function of x,

ψ(x) = Ψ (x, Y )

(Almost) all implications of BM follow
from this formula

PΨ(X ∈ dx | Y ) = |ψ(x)|2dx



GRW 
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1 Introduction

Bohmian mechanics (BM) and the Ghirardi–Rimini–Weber (GRW) theory are two quan-

tum theories without observers, and thus provide two possible solutions of the mea-
surement problem of quantum mechanics. However, they would seem to have little in
common beyond achieving the goal of describing a possible reality in which observers

would find, for the outcomes of their experiments, the probabilities prescribed by the
quantum formalism. They are two precise, unambiguous fundamental physical theories

that describe and explain the world around us, but they appear to do this by employing

2

Bohmian particles. Calling QS the configuration of the particles of the system to be
measured and QA the configuration of the particles of the apparatus, we can write for
the configuration of the big Bohmian system relevant to the analysis of the measurement

Q = (QS, QA). Let us suppose that the initial wave function ψ of the big system is a
product state Ψ(q) = Ψ(qS, qA) = ψ(qS) φ(qA).

During the measurement, this Ψ evolves according to the Schrödinger equation, and
in the case of an ideal measurement it evolves to Ψt =

∑
α ψα φα, where α runs through

the eigenvalues of the observable measured, φα is a state of the apparatus in which
the pointer points to the value α, and ψα is the projection of ψ to the appropriate
eigenspace of the observable. By the quantum equilibrium hypothesis, the probability

for the random apparatus configuration QA(t) to be such as to correspond to the pointer
pointing to the value α is ‖ψα‖2. For a more detailed discussion see [26, 27].

3 Ghirardi, Rimini, and Weber

The theory proposed by Ghirardi, Rimini and Weber [29] is in agreement with the

predictions of nonrelativistic quantum mechanics as far as all present experiments are
concerned [6]; for a discussion of future experiments that may distinguish this theory

from quantum mechanics, see Section V of [6]. According to the way in which this theory
is usually presented, the evolution of the wave function follows, instead of Schrödinger’s
equation, a stochastic jump process in Hilbert space. We shall succinctly summarize

this process as follows.
Consider a quantum system described (in the standard language) by an N -“particle”1
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where Q̂i is the position operator of “particle” i. Here σ is a new constant of nature of
order of 10−7m.

Let ψt0 be the initial wave function, i.e., the normalized wave function at some time
t0 arbitrarily chosen as initial time. Then ψ evolves in the following way:

1. It evolves unitarily, according to Schrödinger’s equation, until a random time
T1 = t0 + ∆T1, so that

ψT1 = U∆T1ψt0 , (5)
1We wish to emphasize here that there are no particles in this theory: the word “particle” is used

only for convenience in order to be able to use the standard notation and terminology.
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the evolution of ψ is the Schrödinger evolution

interrupted by collapses

where Ut is the unitary operator Ut = e−
i
!
Ht corresponding to the standard Hamil-

tonian H governing the system, e.g., given by (3) for N spinless particles, and ∆T1

is a random time distributed according to the exponential distribution with rate

Nλ (where the quantity λ is another constant of nature of the theory,2 of order of
10−15 s−1).

2. At time T1 it undergoes an instantaneous collapse with random center X1 and
random label I1 according to

ψT1 !→ ψT1+ =
ΛI1(X1)1/2ψT1

‖ΛI1(X1)1/2ψT1‖
. (6)

I1 is chosen at random in the set {1, . . . , N} with uniform distribution. The center
of the collapse X1 is chosen randomly with probability distribution3

P(X1 ∈ dx1|ψT1, I1 = i1) 〈ψT1 |Λi1(x1)ψT1〉 dx1‖Λi1(x1)
1/2ψT1‖

2dx1. (7)

3. Then the algorithm is iterated: ψT1+ evolves unitarily until a random time T2 =
T1+∆T2, where ∆T2 is a random time (independent of ∆T1) distributed according

to the exponential distribution with rate Nλ, and so on.

