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This lecture is aimed at students, who are familiar with some basic quantum mechanics.
Its aim is to convey the basic ideas and show some applications of Bohmian mechanics in
arather accessible way. Consequently, it sometimes ignores subtleties and demonstrates
things in a simplified fashion. For a more thorough account we refer the reader to the
literature mentioned in the bibliography.

Introduction

What Bohmian mechanics is

Bohmian mechanics is a theory of quantum phenomena based on a particle picture. On a
fundamental level, it explains the world around us in terms of point particles that move on
deterministic paths. When used to describe experimental situations, Bohmian mechanics
yields the textbook formalism of quantum mechanics, and can therefore be considered as
an explanation of the axioms of standard quantum mechanics. Using Bohmian mechanics,
one can easily understand all of the quantum puzzles.

Motivation

So, why exactly is Bohmian mechanics needed?

When one studies quantum mechanics one learns how to formally describe the state
of a system and how to find its evolution in time; on top of that, one also learns a set of
rules that are used to get from the state of the system predictions about the statistics of the
outcomes of experiments. Without any doubt, this framework is very effective considering
its empirical predictions. But how do these rules come about? What is their content? What
is their meaning? What do they tell us about the physical world?

To date, there have been four main attempts to answer these questions. Two of them,
namely many worlds and operationalism, do not change the basic equations of the theory.
A third possibility is represented by the spontaneous localization models. They are modifi-
cations of the Schrodinger equation that embed the collapse of the wave function in the
free dynamics.



We will not elaborate further on any of these three attempts here, but we will only con-
centrate on the fourth one, namely Bohmian mechanics, that also changes the theoretical
structure of ordinary quantum mechanics, not by modifying the Schrédinger equation, but
rather by complementing it with a new equation. Bohmian mechanics does directly spring
from the quantum formalism if one just dares to ask “what if there really are particles, really
moving on definite paths?”.

There are two main merits of Bohmian mechanics. At first, it proves that quantum
randomness can be explained within a deterministic theory, in a way similar to how
Newtonian mechanics explains thermodynamics. At second, in a Bohmian framework all
of the famous quantum puzzles can be easily understood. This is a consequence of the
fact that the rules for the empirical predictions that one uses in quantum mechanics rest
within Bohmian mechanics on a mathematically rigorous and conceptionally clear basis.
Bohmian mechanics is a fundamental theory that can be applied to any physical system. If
one specializes it to measurement situations, one gets an effective theory of measurement
outcomes that is nothing else than ordinary quantum mechanics. In this sense there is no
friction between ordinary quantum mechanics and Bohmian mechanics: the latter does
not alter the former, rather it provides a way to explain it.

But there are also some words of warning in order here. Even though Bohmian mechan-
ics is a deterministic theory about the motion of actual particles, this motion is in no way
classical. The Bohmian dynamics drastically differ from what one would expect classically;
reasonably, one should not have expected otherwise. After all Bohmian mechanics does
not originate from the will to carry over classical mechanics to the quantum realm, but
springs from the question whether there is a way to understand the quantum formalism in
terms of particles having an objective and definite position at any time.

1 The state of a system and its dynamics

Consider at first a system composed of a single particle. Ordinary quantum mechanics
describes the state of such a system by means of a function on the space of possible posi-
tions of the particle , v (q) with q € R3; this function is called wave function. Additionally, in
Bohmian mechanics the particle has an actual position Q € R3. In other words, in Bohmian
mechanics, a particle really is a point in physical space, characterized by its position and
by a wave function.

It is important not to confuse the actual particle position Q with the variable q of the
wave function. The latter is just the variable of a function, that can be evaluated at any
point, whereas Q represents the actual position of the particle, and has a definite value.

As time passes, the position and the wave function change, therefore we have to write
them as functions of time: Q(7), and v¥(q, 1). If the wave function at some time f; is known,
itis possible to calculate it for every time ¢ by using the Schrodinger equation, as in ordinary
quantum mechanics:
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Here H is the usual Hamilton operator, e.g. for a particle of mass m in a potential V we
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Conversely, to determine the actual position at time ¢, it is not enough to know the position
at time fy, but also the wave function is needed. Indeed, the evolution of the actual position
is dictated by the wave function through the guiding equation
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where Im denotes the imaginary part.

