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AND SWINNERTON-DYER CONJECTURE

WERNER BLEY

Abstract. Let E/Q be an elliptic curve and K/Q a �nite Galois extension
with group G. We write EK for the base change of E and consider the equi-
variant Tamagawa number conjecture for the pair (h1(EK)(1), Z[G]). This
conjecture is an equivariant re�nement of the Birch and Swinnerton-Dyer con-
jecture for E/K. For almost all primes l we derive an explicit formulation of
the conjecture which makes it amenable to numerical veri�cations. We use
this to provide convincing numerical evidence in favour of the conjecture.

1. Introduction

Let E/Q be an elliptic curve and let K/Q be a �nite Galois extension with group
G = Gal(K/Q). We write EK for the base change of E. We consider the motive
M = h1(E)(1) and regard MK := h0(Spec(K)) ⊗h0(Spec(Q)) M = h1(EK)(1) as a
motive over Q with a natural left action of the rational group ring Q[G] via the
�rst factor. We write ζ(C[G]) for the center of the complex group ring C[G] and
L(MK , s) for the ζ(C[G])-valued L-function of MK which is de�ned and analytic
in Re(s) > 1/2. It is conjectured that L(MK , s) has meromorphic continuation
to all of C. Assuming this conjecture we write L∗(MK) for the leading term in
its Taylor expansion at s = 0. To be more explicit, we let Irr(G) be the set of
absolutely irreducible characters of G. For any character χ we write L(E/Q, χ, s)
for the twisted Hasse-Weil-L-function and L∗(E/Q, χ, 1) for the leading term in
the Taylor expansion at s = 1. The center ζ(C[G]) is canonically isomorphic to∏
χ∈Irr(G) C and via this identi�cation L∗(MK) equals (L∗(E/Q, χ̄, 1))χ∈Irr(G). It

is easily shown that L∗(MK) ∈ ζ(R[G])× (see Remark 3.2).
The `Equivariant Tamagawa Number Conjecture' (for short ETNC) formulated

by Burns and Flach in [12] for the pair (MK ,Z[G]) is equivalent to an equality of
the form

(1) δ(L∗(MK)) = χ(MK)

where δ is a canonical homomorphism from the unit group ζ(R[G])× to the relative
algebraic K-group K0(Z[G],R) and χ(MK) is a certain Euler characteristic in this
relative group constructed from the various motivic cohomology groups, realiza-
tions, comparison isomorphisms and regulators associated to MK and its Kummer
dual. We note in passing that the ETNC is formulated in much more generality
and that the general formulation is comparatively abstract. Indeed, in our elliptic
curve case with K = Q the ETNC is equivalent to the Birch and Swinnerton-Dyer
conjecture (for short BSD). But even this basic fact is not evident and we refer the
reader to [24] or [36] for a detailed proof. For the base change of an elliptic curve
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the ETNC is an `equivariant BSD conjecture'. Our main result Proposition 4.4
makes this apparent for arbitrary elliptic curves E/Q and Galois extensions K/Q.

The aim of this article is to describe an approach for converting the rather
involved and abstract conjectural equality (1) into a form which is amenable to
numerical computations. In this way we systematically improve upon work of
Navilarekallu [30] which originally was the motivation for this manuscript.

As in the classical case of the BSD conjecture the ETNC splits into three parts:
an `equivariant rank conjecture', an `equivariant rationality conjecture' and an
`equivariant integrality conjecture'.

We will use work of T. Dokchitser [17] to compute numerical approximations
to the leading terms of the twisted Hasse-Weil-L-functions and for our general
approach we will then usually assume the validity of the rank conjecture. However,
in our concrete examples in Section 6 we are often able to deduce the rank conjecture
from theoretical results or from an explicit computation of Selmer groups.

We then show how to compute numerical approximations to equivariant periods
and to equivariant regulators (provided that we are able to compute the Mordell-
Weil group E(K)). Combining these computations we are able to numerically verify
the rationality conjecture up to the precision of our computations.

From now on we assume the validity of the equivariant rationality conjecture.
We note in passing that there are important results in the literature (without being
exhaustive we only mention [22, 25, 26, 27, 37] and recent results of Bertolini and
Darmon) from which one can possibly deduce the equivariant rationality conjecture
provided that the analytic (equivariant) rank is at most 1. This will be part of a
further research project. In our numerical examples we mostly consider elliptic
curves E de�ned over Q and dihedral extensions K/Q of order 2l for an odd prime
l such that the Mordell-Weil group E(K) is �nite. In this case, where all absolutely
irreducible characters are of degree 1 or 2, there is important work of Shimura
[33, 34] which probably allows to deduce the equivariant rationality conjecture. In
a slightly di�erent situation, namely for subextensions of the false Tate curve tower,
Bouganis and V. Dokchitser in [7] successfully apply Shimura's work to deduce
algebraicity and Galois equivariance of twisted BSD quotients. Similar arguments
will hopefully work in our context.

Furthermore we throughout assume that the Tate-Shafarevic group X(E/K)
is �nite. Again it is possible to deduce �niteness of X(E/K) in many examples
provided that the analytic rank is at most 1 from the above mentioned work, how-
ever, since the aim of this paper is to work out the additional di�culties of the
equivariant conjecture, we prefer to make the general assumption that X(E/K) is
�nite.

A further main result of this paper (Corollary 4.7) shows that we can use the
computational results from the veri�cation of the rationality conjecture to prove
the l-part of the ETNC for all primes l outside a �nite set of di�cult primes. This
�nite set contains in most cases the prime divisors of #G and the prime divisors of
#X(E/K). There are two di�erent reasons why we get into di�culties with these
primes. Our approach is restricted to the case that certain cohomology groups are
perfect Zl[G]-modules. If l - #G the ring Zl[G] is regular so that this assumption
is satis�ed for every �nitely generated Zl[G]-module. On the other hand, even if
l | #G there are some rare cases where the modules under consideration are perfect,
so that we can also produce numerical evidence for these interesting primes (see the
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examples in Section 6). Primes dividing #X(E/K) are di�cult just because we
are not able to compute X(E/K) as a Galois module (which would be necessary
in order to compute Euler characteristics). The situation is even worse because
we do not dispose of an algorithm to compute #X(E/K). In order to compute a
conjectural candidate for the set of di�cult primes we will assume the validity of
the classical BSD conjecture for E/K and use it to compute a conjectural value for
#X(E/K).