In other words, the evolution of the wave function is the Schrödinger evolution in-
terrupted by collapses. When the wave function is ψ a collapse with center x and label

i occurs at rate
r(x, i|ψ) = λ 〈ψ |Λi(x)ψ〉 (8)

and when this happens, the wave function changes to Λi(x)1/2ψ/‖Λi(x)1/2ψ‖.
Thus, if between time t0 and any time t > t0, n collapses have occurred at the times

t0 < T1 < T2 < . . . < Tn < t, with centers X1, . . . , Xn and labels I1, . . . , In, the wave
function at time t will be

ψt =
LFn

t,t0ψt0

‖LFn
t,t0ψt0‖

(9)

where Fn = {(X1, T1, I1), . . . , (Xn, Tn, In)} and

LFn
t,t0 = Ut−TnΛIn(Xn)1/2 UTn−Tn−1ΛIn−1(Xn−1)

1/2 UTn−1−Tn−2 · · ·ΛI1(X1)
1/2 UT1−t0 . (10)

Since Ti, Xi, Ii and n are random, ψt is also random.
It should be observed that—unless t0 is the initial time of the universe—also ψt0

should be regarded as random, being determined by the collapses that occurred at
2Pearle and Squires [39] have argued that λ should be chosen differently for every “particle,” with

λi proportional to the mass mi.
3Hereafter, when no ambiguity could arise, we use the standard notations of probability theory,

according to which a capital letter, such as X , is used to denote a random variable, while the the values
taken by it are denoted by small letters; X ∈ dx is a shorthand for X ∈ [x, x + dx], etc.
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GRWf

distinct from the many purely mathematical constructions that occur in the

working out of physical theories, as distinct from things which may be real

but not localized, and distinct from the ‘observables’ of other formulations

of quantum mechanics, for which we have no use here). A piece of matter

then is a galaxy of such events. (Bell, 1987a)

That is, Bell’s idea is that GRW can account for objective reality in three-dimensional

space in terms of space-time points (Xk, Tk) that correspond to the localization events

(collapses) of the wave function. Note that if the number N of the degrees of freedom in

the wave function is large, as in the case of a macroscopic object, the number of flashes is

also large (if λ = 10−15 s−1 and N = 1023, we obtain 108 flashes per second). Therefore,

for a reasonable choice of the parameters of the GRWf theory, a cubic centimeter of solid

matter contains more than 108 flashes per second. That is to say that large numbers of

flashes can form macroscopic shapes, such as tables and chairs. That is how we find an

image of our world in GRWf.

Note however that at almost every time space is in fact empty, containing no flashes

and thus no matter. Thus, while the atomic theory of matter entails that space is not

everywhere continuously filled with matter but rather is largely void, GRWf entails that

at most times space is entirely void.

According to this theory, the world is made of flashes and the wave function serves

as the tool to generate the ‘law of evolution’ for the flashes: equation (8) gives the rate

of the flash process —the probability per unit time of the flash of label i occurring at

the point x. For this reason, we prefer the word ‘flash’ to ‘hitting’ or ‘collapse center’:

the latter words suggest that the role of these events is to affect the wave function,

or that they are not more than certain facts about the wave function, whereas ‘flash’

14

x

t

Figure 1: A typical pattern of flashes in space-time, and thus a possible world according

to the GRWf theory

In the GRWf theory, the space-time locations of the flashes can be read off from the

history of the wave function given by (9) and (10): every flash corresponds to one of the

spontaneous collapses of the wave function, and its space-time location is just the space-

time location of that collapse. Accordingly, equation (11) gives the joint distribution of

the first n flashes, after some initial time t0. The flashes form the set

F = {(X1, T1), . . . , (Xk, Tk), . . .}

(with T1 < T2 < . . .).

In Bell’s words:

[...] the GRW jumps (which are part of the wave function, not something

else) are well localized in ordinary space. Indeed each is centered on a par-

ticular spacetime point (x, t). So we can propose these events as the basis of

the ‘local beables’ of the theory. These are the mathematical counterparts

in the theory to real events at definite places and times in the real world (as

13



GRWm
that the m function is given by the following equation:

m(x, t) =

N�

i=1

mi

�
d3x1 · · · d3xN δ3

(x− xi)
��ψt(x1, . . . , xN)

��2 . (1)

Here, ψt is a wave function as in quantum mechanics, a function on R3N
evolving

according to the usual Schrödinger equation

i�∂ψ

∂t
= −

N�

i=1

�2

2mi
∇2

i ψ + V ψ , (2)

and mi denotes the mass of particle i, i = 1, . . . , N .