There are several ways to motivate this equation. One is asking for the simplest Galilei
invariant vector field that can be derived from a function on the space of possible positions
[1, sec. 8.1]. Another motivation, easliy accessible to those already familiar with QM, is the
following. It is easy to prove, that from the Schrédinger equation we get the relation
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called the quantum current. Equation (4) is a continuity equation and it states that the
quantity le2 is “never created nor destructed”, but rather it just moves around in space
along the trajectories that have velocity j/|w|?>. Therefore, the wave function and the
Schrédinger equation naturally define the trajectories which are solution of equation (3).

The quantity |1(q, £)|? is interpreted in ordinary quantum mechanics as the probability
density of finding the particle at the position q if one were to look for it at time ¢. We will
see in the next section that similarly in Bohmian mechanics |y(q, £)|? is interpreted as the
probability density for the actual position Q(#) to be at the location q at time ¢. This implies
of course also that you find it there if you look for it!

Summing up, the wave function y(q, f) and the actual position Q(%#) at some time &,
uniquely determine the motion of the particle for all later and earlier times. Consequently,
Bohmian mechanics is an entirely deterministic theory in which the particle moves on a
continuous path through space and has a well defined position at any time.

If the system consists of more than one particle, say there are N particles, then accord-
ing to Bohmian mechanics each particle has an actual position Qy € R3, k=1,...,N; the
collection of these positions Q := (Qy,...,Qn) € RV is called configuration of the system.
The wave function is in this case a function on the space of possible positions of the N
particles, v(qy,...,qn), with qx € R3,and k =1,..., N, that we can also write as w(q) with
g € R3N . Indicating by A and V. the Laplacian and the gradient with respect to the co-
ordinates of the k-th particle, respectively, the Schrédinger equation is still equation (1),
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and the guidance equation becomes
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Note that on the left hand side there is Q, while on the right hand side there is Q: the
velocity of the kth particle depends on the position of all of the IV particles of the system.

If the particles have spin, the only difference is that the wave function is spinor-valued
rather than a scalar, and y* in the guidance equation should be replaced by v, the
Hermitian conjugate. Spin is a property of the wave function, not of the particles, and its
treatment in Bohmian mechanics and in ordinary quantum mechanics are exactly the
same.

Summing up, the axioms of Bohmian mechanics are:

1. There are particles. That means point particles, always having definite position.
The physical world described by Bohmian mechanics is made out of these particles.
Objects like atoms in an experiment just as the experimental setup, the apparatus,
the furniture of the lab etc. are made out of these particles.

2. The particles move. To describe the motion of the particles, a new entity is needed, a
wave function v, defined on the space of the possible configurations of all particles.
The wave function y evolves in time according to the Schrodinger equation (1). Then,
the motion of the particles is controlled by y through the Bohmian velocity law (3).

To use Bohmian mechanics to derive statistical prediction, we need in addition a statistical
axiom:

3. |y|? gives the right notion of typicality for the whole universe.

The meaning of this last axiom will be the topic of the next section.

From these ingredients the entire formalism of textbook quantum mechanics follows
as theorems.

This concludes the presentation of the theory. In the next sections we will present some
analysis of it. But before that, let us make a short remark about the possible extension of
the theory to the relativistic regime. The biggest problem is that to calculate the velocity
of the ith particle at time ¢ from the Bohmian law (3) one needs to substitute into the
argument of the wave function the position of all other particles at the same time ¢. This
operation is clearly problematic in a relativistic setting, where simultaneity depends on the
reference frame. The easiest possibility would be to introduce some preferred reference
frame, that specifies the needed simultaneity to use the Bohmian velocity law (3). This does
not contradict relativity theory because one finds that the predictions for experiments are
not frame dependent; anyhow, this idea is of course against the spirit of relativity. A more
satisfactory solution is for instance to introduce a distinguished foliation of spacetime
derivable from something already present in the theory, like for example the wave function.
There are several possibilities to do that, all making the same empirical predictions. Which
one is the correct one is an open research question.

2 Equivariance and Born Rule
As we have seen Bohmian mechanics is a deterministic theory of quantum phenomena:

specification of the positions and of the wave function at some time fj, uniquely determine
the entire future evolution, and therefore also the positions at any future time.
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Now one might be confused, because it is often thought that the most fundamental
features of quantum mechanics are randomness and indeterminism: do we not have
evidence of randomness in quantum systems? Do we not have experiments on identically
prepared systems yielding empirical distributions? How can this be if the foundation of
quantum behavior is entirely deterministic, as Bohmian mechanics states?