We point out that the equivariant BSD conjecture has far reaching explicit con-
sequences (see [14]) which could not be derived from non-equivariant versions. This
may indicate that any theoretical or numerical veri�cation of the equivariant ver-
sion requires a lot of additional e�ort. A lot of the additional algorithmic problems
are hidden in the algorithms described in [5]. In particular, it can be shown that the
ETNC is true if and only if the twisted BSD quotients satisfy certain congruences.
For cyclic groups Zp, dihedral groups D2p, p an odd prime, and the alternating
group A4 we explicitly determine these congruences.

We will illustrate our results in Section 6 with some explicit examples. More
examples can be computed using the MAGMA implementations available from

http://www.mathematik.uni-kassel.de/∼bley/pub.html.

The structure of the paper is as follows.
In the �rst part of Section 2 we review algebraic preliminaries like determinant

functors, categories of virtual objects and the construction of Euler characteristics
in these categories. These very abstract concepts are used to formulate the ETNC
in [12]. Following an approach of Burns [13] we then make the construction of
Euler characteristics more explicit in terms of relative algebraic K-groups and in
this way amenable to numerical computations. In particular, in the second part of
Section 2 we recall the algorithmic methods of [5] which allow the computation of
the relevant relative algebraic K-groups and provide methods to compute in them.
For certain small groups we explicity determine the above mentioned congruences.

In Section 3 we describe the ETNC for the base change of an elliptic curve and in
Section 4 we then derive our main theoretical results (Proposition 4.4 and Corollary
4.7) which are the basis for our numerical computations. In Section 5 we comment
upon the algorithmic aspects of our work and in the �nal Section 6 we describe
several interesting examples in detail. In particular, we have chosen the examples
such that we can apply our methods for a prime divisor l of #G and such that the
explicit congruences can be seen.

In future work [1] we will study the l-part of ETNC for elliptic curves E/K and
cyclic extensions K/Q of prime power order ln, l odd.

Acknowledgements: I am very grateful to David Burns and Tom Fisher for their
interest and helpful discussions. I also would like to thank the referee for his careful
reading of the manuscript and many valuable comments.

2. Algebraic preliminaries

2.1. Determinant functors and virtual objects. Let R by any associative uni-
tal ring. Let PMod(R) denote the category of �nitely generated projective R-
modules and write PMod(R)• for the category of bounded complexes of such mod-
ules. We also write D(R) for the derived category of complexes of R-modules and
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Dperf (R) for the full triangulated subcategory of D(R) consisting of those com-
plexes which are isomorphic in D(R) to an object in PMod(R)•. These complexes
are called perfect. Recall that C• is perfect if and only if there exists a complex
P • ∈ PMod(R)• and a quasi-isomorphism P • −→ C•. We say that an R-module
N is perfect if the complex N [0] belongs to Dperf (R).

Our main reference for determinant functors, Picard categories and virtual ob-
jects is [12]. Let V (R) denote the Picard category of virtual objects associated to
PMod(R) and write [·]R for the universal determinant functor

[·]R : (PMod(R), is) −→ V (R),

where (PMod(R), is) denotes the subcategory of all isomorphisms in PMod(R). By
[12, Prop. 2.1] this functor extends to a functor

[·]R :
(
Dperf (R), is

)
−→ V (R).

We recall that V (R) is equipped with a canonical bifunctor (L,M) 7→ LM . We
�x a unit object 1R and for each object L an inverse L−1 with an isomorphism
LL−1 ' 1R. Each element of V (R) is of the form [P ]R[Q]−1

R for modules P,Q ∈
PMod(R). Furthermore, [P ]R and [Q]R are isomorphic in V (R) if and only if their
classes in K0(R) coincide.

For any Picard category P we de�ne π0(P) to be the group of isomorphism
classes of objects of P and set π1(P) := AutP(1P). The groups π0(V (R)) and
π1(V (R)) are naturally isomorphic to K0(R) and K1(R), respectively.

Let A be a �nite dimensional semisimple Q-algebra. For any extension �eld F of
Q we put AF := A⊗Q F and abbreviate Ap := A⊗Q Qp. Let A ⊆ A be a Z-order
and set

Ap := A⊗Z Zp, Â := A⊗Z Ẑ '
∏
p

Ap, Â := A⊗Z Ẑ '
∏
p

Ap.

For L ∈ PMod(A) we set

Lp := L⊗Z Zp, LQ := L⊗Z Q, LF := L⊗Z F.

We set V(A) := V (Â)×V (Â) V (A) and recall that elements in V(A) are of the form

(X̂, Y, θ̂) with X̂ ∈ V (Â), Y ∈ V (A) and θ̂ : X̂ ⊗Â Â
'−→ Y ⊗A Â an isomorphism

in V (Â). Note that the tensor in this context is the functor between categories of
virtual objects induced by the tensor functor on the level of modules by the universal
property [12, (2.3),f]. Note also that we can identify X̂ with

∏
pXp ∈

∏
p V (Ap)

where Xp := X̂ ⊗Â Ap ∈ V (Ap).
There is a natural monoidal functor V (A) −→ V(A) induced by

[L]A 7→

(∏
p

[Lp]Ap
, [LQ]A ,

∏
p

[θp]

)
,

where θp : Lp ⊗Zp Qp = L⊗Z Qp
id−→ L⊗Z Qp = LQ ⊗Q Qp is the natural map.

Let P0 be the Picard category with unique object 1P0 and AutP0(1P0) = 0.
Following [12] we de�ne V(A, F ) to be the �bre product category V(A)×V (AF ) P0.
Explicitly, elements in V(A, F ) are given by triples((

X̂, Y, θ̂
)
,1P0 , θ∞

)
,
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where

(2)

X̂ ∈ V (Â),
Y ∈ V (A),
θ̂ : X̂ ⊗Â Â

'−→ Y ⊗A Â,
θ∞ : Y ⊗A AF

'−→ 1AF
.

We usually omit 1P0 in the notation.
By [12, Prop. 2.5] one has a canonical isomorphism

ιA,F : π0V(A, F ) ' K0(A, F ),

where K0(A, F ) is the relative algebraic K-group as de�ned in [35, page 215].
Following the proof of [12, Prop. 2.5] we explicitly describe the inverse of ιA,F . Let
[P,ϕ,Q] be an element in K0(A, F ) with P,Q ∈ PMod(A) and an isomorphism
ϕ : P ⊗A AF −→ Q⊗A AF of AF -modules. Then

ι−1
A,F ([P,ϕ,Q]) =

((∏
p

[Pp]Ap [Qp]−1
Ap
, [P ⊗A A]A[Q⊗A A]−1

A ,
∏
p

θp

)
, ϕtriv

)
where each θp is the canonical map and ϕtriv is the composite

[P ⊗A AF ]AF
[Q⊗A AF ]−1

AF
−→ [Q⊗A AF ]AF

[Q⊗A AF ]−1
AF

−→ 1AF
.