The m function (1) is basically the natural density function in 3-space that one

can obtain from the |ψ|2 distribution in configuration space. The formula means that,

starting from |ψ|2, one integrates out the positions of N−1 particles to obtain a density

in 3-space. Since the number i of the particle that was not integrated out is arbitrary,

it gets averaged over. The weights mi are the masses associated with the variables xi,

which may seem the most natural choice for defining the density of matter.

This provides, in fact, already the complete specification of a physical theory. In the

terminology of [3], this theory is called “Sm” (S for the Schrödinger equation and m for

the m function). It is closely related to—if not precisely the same as—the version of

quantum mechanics first proposed by Schrödinger [35]. After all, Schrödinger originally

regarded his theory as describing a continuous distribution of matter (or charge) spread

out in physical space in accord with the wave function on configuration space [36, p. 120]:

We had calculated the density of electricity at an arbitrary point in space

as follows. We selected one particle, kept the trio of co-ordinates that de-

scribes its position in ordinary mechanics fixed; integrated ψψ over all the

rest of the co-ordinates of the system and multiplied the result by a certain

constant, the “charge” of the selected particle; we did a similar thing for

each particle (trio of co-ordinates), in each case giving the selected particle

the same position, namely, the position of the point of space at which we

desired to know the electric density. The latter is equal to the algebraic sum

of the partial results.

This is just a verbal description of the formula (1), except with charges instead of

masses.
1

Schrödinger soon rejected this theory because he thought that it rather clearly

conflicted with experiment. After all, the spreading of the matter density arising from

1
If we replace the masses mi in (1) with the charges ei, as Schrödinger did, then the following

problem arises that is absent when using masses. If the wave function of a macroscopic body (say, a

piece of wood) is such that the Heisenberg position uncertainties of the atomic nuclei are of the order

of an Angstrom, i.e., of the order of the size of an atom, then the positive charge of a nucleus may

be smeared out over the same volume as the negative charge of the electrons, so that they may cancel

each other, leaving only a negligible remainder in the m function. In this case, the macroscopic body

would hardly be recognizable in the m function, and such an m function would not provide a plausible

3

ψt is a GRW process



Relativistic (Lorentz) Invariance

Those paradoxes are simply disposed of by the 1952
theory of Bohm, leaving as the question, the question
of Lorentz invariance. So one of my missions in life is
to get people to see that if they want to talk about the
problems of quantum mechanics – the real problems
of quantum mechanics – they must be talking about
Lorentz invariance. Bell (1990)

The big question, in my opinion, is which, if either,
of these two precise pictures [GRW and Bohm] can be
redeveloped in a Lorentz invariant way. Bell (1990)

[N]either of these theories [GRW and Bohm] is Lorentz
invariant, and ... it is pretty clear that no theory in ei-
ther of the classes ... can do without an ‘absolute time’
parameter. [However,] in my view, present-day quan-
tum cosmology does already involve a ‘background’
time parameter. Putnam (2005)
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of quantum mechanics – they must be talking about
Lorentz invariance. Bell (1990)

The big question, in my opinion, is which, if either,
of these two precise pictures [GRW and Bohm] can be
redeveloped in a Lorentz invariant way. Bell (1990)

[N]either of these theories [GRW and Bohm] is Lorentz
invariant, and ... it is pretty clear that no theory in ei-
ther of the classes ... can do without an ‘absolute time’
parameter. [However,] in my view, present-day quan-
tum cosmology does already involve a ‘background’
time parameter. Putnam (2005)

16

Lorenz invariance





What is a precise quantum theory?

theory is, all that is required for the empirical equivalence between the theory and OQT
is that it provide the correct |ψt|2 probability distributions for the relevant variables
Zt. When this is so we may speak of an ‘effective |ψt|2–distribution,’ or of macroscopic
|ψ|2 Schrödinger equivariance. Thus, empirical equivalence to OQT amounts to having
macroscopic |ψ|2 Schrödinger equivariance. (This applies to ‘normal’ theories in which
pointers point; the situation is different for theories with a many-worlds character as
discussed in Section 6.2.)