The question is actually the much more general one of how randomness enters a
deterministic theory, which was answered conclusively for the first time in the work of
Boltzmann, Smoluchowski, and Einstein at the beginning of the 20th century. This question
is intimately related to what randomness and probability are, which is a hard question.
When one speaks about randomness in physics one speaks about the typical behavior of
empirical distributions — the relative frequencies of outcomes of measurements. In the
following we will explain this statement.

The situation in Bohmian mechanics is very similar to the way randomness enters
in classical statistical mechanics. Let us explain the Newtonian situation with an easy
example. Consider a machine in which one can load one thousand coins and that then
tosses them one after the other. The outcome of all the coin tosses is determined by the
initial positions and momenta of all the constituents of the coins, the machine, the table
the coins fall on, the air surrounding them and what else is relevant. For every initial
condition of this combined system, one has a unique final state, which gives a unique
series of heads and tails. For practical purposes to which series of heads and tails a certain
initial state leads is of little relevance; what is really interesting is the question what typical
initial states do, that means what the overwhelming majority of initial states do. To judge
what the overwhelming majority is, one needs a way of counting states. As the space of
initial conditions is a continuum, we cannot simply count states, but rather need a measure
to evaluate the size of a subset. In a moment we will see how to get a handle on finding
the correct typicality measure. Summarizing we can state that analyzing the situation for
coin tossing, one finds that typical initial data yield sequences of outcomes which contain
approximately as many heads as tails.

Now, let us have a look at Bohmian mechanics. Let us consider a machine which shoots
thousand electrons all with the same wave function ¢ one after the other through a double
slit. As Bohmian mechanics is a deterministic theory, the positions at which the particles
hit the screen are uniquely determined by the initial conditions of the biggest relevant
system, i.e. the actual configuration Q and the wave function ¥ of that system. From
now on we will call the biggest relevant system simply the “universe”. The randomness we
want to explain here is the randomness that is present in standard quantum mechanics,
i.e. given a wave function the observed positions are still random. So let us take a fixed
WV and ask: what do typical initial configurations Q do? This is analogous to what we did
in the coin tossing example, where we asked what the overwhelming majority of initial
configurations do. As above, we need a measure of typicality on the space of possible
configurations Q.

How do we know what the correct measure of typicality is? This measure should
be singled out by the dynamics, otherwise its relevance would be dubious. Let us first
look at the familiar example of Newtonian physics to explain this. Let p be the density
corresponding to the measure of typicality, which is a measure on phase space, and v the
vector field generating the dynamics, that is the Hamiltonian vector-field. The notion of



what is typical or atypical should be transported by the dynamics, i.e. if a subset of phase
space is typical today, the same set evolved until tomorrow will be typical tomorrow, with
respect to tomorrow’s notion of typicality. This is expressed by the continuity equation

0
atp+V(pv) =0. (8)

Moreover, the procedure to judge which sets are typical or atypical should be the same
for all times, it should be invariant under the dynamics. The easiest possibility is to have a
density that simply does not change in time, i.e. such that d;p = 0; this is called a stationary
one. For Newtonian mechanics we can, in this case, simply assign equal weight to all states
permitted by energy conservation, getting the microcanonical density.

In Bohmian mechanics the velocity field v guiding the configuration is determined by
the wave function that in general depends on time. As a consequence, we cannot ask for
a stationary density for the measure of typicality. From the guidance equation we know,
however, that p = |W|? satisfies the continuity equation. We used exactly this observation
as one possible motivation for the guiding equation in the last section. Moreover, the
prescription “take the modulus squared of ¥” is a method to judge what is typical or
atypical built out of ¥ in a way independent of time. This property is called equivariance
and replaces the stationarity of the measure we had in the Newtonian case. Therefore
the dynamics naturally indicates that the density p = |¥|? yields the correct measure of
typicality. This makes plausible what we stated as Axiom 3 in the last section.