Here the �rst isomorphism is induced by ϕ.
If we set V (A, F ) := V (A)×V (AF ) P0, then the functor V (A) −→ V(A) induces

a canonical functor V (A, F ) −→ V(A, F ) and a homomorphism

π0V (A, F ) −→ π0V(A, F ),

and hence a homomorphism π0V (A, F ) −→ K0(A, F ) which we also denote by
ιA,F . In the same way we obtain isomorphisms (see again [12, Prop. 2.5])

ιAp,Qp
: π0V (Ap,Qp) ' K0(Ap,Qp),

Given data as in (2) we therefore obtain an element

ιA,F

(((
X̂, Y, θ̂

)
, θ∞

))
∈ K0(A, F ).

In the context of the ETNC we are, in addition, given an element L∗ ∈ ζ(AF )×.
There is a canonical commutative diagram of the form

(3) K1(A) // K1(AF )
∂1
A,F // K0(A, F )

∂0
A,F // K0(A) // K0(AF )

K1(A) // K1(A)
∂1
A,Q //

?�

OO

K0(A,Q)
∂0
A,Q //

?�

OO

K0(A) // K0(A)

OO

If R is a �nite dimensional semisimple algebra over either a global �eld or a local
�eld, then we have an injective reduced norm map

NrdR : K1(R) −→ ζ(R)×.

If G is a �nite group, then NrdR[G] is in general not surjective. However, by [12,
Sec. 4.2] there always exists a canonical 'extended boundary homomorphism'

δ : ζ(R[G])× −→ K0(Z[G],R)

such that δ ◦ NrdR[G] = ∂1
Z[G],R. See [10, Sec. 2.1.2] for a conceptual description of

δ.
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The conjectures we wish to consider in this paper are essentially of the form

TΩ := ιZ[G],R

(((
X̂, Y, θ̂

)
, θ∞

))
− δ(L∗) = 0

in K0(Z[G],R). In the sequel we set A = Z[G], A = Q[G] and F = R.
For our computational purposes, in particular to be able to apply the results

and algorithms of [5], we need to reinterprete this construction in terms of explicit
elements of K0(A, F ). Here we essentially follow the approach of Burns in [13]. For
any bounded complex P • we de�ne objects P all, P ev and P od by

P all =
⊕
i∈Z

P i, P ev =
⊕
i even

P i, P od =
⊕
i odd

P i.

We write Z•(P •), B•(P •) and H•(P •) for the complexes of cycles, boundaries and
cohomology of P •, each with zero di�erentials.

In arithmetical applications we often have the following data

(a) Y ev, Y od ∈ PMod(A) together with an AF − isomorphism

Y ev ⊗Q F
θF−→ Y od ⊗Q F.

(b) X•p ∈ PMod(Ap)• together with isomorphisms

Hev(X•p )⊗Zp Qp

θev
p−→ Y ev ⊗Q Qp,(4)

Hod(X•p )⊗Zp Qp

θod
p−→ Y od ⊗Q Qp.

(c) L∗ ∈ ζ(AF )×.

This data is related to the data given in (2) in the following way

X̂ =
∏
p

[X•p ]Ap ,

Y = [Y ev]A[Y od]−1
A ,

θ∞ : Y ⊗A AF = [Y ev ⊗A AF ]AF
[Y od ⊗A AF ]−1

AF

' [Y od ⊗A AF ]AF
[Y od ⊗A AF ]−1

AF

' 1AF
, with the �rst isomorphism induced by θF

θp : Xp =
[
X•p ⊗Zp Qp

]
Ap

α1' [Hev(X•p ⊗Zp Qp)]Ap [Hod(X•p ⊗Zp Qp)]−1
Ap

α2' [Y ev ⊗Q Qp)]Ap [Y od ⊗Q Qp)]−1
Ap

= [Y ⊗Q Qp]Ap
.

Here α1 is the canonical isomorphism of [12, Prop. 2.1e] and α2 is induced by θevp
and θodp .

Let Cp denote the completion of a �xed algebraic closure of Qp. For every prime
p and every homomorphism j : R → Cp we obtain induced maps j∗ : K0(Z[G],R) →
K0(Zp[G],Cp) and j∗ : ζ(R[G])× −→ ζ(Cp[G])×. We �x p and j and consider the
map θ′p : Xev

p ⊗Zp Cp −→ Xod
p ⊗Zp Cp de�ned by
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Xev
p ⊗Zp Cp

β1'
(
Hev(X•p )⊗Zp Cp

)
⊕
(
Ball(X•p )⊗Zp Cp

)
β2'

(
Y ev ⊗Zp Cp

)
⊕
(
Ball(X•p )⊗Zp Cp

)
β3'

(
Y od ⊗Zp Cp

)
⊕
(
Ball(X•p )⊗Zp Cp

)
β4'

(
Hod(X•p )⊗Zp Cp

)
⊕
(
Ball(X•p )⊗Zp Cp

)
β5' Xod

p ⊗Zp Cp.

The isomorphisms β1 and β5 are induced by choosing splittings of the tautological
exact sequences

0 −→ Zi(X•p ⊗Qp Cp) −→ Xi
p ⊗Qp Cp −→ Bi+1(X•p ⊗Qp Cp) −→ 0

0 −→ Bi(X•p ⊗Qp Cp) −→ Zi(X•p ⊗Qp Cp) −→ Hi(X•p ⊗Qp Cp) −→ 0,

β2 and β4 are induced by θevp and θodp , respectively, and β3 by θF . It can be

shown that the re�ned Euler characteristic [Xev
p , θ

′
p, X

od
p ] ∈ K0(Zp[G],Cp) does not

depend on any of the above choices. See [9, Section 6] or [13] for more information
on this construction of re�ned Euler characteristics and its relation to the Euler
characteristic used in [12].

Lemma 2.1. Assume that X•p ⊗Zp
Cp is acyclic outside degrees 1 and 2. Then

j∗

(
ιZ[G],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Xev

p , θ
′
p, X

od
p ].

