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What is Bohmian Mechanics?

• Matter is described by point particles in physical space, i.e. an
N-particle universe is described by

Q1, ...,QN ,Qi ∈ R3 particle positions

• particles move
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The LAW of motion

• respects Galilean symmetry but is non-Newtonian. It is a
mathematically consistent simplification of the Hamilton Jacobi idea
of mechanics:

Q(t) = (Q1(t), ...,QN(t)), ∇ =
∂

∂q
configuration

obeys (time reversal invariance in ”first order” theory achieved by
complex conjugation)

dQ
dt

= vΨ(Q(t), t) = αIm
Ψ∗∇Ψ

Ψ∗Ψ
(Q(t), t) guiding equation

α is a dimensional parameter
the guiding field is

• the ”universal” wave function

Ψ : R3N × R 7→ C(n) (q = (q1, . . . ,qN), t) 7→ Ψ(q, t)



The LAW of motion

• respects Galilean symmetry but is non-Newtonian. It is a
mathematically consistent simplification of the Hamilton Jacobi idea
of mechanics:

Q(t) = (Q1(t), ...,QN(t)), ∇ =
∂

∂q
configuration

obeys (time reversal invariance in ”first order” theory achieved by
complex conjugation)

dQ
dt

= vΨ(Q(t), t) = αIm
Ψ∗∇Ψ

Ψ∗Ψ
(Q(t), t) guiding equation

α is a dimensional parameter
the guiding field is

• the ”universal” wave function

Ψ : R3N × R 7→ C(n) (q = (q1, . . . ,qN), t) 7→ Ψ(q, t)



The LAW of motion

• respects Galilean symmetry but is non-Newtonian. It is a
mathematically consistent simplification of the Hamilton Jacobi idea
of mechanics:

Q(t) = (Q1(t), ...,QN(t)), ∇ =
∂

∂q
configuration

obeys (time reversal invariance in ”first order” theory achieved by
complex conjugation)

dQ
dt

= vΨ(Q(t), t) = αIm
Ψ∗∇Ψ

Ψ∗Ψ
(Q(t), t) guiding equation

α is a dimensional parameter
the guiding field is

• the ”universal” wave function

Ψ : R3N × R 7→ C(n) (q = (q1, . . . ,qN), t) 7→ Ψ(q, t)



Ψ

• solves the Schrödinger equation

i
∂Ψ

∂t
(q, t) = HΨ(q, t) “Schrödinger“ equation

H = −∑n
k=1

α
2 ∆k + W (Galilean invariant operator)
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Bohmian motion encompasses Newtonian motion

• write Ψ in polar form Ψ(q, t) = R(q, t)e
i
~S(q,t) with R,S real

functions and ~ an (action-) dimensional constant
• S satisfies a Hamilton Jacobi type of equation
• v = m−1∇S for a Newtonian particle with mass m
• vΨ = α

~∇S =⇒ identify α = ~
m and W

~ =: V as the ”Newtonian
potential”

• Newtonian Bohmian motion for ”Quantum Potential” ~2

2m
∆R
R ≈ 0
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Bohmian mechanics with Newtonian identification of
parameters1

dQ
dt

= vΨ(Q(t), t) = ~m−1Im
Ψ∗∇Ψ

Ψ∗Ψ
(Q(t), t)

where m is a diagonal matrix with mass entries mk

i~
∂Ψ

∂t
(q, t) =

(
−

n∑

k=1

~2

2mk
∆k + V (q)

)
Ψ(q, t)

1Analogy: Boltzmann’s constant kB relates thermodynamics to Newtonian
mechanics, ~ relates Newtonian mechanics to Bohmian Mechanics



simplest way to Bohmian mechanics

• R2 = |Ψ|2 satifies ∂t |Ψ|2 = −∇ · (vΨ|Ψ|2) =: −∇ · jΨ the quantum
flux equation

• vΨ = jΨ

|Ψ|2 (Pauli 1927, J.S. Bell 1964)
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”Bohmian Mechanics agrees with Quantum Predictions”