Now that we have a measure of typicality for Bohmian mechanics, let us go back to the
question what typical initial configurations do. We will learn in one of the next sections
how to derive the wave function for a subsystem from the wave function V¥ of the universe.
Let us for the moment just assume that there is a way of finding the wave function of a
subsystem given the wave function V. It turns out that in Bohmian mechanics one can
prove the following theorem ([1, ch. 11], [2, ch. 2]):

For every wave function ¥ and for typical initial configurations Q of the uni-
verse, subsystems with given wave function ¢ have configurations distributed
according to I(plz.

For our example with the double slit this means that the distribution of the spots where
the particles hit the screen is approximately given by |¢|?, where ¢ is the wave function
of each single electron. The density |¢|? was already considered by Max Born in the early
days of quantum mechanics, and this is why this distribution is called Born rule.

At this point one might be urged to ask the following: If the particles always have definite
positions, is it not possible to prepare a system not only with a definite wave function
but also, at the same time, with a definite configuration by very elaborate experimental
setups? Is it conceivable, that, with very clever means, we can actually prepare a system
with a configuration specified to a greater accuracy than the familiar uncertainty principle
allows? The answer is no. The quantum mechanical interaction between a system and an
apparatus is always an interaction of wave functions. From that one can show that if one
prepares a system with prescribed wave function ¢, no matter what kind of apparatus one
uses, it is impossible to prepare the system with configuration specified more accurately
than |¢|?.



A further consequence of the |¢|?-distribution is that all empirical predictions of
Bohmian mechanics agree with the ones of standard quantum mechanics. In Bohmian
mechanics as well as in standard quantum mechanics the outcomes of position measure-
ments are |@|?-distributed, therefore both theories make the same predictions for position
measurements. Now, consider for example a spin measurement. One sends an electron
though an inhomogeneous magnetic field, produced by a Stern-Gerlach magnet, and
records whether it gets deflected up or down. Thus, measuring the spin actually amounts
to measuring the final position of the electron. This is true in general: every measurement
in the end is a measurement of position; the outcome of the measurement must neces-
sarily result in something moving in space, e g. a pointer showing the outcome on a scale,
electrons moving in a circuit, and so on. Thus from the fact that Bohmian mechanics and
standard quantum mechanics agree on the predictions for position measurements one gets
that they agree on every measurement. One should keep in mind that the |¢|?-distribution
in Bohmian mechanics is not artificially tailored in order to reproduce the predictions of
ordinary quantum mechanics, but it comes about naturally if one just asks: what if there
really are particles with definite positions at all times?

3 Collapse, measurement problem and decoherence

In Bohmian Mechnics the description of the measurement process naturally follows from
the formulation of the theory. A measurement is the interaction, for a finite amount of
time, between two quantum mechanical systems, the system to be measured and the
measuring apparatus, which will from now on be called system and apparatus, respectively.
In Bohmian mechanics, both systems can be treated as ordinary quantum systems, and
their interaction is described by the usual Schrodinger evolution. We will denote by x
the configuration of the system, by y that of the apparatus, and by T the duration of the
process.

The characterizing property of a measuring device is that at the end of the interaction
it is in one of several macroscopically distinguishable configurations, like for instance
pointers pointing in different directions. So there will be different apparatus wave functions
corresponding to different outcomes of the measurement e.g. pointer positions, and these
wave functions will have (practically) disjoint support in configuration space. Let us call
the outcome wave functions ®; and @, the ready state of the apparatus, i.e. the state prior
to the measurement.

The generic apparatus will behave in the following way. If the system starts out in some
initial state ¢; at time ¢ = 0, then interacts with the apparatus, the latter should evolve to a
certain final state ®; depending on the initial state of the system to be measured. In other
words, the time evolution during the measurement will be as follows

@i () Do) — @ (X)D; (). 9)

This is the justification why one can say the apparatus performs a measurement: it reacts to
certain system states in a definite way, e.g. by a pointer pointing to definite values on a scale.
Now, as we mentioned above, it is important that the ®; correspond to macroscopically
distinguishable states. On the level of the wave function this means that ®; and ®; have
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basically no overlap on configuration space for i # j, i.e. ®; is unequal to zero almost only
in regions of configuration space where ®; is almost zero and vice versa.