Proof. We consider the diagram

π0V(Z[G],R)
prj //

ιZ[G],R

��

π0V (Zp[G],Cp)

ιZp[G],Cp

��
K0(Z[G],R)

j∗ // K0(Zp[G],Cp)

It follows from the explicit descriptions of ι−1
Z[G],R and ι−1

Zp[G],Cp
that the diagram is

commutative. From [9, Th. 6.2 and Cor. 6.3] we deduce that

ιZp[G],Cp

(
prj

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Xev

p , θ
′
p, X

od
p ].

Hence the result follows. �

Remark 2.2. Although [9, Th. 6.2] is more general we chose to formulate Lemma
2.1 with the acyclicity condition. This simpli�cation su�ces for our applications
and, moreover, we can use the additivity result [9, Th. 5.7] without introducing any
correction terms.

Let C denote a �nite perfect Zp[G]-module. Recall that a �nite Zp[G]-module
C is perfect if and only if there exists a projective resolution

0 −→ P−1 α−→ P 0 −→ C −→ 0
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of length 2. Then the element

χZp[G],Qp
(C) := [P−1, α⊗Qp, P

0] ∈ K0(Zp[G],Qp)

does not depend on the choice of the above resolution.
For any Zp[G]-module P we write Ptors for the submodule of Zp-torsion elements

and set Ptf := P/Ptors.

Lemma 2.3. Assume that we have data given as in (4). Let p be a �xed prime
and j : R −→ Cp an embedding.

(a) If all cohomology modules Hi(X•p ), i ∈ Z, are Zp[G]-perfect, then

j∗

(
ιZ[G],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Hev(X•p ), θ

′′

p ,H
od(X•p )]

with θ
′′

p = (θodp ⊗ Cp)−1 ◦ (θF ⊗ Cp) ◦ (θevp ⊗ Cp).
(b) If, in addition, Hi(X•p )tors is Zp[G]-perfect for all i ∈ Z, then

j∗

(
ιZ[G],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Hev(X•p )tf , θ

′′

p ,H
od(X•p )tf ]− χZp[G],Qp

(Hev(X•p )tors) + χZp[G],Qp
(Hod(X•p )tors).

Proof. Part (a) follows from the de�nition of θ′p and [12, Prop. 2.1e]. If the modules

Hev(X•p )tors and H
od(X•p )tors are also Zp[G]-perfect, then

j∗

(
ιZ[G],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Hev(X•p )tf , θ

′′

p ,H
od(X•p )tf ] + [Hev(X•p )tors, 0,H

od(X•p )tors].

Part (b) follows now from the very de�nition of the second summand by devissage.
�

For later reference we record the following lemma. We write δp : ζ(Cp[G])× −→
K0(Zp[G],Cp) for the extended boundary homomorphism. Note that

δp = ∂1
Zp[G],Cp

◦Nrd−1
Cp[G] and δp ◦ j∗ = j∗ ◦ δ.

Lemma 2.4. a) Let ξ ∈ ζ(R[G])×. Then

δ(ξ) ∈ K0(Z[G],Q) ⇐⇒ ξ ∈ ζ(Q[G])×.

b) Let ξ ∈ ζ(Cp[G])×. Then

δp(ξ) ∈ K0(Zp[G],Qp) ⇐⇒ ξ ∈ ζ(Qp[G])×.

Proof. We recall the de�nition of δ. By the Weak Approximation Theorem we may
choose λ ∈ ζ(Q[G])× such that λξ is in the image of the reduced norm map NrdR[G].

We shorten ∂1
Z[G],R to ∂1. Then

δ(ξ) = ∂1
(
Nrd−1

R[G](λξ)
)
−
∑
p

δp(λ)

and therefore

δ(ξ) ∈ K0(Z[G],Q) ⇐⇒ ∂1(Nrd−1
R[G](λξ)) ∈ K0(Z[G],Q).
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An easy diagram chase using diagram (3) implies that ∂1(Nrd−1
R[G](λξ)) ∈ K0(Z[G],Q)

if and only if there exists η ∈ K1(Q[G]) such that

Nrd−1
R[G](λξ)/η ∈ im(K1(Z[G]) −→ K1(Q[G])).

It follows that ξ ∈ ζ(Q[G]).
Let δQ : ζ(Q[G])× −→ K0(Z[G],Q). The reverse implication is immediate from

the commutative diagram

ζ(Q[G])×
⊆ //

δQ

��

ζ(R[G])×

δ

��
K0(Z[G],Q)

⊆ // K0(Z[G],R)

The proof of b) is similar, but easier, because in the local case the reduced norm
map is an isomorphism. �

Proposition 2.5. Assume the situation of (4). Let p be a prime and j : R −→ Cp
an embedding. Assume that Xev

p and Xod
p are free Zp[G]-modules. Let (v1, . . . , vd)

and (w1, . . . , wd) denote Qp[G]-basis of Xev
p ⊗Zp Qp and Xod

p ⊗Zp Qp, respectively.
Let B ∈ Gld(Cp[G]) represent θ′p with respect to the chosen basis. Set

Ωp := [Xev
p , θ

′
p, X

od
p ]− j∗(δ(L∗)).

Then
Ωp ∈ K0(Zp[G],Qp) ⇐⇒ NrdCp[G](B)/j∗(L∗) ∈ ζ(Qp[G])×.

Proof. Let F 0 := Zp[G]v1⊕ . . .⊕Zp[G]vd and F 1 := Zp[G]w1⊕ . . .⊕Zp[G]wd. Then

[F 0, B, F 1]− [Xev
p , θ

′
p, X

od
p ] ∈ K0(Zp[G],Qp).

Writing ∂1
p = ∂1

Zp[G],Cp
one therefore has

Ωp ∈ K0(Zp[G],Qp) ⇐⇒ [F 0, B, F 1]− j∗(δ(L∗)) ∈ K0(Zp[G],Qp)

⇐⇒ ∂1
p ([Cp[G]r, B])− δp(j∗(L∗)) ∈ K0(Zp[G],Qp)

⇐⇒ δp
(
NrdCp[G](B)/j∗(L∗)

)
∈ K0(Zp[G],Qp)

⇐⇒ NrdCp[G](B)/j∗(L∗) ∈ ζ(Qp[G])×,

where the last equivalence follows from Lemma (2.4). �

In the next section we will recall from [5] how the relative algebraic K-group
K0(Zp[G],Qp) can be explicitly computed as an abstract abelian group and how
the element Ωp can be realized as an element of this abstract group.