• quantum flux equation means ρ(t) = |Ψ(t)|2 is equivariant: Assume
Q is distributed according to ρ = |Ψ|2 then Q(t) at any other time
is distributed according to ρ(t) = |Ψ(t)|2
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Historical Criticisms

• |ψ|2 is a probability, probability is subjective, hence the Bohmian
motion is guided by ignorance of the observer

• In BM the position plays a distinguished role: The unitary symmetry
of Hilbert-space is violated

• In BM particles have definite positions: The indistinguishability of
quantum particles is violated

• solution: configuration space of identical particles is (like in classical
mechanics) the manifold R3N/SN −→ Fermion-Boson-Alternative

• spin cannot be described in BM
• solution: read Ψ∗∇Ψ

Ψ∗Ψ as inner product in spinor space
• particle creation and annihilation contradicts the existence of
particles

• solution: standard birth and death process
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Einstein’s criticism: Ψ on configuration space2cannot be
physical

• Ψ as function of configuration is called ”entanglement” of the wave
function

• k−th particle’s trajectory Qk(t)

dQk(t)
dt

=
~
mk

Im
Ψ∗∇kΨ

Ψ∗Ψ
(Q1, (t) . . . ,QN(t), t),

for entangled wave function influenced by all particles at t =⇒
manifestly not local, against the spirit of relativity

21080 dimensional
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Einstein’s criticism answered by John S. Bell

• the derivation of Bell’s inequalities and the experimental results
establish that nature is nonlocal (Jean Bricmont’s talk)

• Ψ is that nonlocal agent, which produces nonlocal correlations
• BM is just what the doctor ordered.
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universal Ψ and subsystem’s ϕ

S. Goldstein, N. Zanghì and I started this analysis 25 years ago
here at IHES

• BM is a complete quantum theory, notions like measurement or
observer are not fundamental notions for defining the theory

• the empirical import of BM comes solely from mathematical analysis
• Boltzmann’s statistical analysis of BM (ρ = |ϕ|2) based on typicality
measure dPΨ = |Ψ|2dq3N which is equivariant (cf. quantum flux
equation)
Bohmian flow TΨ

t : Q 7→ Q(t) commutes with Schrödinger evolution
Ψ 7→ Ψt :

dPΨ ◦ (TΨ
t )−1 = dPΨt

• Anology: Stationarity of microcanonical measure (Liouville equation)
on phase space in Hamiltonian Mechanics

• ρ is the empirical density in an ensemble of subsystems
• ϕ is wave function of subsystem
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conditional wave function ϕ of subsystem

X = (X1, . . . ,Xn) system’s particles

Q = (X ,Y ) splitting in system and rest of universe

⇓
ϕY (x) := Ψ(x ,Y )/‖Ψ(Y )‖

normalized conditional wave function of subsystem guides X

crucial ”conditional measure” formula

PΨ(X ∈ dx |ϕY = ϕ) = |ϕ(x)|2dx
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Autonomous subsystem: effective wave function

If wave function of universe Ψ(x , y) = ϕ(x)Φ(y) + Ψ(x , y)⊥

where

suppΦ ∩ suppΨ⊥ = ∅ macroscopically disjoint

and if Y ∈ suppΦ e.g. preparation of ϕ

⇓

ϕY = ϕ is effective wave function for system

decoherence sustains disjointness of supports

⇓
Schrödinger equation for ϕ for some time

i~
∂ϕ

∂t
(x , t) = −

n∑

k=1

~2

2mk
∆kϕ(x , t) + V (x)ϕ(x , t)
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macroscopically disjoint Y - supports

X

N=

N=

Y

10

10

24



Bohmian Subsystem

(X , ϕ) physical variables

dX
dt

= vϕ(X (t), t) = ~m−1Im
ϕ∗∇ϕ
ϕ∗ϕ

(X (t), t) guiding equation

i~
∂ϕ

∂t
(x , t) = −

n∑

k=1

~2

2mk
∆kϕ(x , t)+V (x)ϕ(x , t) Schrödinger equation



Born’s law ρ = |ϕ|2

• Consider an ensemble of subsystems each having effective wave
function ϕ

• Theorem: PΨ-typically the empirical distribution ρ of X -values is
≈ |ϕ|2

• In short: Quantum Equilibrium holds!
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Hydrogene ground state: ρ = |ψ0|2, vψ0 = 0