Now if we take a sum of the ¢; as an initial state of the system, the time evolution yields
for the state after the measurement

Y cipi(0)@o(y) — Y cipl (X)@;(y). (10)
i i

This is simply a consequence of the linearity of the Schrédinger equation. The result (10)
is very puzzling. The state after the measurement is a superposition of macroscopically
distinguishable states, so e.g. a superposition of a pointer pointing to the right and a pointer
pointing to the left. This is not what we see in the experiment, we do not see a superposition
of pointer positions, but we see just one of the summands. This is the famous measurement
problem of standard quantum mechanics. Standard quantum mechanics attempts to solve
this problem by postulating that in a measurement situation the Schrédinger dynamics
breaks down and the wave function follows for a while a different dynamics that makes it
collapse to just one of the summands. This solution, although very common, is not really
viable. If one assumes that the collapse happens only in connection with measurement
set-ups, then strictly speaking one can not anymore understand macroscopic bodies as
made out of atoms: something more must be present that is responsible for the collapse,
otherwise the atoms would always follow Schrédinger’s dynamics, no matter how many
they are. Moreover, it is unclear for which systems the collapse is supposed to happen and
for which not.

Sometimes it is claimed that the measurement problem is not a true problem in stan-
dard quantum mechanics because of decoherence. Let’s briefly consider this reasoning.
For any pair of summands in (10), (pl.T<I> ; and (p]T(IJ j» with j # i, the overlap in configuration
space is negligible, they practically have disjoint support on configuration space. Then, for
the wave function of system and apparatus after the measurement we have

W (DP =Y cip] ©i*= Y lcip] @i+ Y ci o] @} cjp]®; =Y leipf ®il>. (1)
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This is the mathematically precise formulation of the statement “macroscopically distin-
guishable”. The process that brings the initial state to a state with such a structure is a
continuous one. The different summands in the wave function do at first overlap, but the
overlap gets smaller and smaller as times goes on. This phenomenon is what is called
decoherence. In a state like the final one no quantum interference can be preset because
the summands have no overlap, therefore the righthand side of (11) is indistinguishable
from a statistical mixture, in which the apparatus has a definite state among the ®;s and
we simply do not know which one. Nevertheless, this does not solve the problem, indeed it
does not explain how in a single run of the experiment the system passes from a sum to
just one of the summands. In doing that one is replacing a logical AND by a logical OR. In a
statistical mixture we are ignorant about which state was actually prepared and therefore
we say that the system is in one of several possible states, linked by a logical OR: this state,
or that, or that or...In (11) the sum corresponds to a logical AND between the summands.
Just because we can neglect some of the terms occurring in taking the square, which is
meant by our = in (11) above, does of course not change a logical AND to a logical OR!



Thus decoherence alone does not explain how a sum is transformed into just one of its
summands. A step is still missing!

In Bohmian mechanics, however, the expression (10) is not a problem, because in

addition to the wave function we still have the particle positions at all times.
Let us carefully analyze the situation from a Bohmian point of view. The apparatus is of
course also made out of particles described by Bohmian mechanics. Let us say it is made
out of M particles whereas the system is made out of N particles. Let X € R3" be the actual
configuration of the system, ¥ € R3M that of the apparatus, and Q(#) := (X(1), Y (1)).

The relevant wave function is the combined wave function of system and apparatus, e.g.
initially Y°; c;; (x)®o(y), that is a function on R3™*M As we know the wave function and
the actual configuration at time #, uniquely determine the actual configuration Q(#) for all
other times ¢. The actual configuration Q(#) := (X (1), Y (¢)) is guided by the wave function
and therefore moves just in that part of configuration space where the wave function is not
equal to zero. This can easily be seen as at all times the probability to find Q(¢) in some
region of configuration space is proportional to the modulus squared of the wave function.
In other words there is zero probability to find Q(#) where the wave function is zero. So
after the end of the interaction of system and apparatus the configuration Q(7) of system
and apparatus will be in the support of just one of the summands on the right hand side
of (10), and the way it moved there in configuration space is uniquely determined by its
value at . In Bohmian mechanics there is clearly just one pointer position at the end of
the experiment, namely the one the actual configuration assumes.

Because the configuration Q(#) just moves where the wave function is not zero, it
will never move from one branch of the wave function to another, disjoint one. If after
the experiment the different summands in (10) will never overlap again, which for a
measurement situation is the case, the configuration Q(#) will stay in its brach, e.g. (pde) i
for all times ¢ = T. The practical implication is that we can ignore the other branches for
the future, and we get an effective collapse of the wave function. We will examine this in
more detail in the next section.