Remark 2.6. a) The assumption in Proposition 2.5 is no restriction because we
can always �nd a projective Zp[G]-module Z such that both Xev

p ⊕Z and Xod
p ⊕Z

are Zp[G]-free. Indeed, the canonical map K0(Zp[G]) −→ K0(Cp[G]) is injective by
[15, (32.1)], so that the existence of the isomorphism θ′p implies that [Xev

p ] = [Xod
p ]

in K0(Zp[G]). By [15, II, page 79] we further conclude that Xev
p ' Xod

p as Zp[G]-
modules.

b) The de�nition of θ′p shows that for rationality questions it is enough to consider

the map Y ev ⊗Z R −→ Y od ⊗Z R induced by θR. More explicitly, let Q[G] = A1 ⊕
. . .⊕Ar be the Wedderburn decomposition of Q[G] with corresponding idempotents
e1, . . . , er. We set Y evi := eiY

ev and Y odi := eiY
od. Then each Ai is a central
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simple algebra and we denote by Si the unique simple Ai-module. Then Y evi ' Sdi
i

and Y odi ' Sdi
i . By abuse of language, we refer to the explicit choice of such

isomorphisms as `a choice of Q[G]-basis' for Y ev and Y od.
These isomorphisms combine with θR to de�ne an isomorphism

τ :
r⊕
i=1

(
Sdi
i ⊗Q R

)
' Y ev ⊗Q R θR−→ Y od ⊗Q R '

r⊕
i=1

(
Sdi
i ⊗Q R

)
.

Then one has:

Ω ∈ K0(Z[G],Q) ⇐⇒ NrdR[G](τ)/L∗ ∈ ζ(Q[G])×.

2.2. Relative algebraic K-groups. In this section we recall results from [5] which
will be used to perform explicit computations in the relative algebraic K-groups
K0(Z[G],Q) and K0(Zp[G],Qp). For the de�nitions of these groups we refer the
reader to [35, page 215] or [5, Sec. 2.1].

We set A := Z[G], A := Q[G] and choose a maximal order M in A containing
A. We take C := ζ(A) to be the centre of A and write OC for the maximal order
in C.

We let DT(Ap) denote the torsion subgroup of the �nitely generated abelian
group K0(Ap,Qp). It is well-known that the map on relative groups induced by
the functor Mp ⊗Ap _ gives the top exact sequence of the following commutative
diagram. The vertical maps are induced by the reduced norm map (see [5, Th. 2.2
and 2.4] for more details).

(5) 0 // DT(Ap) // K0(Ap,Qp) // K0(Mp,Qp) // 0

0 // O×Cp
/NrdAp(A×p ) //

'

OO

C×p /NrdAp(A×p ) //

δp'

OO

C×p /O×Cp
//

'

OO

0

For ξ ∈ K0(Ap,Qp) we will often write ξ̃ for any lift of ξ via the middle vertical

isomorphism, i.e., δp(ξ̃) = ξ.
Next we brie�y recall from [5, Sec. 2.2] how the diagram (5) can be used to

perform explicit computations in K0(Ap,Qp).
The primitive idempotents of C will be denoted by e1, . . . , er. For i = 1, . . . , r

we set Ai := Aei. Then

(6) A = A1 ⊕ . . .⊕Ar

is a decomposition into indecomposable ideals Ai of A. Each Ai is a Q-algebra
with identity element ei. The centers Ki := ζ(Ai) are �nite �eld extensions of Q
via Q → Ki, α 7→ αei, and we have Q-algebra isomorphisms Ai ' Matni(Di) for
each i = 1, . . . , r, where Di is a skew �eld with ζ(Di) ' Ki. The Wedderburn
decomposition induces decompositions

C = K1 ⊕ . . .⊕Kr,

OC = OK1 ⊕ . . .⊕OKr .

Let f be a full, two-sided ideal of M contained in A and put g := OC ∩ f. Since
M contains the idempotents ei the ideal f of M decomposes into f = f1 ⊕ . . .⊕ fr
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and similarly g = g1⊕ . . .⊕gr. By [5, Th. 2.6] the reduced norm NrdA on A induces
a homomorphism

µ : K1(A/f) −→ (OC/g)×

and a canonical isomorphism DT(A) ' cok(µ), where DT(A) denotes the torsion
subgroup of K0(A,Q). This isomorphism encodes certain congruences implied by
the triviality of an element in DT(A).

For a rational prime p one has canonical isomorphisms

Ap '
⊕

Ai,P,

where for given i ∈ {1, . . . , r}, P runs through all maximal ideals of OKi
dividing

p and Ai,P is de�ned as Ai ⊗Ki Ki,P, where Ki,P denotes completion of Ki with
respect to P. Similarly we have a canonical isomorphism

(7) Cp '
⊕

Ki,P.

We write Ip(C) for the group of fractional ideals of C with support above p. Then
(5) together with (7) induces a canonical identi�cation of K0(Mp,Qp) with Ip(C).

We put ap for the p-primary part of a fractional ideal a. Then one has a hom-
morphism

µp : K1(Ap/fp) −→
(
OCp/gp

)× ' r⊕
i=1

(OKi/gi,p)
×

and a canonical isomorphism

(8) DT(Ap) ' cok(µp).

Combined with the isomorphism δp from (5) this is the origin of explicit congru-
ences. See the next section for even more explicit versions of these congruences in
the case of cyclic groups Zp, dihedral groups D2p and the alternating group A4.

We obtain the following canonical short exact sequence

0 −→ cok(µp) −→ K0(Ap,Qp) −→ Ip(C) −→ 0.

After choosing an explicit splitting we have by [5, Prop. 2.7] a non-canonical iso-
morphism

K0(Ap,Qp) ' cok(µp)⊕ Ip(C).
In [5, Sec. 3 and 4] it is shown how the right hand side can be computed explicitly

and how to solve the logarithm problem. We brie�y recall the logarithm algorithm,
for the details we refer the reader to [5, Sec. 4.1].