GRWf (or GRWm) predicts (approximately) the quantum mechanical distribution
only under certain circumstances, including, e.g., that the experimental control over
decoherence is limited, and that the universe is young on the timescale of the ‘uni-
versal warming’ predicted by GRWf/GRWm (see Bassi and Ghirardi, 2003, for details).
Moreover, we know that GRWf, roughly speaking, makes the same predictions as does
the quantum formalism for short times, i.e., before too many collapses have occurred.
Thus, GRWf yields an effective |ψ|2–distribution for times near the initial time t0. Now,
if GRWf were ‘effectively |ψ|2–equivariant,’ its predictions would be the same as those
of quantum theory for all times. It is the absence of this macroscopic |ψ|2 Schrödinger
equivariance that renders GRWf empirically inequivalent to quantum theory and to BM.
We shall elaborate on this in a future work (Allori et al., unpublished,a).

The most succinct expression of the source of the empirical disagreement between
BM and GRWf is thus the assertion that BM is effectively |ψ|2-equivariant relative to
the Schrödinger evolution while GRWf is not. The macroscopic Schrödinger equivariance
of BM follows, of course, from its microscopic |ψ|2 Schrödinger equivariance, while the
lack of macroscopic |ψ|2 Schrödinger equivariance for GRWf follows from the warming
associated with the GRW evolution and the fact that GRWf, as discussed in Section
5.2, is microscopically equivariant relative to that evolution. In fact, it follows from the
GRW warming that there is, for GRWf, no equivariant association ψ !→ Pψ with ψ a
Schrödinger-evolving wave function.17

8 What is a Quantum Theory without Observers?

To conclude, we delineate the common structure of GRWm, GRWf, and BM:

(i) There is a clear primitive ontology, and it describes matter in space and time.

(ii) There is a state vector ψ in Hilbert space that evolves either unitarily or, at least,
for microscopic systems very probably for a long time approximately unitarily.

(iii) The state vector ψ governs the behavior of the PO by means of (possibly stochastic)
laws.

17Since the GRWf flash process is non–Markovian, the formulation of the notion of equivariant as-
sociation given in Section 5.2 is not appropriate here; instead, Pψ should now be understood to be a
probability measure on the space Ω of possible histories of the PO for all times, but one whose condi-
tional probabilities for the future of any time given its past are as prescribed, here by the formula (33).
The association is equivariant if T "

−tP
ψ = Pψt , with Tτ now the time translation mapping on Ω.
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(iv) The theory provides a notion of a typical history of the PO (of the universe), for
example by a probability distribution on the space of all possible histories; from
this notion of typicality the probabilistic predictions emerge.

(v) The predicted probability distribution of the macroscopic configuration at time t
determined by the PO (usually) agrees (at least approximately) with that of the
quantum formalism.

The features (i)–(v) are common to these three theories, but they are also desiderata,
presumably even necessary conditions, for any satisfactory quantum theory without
observers.18
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Allori, V., Dürr, D., Goldstein, S., Tumulka, R. and Zangh̀ı, N. [unpublished,a]: ‘Em-
pirical Equivalence and Equivariance’, in preparation.

Allori, V., Goldstein, S., Tumulka, R. and Zangh̀ı, N. [unpublished,b]: ‘Semicolon and
the Nature of Reality’, in preparation.

Bargmann, V. [1954]: ‘On Unitary Ray Representations of Continuous Groups’, Annals
of Mathematics, 59, pp. 1–46.

Bassi, A. and Ghirardi, G.C. [2003]: ‘Dynamical Reduction Models’, Physics Reports,
379, 257–426.

18A certain generalization of (i)–(v) is supported by the considerations in (Dürr et al., 2005a), where
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quantum probability

P (Â = α|B̂ = β) = | < α|β > |2

< ψ|χ > probability amplitude

| < ψ|χ > |2 probability

non- Kolmogorovian ?



momentum

probability to find the value p of P̂
if the system is (initially)
in the the state ψ

| < ψ|p > |2 = �ψ(p)

Fourier transform

time of flight measurement of momentum 
(Heisenberg, Bohm52, Feynman & Hibbs)

ψ wf at time 0
free evolution
measure X̂ at large time T

X̂(T ) =
1

m
P̂T + X̂ → P̂ =

mX̂(T )

T
+

X

T
≈ mX̂(T )