4 Conditional/Effective wave function

A measurement situation is a special case of the more general situation of a system made
of several subsystems. The treatment of subsystems is of crucial importance in physics,
and we will now discuss it in a Bohmian framework.

In physics books and presentations, many discussions start with the words “consider
a system composed of...”": have you ever thought that this does not make sense if taken
literally? It does not, because the system meant here is a certain set of physical objects
interacting among themselves, but completely independent from any other physical object
in the universe, i.e. these objects form a universe on their own. But we have only one
universe! Of course nobody making the above statement means that. What is meant is
consider a subsystem of the actual universe, composed of. .., and such that it is negligibly
influenced by the state of the rest of the universe.

If one speaks about classical mechanics, then for a given subsystem it is trivial to check
if this is the case or not: it is enough that everything else is very far away. For example,



think of the magnetic force. Two magnets always exert a force on each other, and if you
want to check with a compass where North is, you have to avoid to have other magnets
around, but you do not have to worry about the influence of the magnetic field of Mars: it
is simply too far away to matter.

In quantum mechanics, on the contrary, it is not that easy. For example, think of a single
electron in outer space, very far away from everything else. Still, it could be entangled with
another particle on a distant planet, and its state would then depend on what happens to
the distant particle, no matter how far away it is. Clearly, for quantum mechanics spatial
distance is not the main feature needed to have a subsystem independent of any object
not belonging to it. For quantum systems a deeper analysis is required, and Bohmian
mechanics neatly provides us with the needed tools for such an analysis.

Let us look at this analysis in some detail. We will use the word universe to designate
the biggest system that can be considered relevant to the discussion. Let us denote by
Q the Bohmian configuration of the universe, and let us split it as Q = (X,Y), where X
denotes the configuration of the subsystem of interest, that we will call x-system, and
Y that of the rest of the universe, or y-system. The problem is to understand when the
x-system has a Bohmian description on its own, that means that we have to build a wave
function for it alone, satisfying a Schrédinger equation on its own, independently of the
rest of the universe and guiding the X configuration with the usual Bohmian equation.
What we know, is that the whole universe has a certain wave function ¥ (x, y), and that the
X configuration is guided by it according to the law!

X(t)—Im\P*vx\P(X(t) Y(0),1) (12)
Yy S
It is then obvious to define
Y(x, Y(1),1)
px, 1) = (13)
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indeed the function ¢ guides the X configuration:

PV

*

X(t)=Im (X (1), 1). (14)
The wave function ¢(x, 1) is called conditional wave function of the x-system, given that the
rest of the universe follows the Bohmian trajectory Y (£). This wave function depends only
on x and guides the x-configuration, but it is not yet what we were looking for. Indeed, the
conditional wave function can always be defined even if the x- and y-systems are strongly
dependent on each other. The question is now when the conditional wave function ¢(x, t)
satisfies a Schrodinger equation on its own, independent of the y-system. In this case the
conditional wave function is called the effective wave function for the x-subsystem.

To understand when this is the case, it is convenient to start from an obvious example:
suppose that the wave function of the universe has a product structure, i.e.

Y(x,y) =px)P(y). (15)

For ease of notation in this chapter we set 7 and the mass of each particle to be equal to one, which
amounts to a change of variables. The masses can easily be restored by writing the equations (12) and (14)
component wise or by writing a mass matrix in front of the right hand sides.

10



Applying eq. (13) we find that the conditional wave function of the x-subsystem is always
@(x), regardless of the Y coordinate. In this case, the conditional wave function ¢(x) is an
effective wave function, indeed we can describe the x-system using just this wave function,
and forget about the rest of the universe: the function ¢(x) satisfies a Schrodinger equation
on its own. Of course, the product structure is a condition much too strong for the wave
function of the universe. Even assuming that it holds at some time £, it is immediately
destroyed by any interaction of the x- and y-systems, even by the weakest interaction that
one can imagine.