Let η = [P,ϕ,Q] ∈ K0(Ap,Qp). By Remark 2.6 a) we may without loss of
generality assume that P and Q are Ap-free. Then one computes Ap-basis ν1, . . . , νd
and ω1, . . . , ωd of P and Q and a matrix S ∈ Gld(Ap) such that (ϕ(ν1), . . . , ϕ(νd)) =
(ω1, . . . , ωd)S. In all of our applications we will be able to choose S ∈ Gld(A). If
η̃ := NrdA(S), then η̃ represents η via the middle vertical isomorphism in (5) and
we will use [5, Prop. 2.7] to read η̃ in cok(µp)⊕ Ip(C). In particular, we have a test
whether [P,ϕ,Q] = 0 in K0(Ap,Qp). If η̃ = (η1, . . . , ηr) with ηi ∈ Ki, then

[P,ϕ,Q] = 0 ⇐⇒


vP(ηi) = 0, ∀i ∈ {1, . . . , r} and P | p
and

(η̄1, . . . η̄r) ∈ im(µp),

where η̄i is the image of ηi under the projection O×Ki,p
−→ (OKi/gi,p)

×
.
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Example 2.7. Let p be a prime and let T be a �nite perfect Zp[G]-module. Then
T is also perfect as a Z[G]-module and we may choose a Z[G]-projective resolution
of the form

0 −→ Q
α−→ P −→ T −→ 0

By a fundametal result of Swan (see [15, Th. (32.11)]) the projectives P and Q are
locally free and we can therefore apply the algorithm of [5, Sec. 4.2] to compute
Zp[G]-basis ν1, . . . , νd of Q ⊗Z Zp and ω1, . . . , ωd of P ⊗Z Zp. The algorithm of
loc.cit. actually produces elements νi ∈ Q and ωj ∈ P . Hence we obtain a matrix
S ∈ Gld(A) which represents α. Then η̃ := NrdA(S) ∈ C× ⊆ C×p represents
χZp[G],Qp

(T ) ∈ K0(Zp[G],Qp).
Note that in the case #G = 1 this just generalizes the notion of the order of the

p-primary part of T .

We conclude this section by explicitly describing the element

Ωp = [Xev
p , θ

′
p, X

od
p ]− δp(j∗(L∗))

from Proposition 2.5. We assume that v1, . . . , vd, respectively w1, . . . , wd, constitute
a Zp[G]-basis of Xev

p , respectively Xod
p . Then Ωp is represented by

NrdCp[G](B)/j∗(L∗).

By Lemma 2.4 the element Ωp is rational if and only if

NrdCp[G](B)/j∗(L∗) ∈ ζ(Qp[G])×.

If this is the case, we can interprete NrdCp[G](B)/j∗(L∗) = (η1, . . . , ηr) in cok(µp)⊕
Ip(C) and thus determine the image of Ωp in cok(µp)⊕ Ip(C).

In our applications the modules Xev
p ⊗Zp Qp and X

od
p ⊗Zp Qp are usually of the

form Xev ⊗Z Qp and Xod ⊗Z Qp with �nitely generated Z[G]-modules Xev and
Xod. In this case the rationality question can be treated by studying the quotient
NrdR[G](B)/L∗, where B is a matrix computed with respect to any choice of Q[G]-
basis.

It remains to explain how we actually perform the test NrdR[G](B)/L∗ ∈ ζ(Q[G])×.
Let Irr(G) denote the set of absolutely irreducible characters. By Wedderburn's the-
orem C[G] '

∏
χ∈Irr(G)Mnχ(C), which induces a canonical isomorphism ζ(C[G]) '∏

χ∈Irr(G) C. Explicitly,∏
χ∈Irr(G)

C −→ ζ(C[G]), (αχ)χ∈Irr(G) 7→
∑

χ∈Irr(G)

αχeχ

with the central primitive idempotents eχ = χ(1)
|G|

∑
g∈G χ(g)g−1.

Lemma 2.8. Let Q ⊆ F ⊆ C and let α = (αχ)χ∈Irr(G) ∈
∏
χ∈Irr(G) C ' ζ(C[G]).

Then one has

α ∈ ζ(F [G]) ⇐⇒ ασ◦χ = σ(αχ)

for all χ ∈ Irr(G) and all σ ∈ Aut(C/F ).

Proof. We have to show that
∑
χ∈Irr(G) αχeχ ∈ F [G] if and only if ασ◦χ = σ(αχ)

for all χ ∈ Irr(G) and all σ ∈ Aut(C/F ). This amounts to show that∑
χ∈Irr(G)

χ(1)αχχ(g) ∈ F,∀g ⇐⇒ ασ◦χ = σ(αχ),∀χ, σ.



EQUIVARIANT BSD 13

If
∑
χ χ(1)αχχ(g) ∈ F,∀g ∈ G, then we easily show that∑

χ∈Irr(G)

χ(1)(ασ◦χ − σ(αχ))(σ ◦ χ)(g) = 0

for all g ∈ G. The assertion now follows from the linear independence of absolutely
irreducible characters.

Conversely, we deduce that

σ

 ∑
χ∈Irr(G)

χ(1)αχχ(g)

 =
∑

χ∈Irr(G)

χ(1)αχχ(g)

for all σ ∈ Aut(C/F ). Since for any β ∈ C one has

β ∈ F ⇐⇒ σ(β) = β, ∀σ ∈ Aut(C/F ),

the result follows. �

For χ ∈ Irr(G) we write Q(χ) for the extension generated over Q by the values
of χ. We recall that Q(χ)/Q is an abelian extension. By Lemma 2.8 one has

α ∈ ζ(Q[G]) ⇐⇒ αχ ∈ Q(χ) and ασ◦χ = σ(αχ)

for all χ ∈ Irr(G) and all σ ∈ Gal(Q(χ)/Q). This can be e�ciently checked if we
dispose of good approximations of the complex numbers αχ and bounds for the
denominators.

We �x a set IrrQ(G) ⊆ Irr(G) of representatives of Irr(G) modulo the action of
Aut(C/Q). Thus we identify C with

∏
χ∈IrrQ(G) Q(χ). Once we know or trust in

the validity of the rationality conjecture, we will work in
∏
χ∈IrrQ(G) Q(χ). Note

that the �elds Ki, i = 1, . . . , r, can be identi�ed with the character �elds Q(χ),
χ ∈ IrrQ(G).

2.3. Explicit congruences. Assume that α = (αχ)χ ∈
∏
χ∈IrrQ(G) Q(χ) ' C×.

We let p denote an odd prime. In this section we will consider the cyclic groups
Zp, the dihedral groups D2p and the alternating group A4 and exemplary rephrase
the condition δp(α) = 0 in K0(Zp[G],Qp) in terms of explicit congruences. On the
one hand this serves as an explicit illustration of the methods introduced in [5],
on the other hand it leads to very remarkable congruences which are conjecturally
satis�ed by the twisted BSD quotients (see Remark 4.5).