0



two slit experiment, computed trajectories

computer simulation of Bohmian trajectories by Chris Dewdney



two slit experiment: weak measurement of phase, trajectories
reconstructed

sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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operational analysis of BM: PVM’s

system (X , ϕ) and apparatus (Y ,Φ) with pointer positions Yα pointing
towards value α. Suppose

ϕαΦ
Schrödinger evolution−→ ϕαΦα

then for ϕ =
∑
α cαϕα,

∑
α |cα|2 = 1

ϕΦ
Schrödinger evolution−→ Ψ =

∑

α

cαϕαΦα

=⇒

• If Y ∈ suppΦβ then ϕβ is new effective wave function for system
(effective wave function collapse)

• the ϕα’s form an orthogonal family (⇒ PVM)
• Probϕ(β) = Probϕ(Y ∈ suppΦβ) = |cβ |2 = |〈ϕ|ϕβ〉|2

• PVM ⇒ self adjoint Â =
∑
α|ϕα〉〈ϕα| encodes all relevant data for

the experiment



operational analysis of BM: PVM’s

system (X , ϕ) and apparatus (Y ,Φ) with pointer positions Yα pointing
towards value α. Suppose

ϕαΦ
Schrödinger evolution−→ ϕαΦα

then for ϕ =
∑
α cαϕα,

∑
α |cα|2 = 1

ϕΦ
Schrödinger evolution−→ Ψ =

∑

α

cαϕαΦα

=⇒
• If Y ∈ suppΦβ then ϕβ is new effective wave function for system
(effective wave function collapse)

• the ϕα’s form an orthogonal family (⇒ PVM)
• Probϕ(β) = Probϕ(Y ∈ suppΦβ) = |cβ |2 = |〈ϕ|ϕβ〉|2

• PVM ⇒ self adjoint Â =
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operational analysis: POVMs

Suppose not ϕαΦ
Schrödinger evolution−→ ϕαΦα

but apparatus (Y , ψ) with values F (Y ) = λ ∈ Λ

then probability for pointer position if system’s wave function is ϕ

Probϕ(A) := PΦT (F−1(A)) ,A ⊂ Λ

can be written as
= 〈ϕ|

∫

A
dλ|φλ〉〈φλ||ϕ〉

where in general 〈φλ|φν〉 6= δλ,ν (overcomplete set)
∫

A
dλ|φλ〉〈φλ|, A ⊂ Λ

is called POVM or generalised observable



Heisenberg’s uncertainty relation follows from BM

Equivariance of ρ = |ϕ|2

∂|ϕ(x , t)|2
∂t

= −divvϕ(x , t)|ϕ(x , t)|2 =⇒

Eϕ(f (X (t)) = Eϕ(t)(f (X ))

⇓ by analysis

m
~
V∞ :

L
= lim

t→∞
m
~
X (t)

t
is distributed according to |ϕ̂|2

⇓

P̂ =

∫
dkk|k〉〈k| momentum observable
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empirical import: (X (t), ϕ) for interesting ϕ

• classical limit

Bohmian trajectories approximately Newtonian

• measurement of ϕ

|ϕ|2 through measuring X , phase by weak
measurement

• statistics of (arrival) time

for good wave functions good statistics
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time statistics for Bohmian flow

Pψ(X (τ) ∈ dS , τ ∈ dt) = vψ|ψ|2 · dSdt = jψ · dSdt



scattering formalism and scattering cross section

Born’s scattering formula for single particle
16.7 The Scattering Cross-Section 373
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Fig. 16.6 Schematic representation of a scattering experiment. Also shown at the bottom is the
support of the Fourier transform of the wave function y , which is a member of a beam of identical
wave functions impinging on the target. See the text for further explanation

it to compute the probability of scattering into the cone CS (see Remark 16.2). But
since we already have the the crucial formula (16.56) for the crossing probability,
which directly connects with the clicks in the detector, we shall now go on with that
formula.