Let us now look at a second example. Consider that the wave function of the universe
is the sum of two functions

Y(x,y)=Y1(x,y)+V¥a(x,y) (16)

with disjoint y-support, i.e. if Y is such that ¥ (x, Y) is different from zero, then ¥, (x,Y)
is equal to zero, and the other way around. Then, when for example Y € supp ¥ (x, Y),
i.e. when ¥ (x, Y) is different from zero, the conditional wave function of the x-system
is independent of W, (x, Y). This splitting of the support of the wave function is not a
rare case: the y-coordinate is the collection of the coordinates of any other particle in the
universe

y=01y2...) (17

and in order to have the splitting for the y-coordinate it is sufficient to have it for one
single particle y;. Moreover, for a y;, such a splitting occurs as soon as one has two clearly
different alternative states, like for example the positions of the pointer of a measuring
apparatus.

The more general structure needed to have an effective wave function for the x-system
comes from the combination of these two simple cases. Consider that, during a certain
interval of time I;, the wave function of the universe is of the form

Y(x,y) =px)D(y) +wi(x, ), (18)

where ®(y) and wl(x, y) have disjoint y-supports. Then, the conditional wave function of
the x-system is ¢(x) whenever Y is in the support of ®(y), and ¢(x) satisfies a Schrodinger
equation on its own. This means that, if we know that during the time interval I; the
configuration Y of the rest of the universe is in the support of ®(y), then we can study the
x-system as an independent system, characterized by the wave function ¢(x), that evolves
according to the Schrédinger equation. Of course, in this case X € supp ¢.

This solves our problem. Note that to derive from the description of the whole uni-
verse an evolution for the x-system as independent of the y-system, the concept of the
conditional wave function is needed, and this is a concept that makes explicit use of the
Bohmian configuration.

We can use the considerations described above also for the problem of the collapse
of the wave function. Indeed, in a measurement situation the wave function after the
measurement is of the form (10), i.e.

Y(x,y,T) =) cip] (x)@;(y), (19)
i
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that is a special case of (18). Therefore, after the experiment the x-sytem can be described
independently of the y-system, because it admits an effective wave function. The effective
wave function for the x-system is given by eq. (13), and is <pl.T (x) whenever the actual pointer
position Y (T) lies in the support of ®;(y). Hence, the usual collapse rule of quantum
mechanics is recovered, with the effective wave function for the x-system corresponding
to the collapsed wave function. Which ¢; one gets in the end is determined by the initial
positions X and Y.

This procedure for getting the wave function of a subsystem from the wave function of
the universe is what one uses to derive the Born rule for subsystems from the measure of
typicality of the universe [1, ch. 11].

5 Operators

According to Bohmian mechanics every object is composed of physical point particles
moving around and interacting with one another. No special role is reserved to conscious
beings nor to measurement processes. An observer is, from the Bohmian point of view,
just a bunch of particles, and an observation is just an interaction of this bunch of particles
with some other particles not belonging to that bunch. During such a process, that has
to be described by the Schrédinger evolution as any other physical process, nothing
extraordinary can happen.

How comes then, that observables and the related self-adjoint operators are so im-
portant in quantum mechanics? It is so because quantum mechanics is a theory about
measurements, so these things are fundamental by definition. On the contrary, Bohmian
mechanics is a theory about particles that move, and the usual formalism describing the
measurements must be derived as a special case. Self-adjoint operators are in this view
just mathematically convenient ways to summarize all the relevant information concern-
ing the process: the measurement formalism is nothing else than a very sophisticated
bookkeeping technique.

Let’s have a look at the derivation of the measurement formalism according to Bohmian
mechanics. An experiment is a physical process in which a system of interest, character-
ized by the configuration x, comes into interaction with another physical system, called
apparatus and described by the configuration y. This interaction has to fulfill some require-
ments in order to allow us to understand it as a measurement. We say that the y-system
is measuring the x-system if there exists a set of y-states {®;};~¢,.. with the following
properties:

* they have disjoint supports, i.e.
Vyesupp®;, = @;(y)=0, j#i; (20)
¢ they are normalized, i.e. (®;|®D;) = 1;

e starting from the ready state ®((y) and from a certain state ¢;(x), the Schrodinger
evolution brings the composite system to the state (pl.T(x)q)i (), i.e. the states before
and after the interaction are related by

@i (X) Do (y) — @] () D;(1); 1)
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By linearity, we have that starting from the x-state ¢(x) = }_; ¢;@;(x), the evolution leads to

P(X) Do (y) = Y cipi(X) Do (y) — Y cip] (x) @;(3). (22)
i i

The probability that after the interaction the Bohmian configuration of the apparatus
lies in the support of ®; is

Pi:fdx dy

supp®;

2
Zci(PiT(x)q)i(J/)‘ = fdx dy leipf 0@; ) =1cil?. (23)
i

supp®;

Note that the x-system admits an effective wave function both before and after the
interaction process, and these wave functions are ¢(x) =} ; ¢;@;(x) and (pl.T(x), respectively.
The probability that the final effective wave function of the x-system is (p;tr is equal to PP;.