Let p be a rational prime and G an arbitrary �nite group. We adopt the notation
from the previous subsection. Let f := {λ ∈ Q[G] | λM ⊆ Z[G]} be the conductor
of Z[G] in M. Let g := f ∩ OC be the central conductor. Note that we dispose of
an explicit formula for g by [15, Th. (27.13)].

We recall that

δp(α) ∈ DT(Zp[G]) ⇐⇒ αχ ∈ O×Q(χ),p for all χ ∈ IrrQ(G).

The explicit congruences are encoded in the canonical isomorphism (8). We will
exemplary make this explicit for the groups Zp, D2p and A4.

Let G = 〈g0〉 be cyclic of order p. Let ζp be a �xed primitive p-th root of unity
and de�ne irreducible characters χ0 and χ1 by χ0(g0) = 1 and χ1(g0) = ζp. Then

Q[G] ' Q⊕Q(ζp), λ 7→ (χ0(λ), χ1(λ)) .
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Let α = (α0, α1) ∈ Q× ⊕Q(ζp)× be a p-adic unit (i.e. α ∈ O×Cp
). Then

(9) δp((α0, α1)) = 0 in DT(Zp[Zp]) ⇐⇒ α0 ≡ α1(mod (1− ζp)).

For a proof and the generalization for cyclic groups of prime power order we refer
the reader to [1, Section 5].

Let now G = 〈σ, τ | σp = τ2 = 1, τσ = σ−1τ〉 be the dihedral group D2p for an
odd prime p. Then Q[G] ' Q⊕Q⊕M2(Q(ζp)+) and we �x such an isomorphism
by

σ 7→
(

1, 1,
(

0 −1
1 ζp + ζ−1

p

))
, τ 7→

(
1,−1,

(
1 ζp + ζ−1

p

0 −1

))
.

From [5, Th. 1.1] we know that DT(Zp[G]) ' Zp−1 (where for n ∈ N we write Zn
for the cyclic group of order n). Let H = 〈σ〉. By [8, Prop. 3.2] we know that the
restriction map

res : DT(Zp[G]) −→ DT(Zp[H])
is injective. Let α = (α0, α1, α2) ∈ Q× ⊕ Q× ⊕ Q(ζp)+× be a p-adic unit. By [8,
Lemma 3.9] or [2, page 575] one has res(α) = (α0α1, α2), so that we conclude from
the result for cyclic groups Zp that

(10) δp((α0, α1, α2)) = 0 in DT(Zp[D2p]) ⇐⇒ α0α1 ≡ α2(mod p)

where p denotes the unique prime ideal of Q(ζp)+ over the rational prime p. It is
also well known (see e.g. [8, Prop. 3.2]) that DT(Z2[D2p]) is trivial.

Let now G be the alternating group A4. If σ = (1, 2)(3, 4) and ν = (1, 2, 3), then
G = 〈σ, ν〉. We have Q[G] ' Q ⊕ Q(ζ3) ⊕M3(Q) and we �x such an isomorphism
by

σ 7→

1, 1,

 1 0 0
0 −1 0
0 0 −1

 , ν 7→

1, ζ3,

 0 1 0
0 0 1
1 0 0

 .

From [5, Th. 1.2] we know that DT(Z2[G]) ' Z2 and DT(Z3[G]) ' Z2. We have
OC = (Z,Z[ζ3],Z) and g = (12Z, 4(1 − ζ3), 4Z). We �rst consider p = 3. Clearly

(OC/g3)
× ' (Z/3Z)× ⊕ (Z[ζ3]/(1− ζ3))

× ' Z2 × Z2. Since NrdQ[G](1 + ν) =
(2, 1 + ζ3, 2) ≡ (−1,−1)(mod g3) it follows that im(µ3) = {(1, 1), (−1,−1)} and we
obtain

(11) δ3((α0, α1, α2)) = 0 in DT(Z3[A4]) ⇐⇒ α1 ≡ α0(mod (1− ζ3)).

For p = 2 one has (OC/g2)
× ' (Z/4Z)× ⊕ (Z[ζ3]/(4))× ⊕ (Z/4Z)× ' Z2 × (Z2 ×

Z6)× Z2. By explicit computation we show that

NrdQ[G](2 + ν) ≡ (−1, 2 + ζ3, 1)(mod g2),
NrdQ[G](−1 + 2ν) ≡ (1,−1 + 2ζ3,−1)(mod g2),

NrdQ[G](−σ) ≡ (−1,−1,−1)(mod g2).

Again by explicit computation one veri�es that the classes of NrdQ[G](2 + ν),
NrdQ[G](−1 + 2ν) and NrdQ[G](−σ) generate the kernel of the surjective homo-
morphism

(OC/g2)
× −→ (Z/4Z)× , (α0, α1, α2) 7→ α0NQ(ζ3)/Q(α1)α2.

Together with DT(Z2[G]) ' Z2 it follows that im(µ2) equals this kernel, so that

(12) δ2((α0, α1, α2)) = 0 in DT(Z2[A4]) ⇐⇒ α0NQ(ζ3)/Q(α1) ≡ α2(mod 4).
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3. The ETNC for the base change of an elliptic curve

Let K/Q be a �nite Galois extension with group G. Let E be an elliptic curve
de�ned over Q. We denote the base change Spec(K)×Spec(Q)E by EK and consider

MK = h1(EK)(1) as a motive over Q. The Galois group G naturally acts on MK

via the �rst factor and thus we have a natural action of A = Q[G] on the realizations
and motivic cohomology groups attached to MK . For an explicit description of the
realizations we refer the reader to [14, Sec. 4.1].

The purpose of this section is to provide an explicit description of the ETNC for
the pair (MK ,Z[G]). Our main reference is [12], from where we adopt most of our
notation. Further references are the survey articles of Flach [18], [19] and Venjakob
[36].

We �rst note that by Poincaré duality the dual motive M∗K(1) identi�es with
MK . The motivic cohomology spaces H0

f (MK) and H1
f (MK) are given by

H0
f (MK) = 0, H1

f (MK) = E(K)⊗Z Q

where, as usual, E(K) denotes the Mordell-Weil group of E/K.
For a number �eld F we write GF for the absolute Galois group. Let v be a

place of K. We write Kv for the completion of K at v, and �x an algebraic closure
K̄v of Kv and an embedding K̄ into K̄v. We denote by Gv ⊆ GK the corresponding
decomposition group and, if v is non-archimedean, by Iv ⊆ Gv the inertia group.
We write Frv ∈ Gv/Iv for the Frobenius substitution.