T



Bohm

The particle has a well defined position X whose evolution is guided by ψ

P (X(t) = x|ψ, t = 0) = |ψt(x)|2

P (X̂(t) = x|ψ, t = 0) = |ψt(x)|2

Thus the asymptotic momentum P =
mX(T )

T (T large) is a

RANDOM VARIABLE on the space on initial conditions

with probability distribution

P (P = p|ψ, t = 0) = | �ψ(p)|2

Ẋ(t) =
�
m
Im

ψ∗
t∇ψt

ψ∗
tψt

(X(t))



spin

σx =

�
0 1
1 0

�
, σy =

�
0 −i
i 0

�
, σz =

�
1 0
0 −1

�

| < ψ| ↑> |2

| < ψ| ↓> |2

probability spin up along z

probability spin down along z

| ↑>=

�
1
0

�
and | ↓>=

�
0
1

�

Classically Non-Describable Two-Valuedness (Pauli)



il basso o verso l’alto nella direzione z del campo magnetico, a se-
conda di quale sia l’orientazione NORD-SUD dell’atomo.

Gli atomi d’argento vengono preparati con un forno e poi colli-
mati; in conseguenza dell’agitazione termica prodotta dal forno, gli
assi NORD-SUD degli atomi sono diretti in modo casuale. Quindi le
deviazioni verso l’alto e verso il basso che gli atomi del fascio subi-
scono nell’attraversare il campo magnetico dovrebbero essere casuali
e sullo schermo si dovrebbe formare un’unica macchiolina centrale
dovuta alla distribuzione casuale dei punti d’impatto. Invece gli atomi
vengono osservati sullo schermo solo in due punti distinti in posizione
simmetrica rispetto all’asse y, uno in alto e l’altro in basso (si veda la
FIG. 3.2). A partire dai dati sperimentali si può inferire che gli atomi
si comportano come se avessero un momento angolare con compo-

nente nella direzione z pari a 
1

2
h– oppure a – 

1

2
h–, dove h– è la costante

di Planck divisa per 2p (a seconda del segno del momento angolare
gli atomi vanno verso l’alto o verso il basso).

La comprensione del significato di questo risultato sperimentale
consiste in una parte facile e in una difficile. La parte facile è una
questione di chimica: ci sono 47 elettroni che circondano il nucleo
dell’atomo di argento, di cui 46 formano uno strato interno di mo-
mento angolare orbitale totale nullo, per cui non ci può essere alcun
momento magnetico dovuto a questo strato. Il solo elettrone rima-
nente ha anch’esso un momento angolare orbitale nullo, e quindi la

FIGURA 3.2
Esperimento di Stern-Gerlach: un fascio di atomi di argento diretto nella direzio-
ne positiva dell’asse delle y attraverso un campo magnetico non uniforme diretto
principalmente nella direzione z. Se gli elettroni non possedessero un grado di
libertà interno, lo spin, il fascio di atomi produrrebbe sullo schermo una singola
macchiolina (figura a sinistra). Quello che invece si osserva sono due macchioline
distinte sullo schermo (figura a destra)

Schermo

Magneti Magneti

Schermo
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Stern Gerlach measurement of spin

HI = µ�σ · �B ≈ (b+ az)σz

initial Ψ = ψ ⊗ Φ(z)



Ẑ(T ) = Ẑ +
P̂z

m
T +

a

2m
σzT

2

FT (z) is the calibration function of the experiment

Thus the RANDOM VARIABLE

FT (Z(T )) , FT (z) =
2mz

aT 2

in the limit of T large has values

+1 with probability < ψ| ↑> |2
−1 with probability < ψ| ↓> |2

assignment of num. values to the outcome of the exp.

in the space of initial positions with
prob. distribution |Φ(z)|2



Morals

• Association between random variable Z
(numerical result of the experiment) and 
operators

• Operators compactly express the statistics of 
the experiment

Ā =< ψ|Aψ > mean value of Z
< ψ|(A− Ā)2ψ > variance of Z
< ψ|Anψ > higher moments of Z



• One can completely understand what's going on in 
the experiments measuring momentum or spin.

• No need of invoking any putative property of the 
electron such as its actual z-component of spin that 
is supposed to be revealed in the experiment.  

• There is nothing the least bit remarkable about the  
nonexistence of this property.  

• Measurements are “active.”