Given such a measurement, the x-states ¢; that are associated to it must satisfy some
properties. At first, they must be orthogonal. Indeed, consider the norm of the initial state

llp Dol =fdxfdy‘zci<pi(x)®o(y)‘2 =fdx)zci<pi(x)’2 (24)
l l
= Z|Ci|2+ ; o cjfdx(pf(x) @) (25)
i i£j
and that of the final one
HZCi(piTcDi 2=fdxfdy‘Zci¢f(x)®i(y)‘2:Z|c,-|2. (26)
1 1 15

By unitarity of the evolution these two norms must be equal, therefore

Y ¢t cjfdx @7 () @;x)=0. 27)
i7

The coefficients c; are arbitrary, hence it must be

fdx @; (X)p;(x)={pilp;)=0. (28)

One more property derives from the fact that one can start with an arbitrary x-state
and the apparatus will always show a result after the measurement. It must be possible to
calculate the probability of each final position of the pointer of the apparatus. Therefore, it
must be possible to decompose any x-state in the form }_; c;¢;, i.e. the states {¢;}; must
constitute a basis. To be more precise, we should consider that several initial states ¢;
can trigger the same answer i of the apparatus. The set of states {¢; }; o are characteristic
of the experiment, and the experiment is not able to distinguish the states with the same i
and different as. The mathematical object that encodes all the information regarding the
set {g; o}; relative to the outcome i is the projector

Pi=Y |¢ia){pial = P?=Pl. 29)
a
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The properties of the states ¢; , translate to the following properties of the projectors P;:
PiP;j=0, i#], (30)
Y Pi=1. (31)

i

Moreover, given the initial x-state ¢, we can calculate the probability of the outcome i by
P;i = lcil” = (@l Pilg). (32)

One last feature of a typical experiment remains to be discussed. Until now, we have
identified the different answers of the apparatus by an index i. This is not usual for an
experiment. Normally, different answers of an experiment correspond to different values,
i.e. to different numbers printed on the scale of the pointer, or the like. Let’s denote the
value corresponding to the answer i by A;. It is then useful to build the operator

A=) AP (33)
i

with which we can calculate all the relevant statistical predictions for the experiment. For
instance, the mean of the measured values for the initial state ¢ is

Ep(A) =) AiP; =) Ai (@l Pilgp) = (oI d_ AiPilp) = (| Al ). (34)
i i i
Moreover, their variance is
Ep(1*) ~E5 () =
= Y23 @IPilg) — (@l Alp)” = 3 A% (@l PYlp) — (ol Alp)” =
1 1

=Y Lidj (@IPiPjlg) - (plAlp)” = (pl A1) — (pl Alg)". (35)
]
It is easy to verify that the operator A is selfadjoint by construction, i.e. A = A", indeed
A; € Rand P;L =P;.

Summarizing, given an experiment, we can compute all the relevant probabilities and
statistics using the projectors P; and the values A1;, both encoded in the selfadjoint operator
A, i.e. restricting Bohmian mechanics to measurement processes one recovers the usual
formalism of ordinary quantum mechanics. Because the description of any measurement
process is the same in Bohmian mechanics and in quantum mechanics, there is then no
experiment for which the two theories can possibly give different predictions.

This derivation shows how the measurement formalism follows from the Schrédinger
evolution and proves that the promotion of measurements from special cases of the
Schrodinger evolution to fundamental processes described by ad hoc axioms is not a
necessity, but a deliberate theoretical choice.

It must be noted that this derivation is not exclusively Bohmian, indeed it has been
developed by Giinter Ludwig in the framework of ordinary quantum mechanics. Never-
theless, in this case one still needs the collapse postulate to get a definite answer for each
run of the experiment, while the Bohmian version uses the concept of the effective wave
function at that point. Therefore, the derivation of the measurement formalism gets very
natural and clear in the context of Bohmian mechanics, where the measurement problem
is solved without reference to additional axioms.
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