As we did with (16.48), we may replace yin in (16.56) by the incoming scattering
state y prior to a time where the interaction with the scattering potential becomes
effective. We shall refer to the spatial location of y at that time by saying “in front
of the target” (see Fig. 16.6). We assume that the wave packet y moves towards the
origin (where the target sits) with a well defined momentum h̄k0 such that k ·k0 > 0,
for all k 2 supp by . We assume further that k0 is parallel to the e3 direction. To
understand that the steps we take in the following are mathematically reasonable,
it is perhaps best to think of by as a Gaussian function. We shall formulate further
conditions on y along the way, in particular, conditions which are typically fulfilled
in scattering situations and which we shall discuss at the end.

Replacing yin by y and introducing (16.64), equation (16.56) becomes

Py(Xe 2 SR) º 1
(2p)2

Z

S

Z •

0

ØØØØ
Z

f(k,w 0)(w)by
°
(k,w 0)

¢
d2w 0

ØØØØ
2

k4dkd2w .

We assume that the scattering amplitude varies only slowly as a function of k on the
support of by (see Fig. 16.6):

fk(w) º fk0(w) , on supp by . (16.66)

If this condition is fulfilled, the scattering amplitude may be pulled out of the inte-
gral, whence

Py(Xe 2 SR) º
Z

S

ØØ fk0(w)
ØØ2d2w

1
(2p)2

Z •

0

ØØØØ
Z
by
°
(k,w 0)

¢
d2w 0

ØØØØ
2

k4dk . (16.67)

Pψ(X (τ) ∈ ΣR , τ ∈ [0,∞))
R large≈

∫
CΣ

dk〈k|Sψin〉2
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many particle scattering

2 D. DÜRR, M. KOLB, T. MOSER, AND S. RÖMER

which in the limit R → ∞ should become (1).

In Bohmian mechanics the joint probability (2) is readily defined, where P is the measure Pψ on the

particles’ initial positions with density |ψ|2. By virtue of the continuity of Bohmian trajectories, first

crossing times through boundaries of regions in space are well defined. Let t
Bl,R
ex be the first exit time of

the lth particle from the ball xl < R then Xψ
l (x0, t

Bl,R
ex ) ∈ R3 is the position of the lth particle at this

time (see Figure 1). We shall show that

(3) lim
R→∞

Pψ
(
Xψ

l (x0, t
Bl,R
ex ) ∈ RΣl ∀ l ∈ {1, . . . , N}

)
=

∫

CΣ1

. . .

∫

CΣN

∣∣∣ψ̂out(k)
∣∣∣
2

d3k1 · · · d3kN .

Target RS2

Σ1

Σ2

S2x0,1
x0,2

suppψ

RΣ
1

RΣ
2

Xψ
1 (x0, t

B1,R
ex )

Xψ
2 (x0, t

B2,R
ex )

Figure 1. Sketch of the scattering situation for N = 2.

The idea for proving (3) is rather simple: Far away from the scattering center, the particles’ trajectories

become more or less straight lines directed along the asymptotic velocity

vψ∞(x0) := lim
t→∞

Xψ(x0, t)

t
,

which is |ψ̂out|2-distributed1.

The asymptotic straight line motion of the Bohmian trajectories arises because for large times the wave

function is close to a local plane wave

(4) e−iHtψ ≈ (it)− 3N
2 ei x2

2t ψ̂out

(x

t

)
,

where this approximation needs, however, to hold in a sense stronger than L2. Establishing this is part of

the technical work that forces us to consider only noninteracting – but nevertheless entangled – particles

that are scattered off a fixed potential, like e.g. EPR pairs. Moreover, since the Bohmian velocity field,

just as the flux, involves derivatives of the wave function, we shall need also stronger requirements on the

potential than what one is accustomed to in S-Matrix theory.

A realistic description of the scattering process, where detection takes place at finite but random times

has to take into account that the detection of one particle leads to a “collapse of the entangled wave

function” which may influence the detection statistics of the remaining particles. Hence we shall prove

(3) with appropriately defined trajectories that take into account the effect of a particle’s detection on

the wave function. In this respect we note, that in Bohmian mechanics the wave function collapse does

not happen physically but arises merely as an effective description. It is quite intriguing to see how this

effective collapse can be handled very naturally by the so called conditional wave function, the wave

function that arises if one or more particles’ coordinates are known [12, 14]. In this respect it is also

1We use natural units where p = k = v.

”genuine” Bohmian analysis
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Gretchen Frage: Wie hältst du es mit der Relativität?

Relativistic Bohmian Theory

Weinberg’s challenge

It does not seem possible to extend Bohm’s version of quantum
mechanics to theories in which particles can be created and destroyed,
which includes all known relativistic quantum theories. (Steven Weinberg
to Shelly Goldstein, 1996)
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Creation and Annihilation, the configuration space

Q: configuration space Q =
⋃∞

n=0Q(n) (disjoint union)
a) Q(0) no particle b) Q(1) one particle
c) Q(2) two particles d) Q(3) three particles

Q(t −)

Q(t +)2

Q(t −)

1Q(t +)

2

1

(c) (d)

(a) (b)

Q(t −)

Q(t +)2

Q(t −)

1Q(t +)

2

1

(c) (d)

(a) (b)



The LAW: equivariant Markov Process

• guiding field Ψ ∈ F , a Fock space
• P(dq): positive-operator-valued measure (POVM) on Q acting on
F so that the probability that the systems particles in the state Ψ
are in dq at time t is

Pt(dq) = 〈Ψt |P(dq)|Ψt〉
• For a Hamiltonian H (e.g. quantum field Hamiltonian)

i~
∂Ψt

∂t
= HΨt −→

dPt(dq)

dt
=

2
~
Im 〈Ψt |P(dq)H|Ψt〉 .

• Find ”minimal” generator so that (rewrite left hand side, so that)

dPt(dq)

dt
= LtPt(dq) .

(Minimal) Markovian Process: Flow, (No) Diffusion, (Only as much
as necessary) Jumps
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Quantum field Hamiltonians provide rates for configuration
jumps

Generator for pure Jump-Process

(Lρ)(dq) =

∫

q′∈Q

(
σ(dq|q′)ρ(dq′)− σ(dq′|q)ρ(dq)

)

H = H0 + HI

L = L0 + LI

HI is often an Integral-Operator −→ Jump-Generator given by rates

σ(dq|q′) =
[(2/~) Im 〈Ψ|P(dq)HIP(dq′)|Ψ〉]+

〈Ψ|P(dq′)|Ψ〉 .



The tension with relativity challenge: Einstein’s criticism of
QM

Nature is nonlocal, the wave function is the nonlocal agent, Bohmian
Mechanics takes the wave function seriously: it needs for its formulation
a simultaneity structure, e.g. a foliation F which seems to be against
the spirit of relativity

Possible relief: The foliation F Ψ is given by the wave function, e.g.
defined by a time like vector field induced by the wave function.
Covariance is expressed by the commutative diagram

Ψ −−−−→ F Ψ

Ug

y
yΛg

Ψ′ −−−−→ F Ψ′ .

(1)

Here the natural action Λg on the foliation is the action of Lorentzian g
on any leaf Σ of the foliation F Ψ.
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to which end...

• non commutativity of observables is a simple consequence of BM
• nonlocality of nature is manifest in BM
• BM is in Bell’s sense a theory like Maxwell-theory of
electromagnetism: theorems instead of a cornucopia of axioms

• the challenge BM offers: Dirac divided the difficulties of quantum
theory in two classes

• First class difficulties are those which have to do with the
measurement problem–how do facts arise?

• Second class difficulties are those which have to do with singularities
in field theories (self energy, Dirac vacuum, ...)

• BM solves first class difficulties – it encourages the search for
relativistic interacting theories which are mathematically coherent
from the start

• a guiding example is
Gauss-Weber-Tetrode-Fokker-Schwarzschild-Wheeler-Feynman direct
interaction theory. Fully relativistic and without fields (my friends
Shelly and Nino are not enthusiastic about that theory, my young
friends are and future is theirs)
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the end: perhaps more on the solutions of second class
difficulties in 25 years