For any number �eld F we let Σ(F ) denote the set of embeddings of F into C.
We de�ne HK :=

⊕
Σ(K) Q. The groups G and Gal(C/R) act on Σ(K) and endow

HK with the structure of a (Gal(C/R) ×G)-module. Let {wj : j ∈ Σ(K)} denote
the canonical Q-basis of HK . We write c ∈ Gal(C/R) for complex conjugation.
Then cwj = wc◦j and σwj = wj◦σ−1 for σ ∈ G.

For any commutative ring R and any R[Gal(C/R)]-module X we write X+ and
X− for the submodules on which complex conjugation acts by +1 and −1, respec-
tively.

We write ρK : C ⊗Q K −→ C ⊗Q HK for the canonical C[Gal(C/R) × G]-
equivariant isomorphism which is induced by z ⊗ α 7→ (zj(α))j∈Σ(K). Let ρ̃K :
R⊗QK −→ R⊗QHK be the R[G]-equivariant isomorphism de�ned in [2, page 554]
where it is denoted by πK .

We write ∞ for the archimedean place of Q and let S∞(K) denote the set of
archimedean places of K. For each v ∈ S∞(K) we choose σv ∈ Σ(K) corresponding
to v. Since E is de�ned over Q one has σEK = EK for all σ ∈ Σ(K). As usual, we
write MB for the Betti realization, that is

MB =
⊕

σ∈Σ(K)

H1(σEK(C), 2πiQ) = HK ⊗Q H
1(E(C), 2πiQ).

By identifyingH1(E(C), 2πiQ) with the dual homologyH := HomQ(H1(E(C),Q), 2πiQ)
we obtain

M+
B '

⊕
v∈S∞(K)

H1(σvEK(C), 2πiQ)Gv ' [HK ⊗Q H]+ .

We write MdR for the deRham realization,

MdR = H1
dR(E/K)
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with the natural decreasing �ltration {F iH1
dR(E/K)}i∈Z shifted by 1. Thus

MdR/M
0
dR = H1

dR(E/K)/F 1H1
dR(E/K) ' H1(EK ,OEK

).

The G-module H1(EK ,OEK
) is isomorphic to K ⊗Q H

1(E,OE). Now H1(E,OE)
is canonically isomorphic to Ω1

E(E)∗ := Hom(Ω1
E(E),Q), so that we �nally identify

MdR/M
0
dR ' K ⊗Q Ω1

E(E)∗.

We let ω0 denote a Néron di�erential and let γ+ and γ− be Z-generators ofH1(E(C),Z)+

and H1(E(C),Z)−, respectively. We de�ne

Ω+ :=
∫
γ+

ω0, Ω− :=
∫
γ−

ω0.

We write ω∗0 ∈ Ω1
E(E)∗ for the map which sends ω0 to 1. Similarly we de�ne

Q-linear maps γ∗+, γ
∗
− ∈ H by

γ∗+(γ+) = 2πi, γ∗+(γ−) = 0, γ∗−(γ+) = 0, γ∗−(γ−) = 2πi.

For γ = aγ+ + bγ− ∈ H1(E(C),Q), a, b ∈ Q, we set γ∗ := aγ∗+ + bγ∗−. Finally we
de�ne

π : C⊗Q H −→ C⊗Q Ω1
E(E)∗

z ⊗ γ∗ 7→
(
ω 7→ z

∫
γ

ω

)
.

We write πK : R⊗Q M
+
B −→ R⊗Q MdR/M

0
dR for the period isomorphism. Then

πK is explicitly given by the following composite of R[G]-equivariant maps

R⊗Q [HK ⊗Q H]+

= R⊗Q H
+
K ⊗Q H+ ⊕ R⊗Q H

−
K ⊗Q H−

=
(
R⊗Q H

+
K

)
⊗R
(
R⊗Q H+

)
⊕
(
R⊗Q H

−
K

)
⊗R
(
R⊗Q H−

)
(id⊗π,id⊗π)−→

(
R⊗Q H

+
K

)
⊗R
(
R⊗Q Ω1

E(E)∗
)
⊕
(
R⊗Q H

−
K

)
⊗R
(
iR⊗Q Ω1

E(E)∗
)

(id,−i)−→
(
R⊗Q H

+
K

)
⊗R
(
R⊗Q Ω1

E(E)∗
)
⊕
(
R⊗Q H

−
K

)
⊗R
(
R⊗Q Ω1

E(E)∗
)

= (R⊗Q HK)⊗R
(
R⊗Q Ω1

E(E)∗
)

ρ̃−1
K ⊗id−→ (R⊗Q K)⊗R

(
R⊗Q Ω1

E(E)∗
)

= R⊗Q K ⊗Q Ω1
E(E)∗.

Proposition 3.1. Fix ι ∈ Σ(K) and de�ne τ ∈ G by c ◦ ι = ι ◦ τ . Let α0 ∈ K be
a normal basis element.

a) The elements 1+c
2 wι ⊗ γ∗+ + 1−c

2 wι ⊗ γ∗− and α0 ⊗ ω∗0 are Q[G]-basis of

[HK ⊗Q H]+ and K ⊗Q Ω1
E(E)∗, respectively.

b) With respect to these basis the period isomorphism πK is represented by

λα0 :=
(

Ω+
1 + τ

2
+ Ω−

1− τ

2

)(∑
σ∈G

(ι ◦ σ)(α0)σ−1

)−1

Proof. a) is obvious. For the proof of b) we write πK =
(
ρ̃−1
K ⊗ id

)
◦ f and �rst

compute the matrix for

f : R⊗Q [HK ⊗Q H]+ −→ (R⊗Q HK)⊗R
(
R⊗Q Ω1

E(E)∗
)
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with respect to the basisW := 1⊗ 1+c
2 wι⊗γ∗++1⊗ 1−c

2 wι⊗γ∗− and (1⊗wι)⊗(1⊗ω∗0).
The basis element W is mapped to(

Ω+ ⊗
1 + c

2
wι − iΩ− ⊗

1− c

2
wι

)
⊗ (1⊗ ω∗0) .

By the de�nition of τ one has(
Ω+

1 + τ

2
− iΩ−

1− τ

2

)
(1⊗ wι) =

(
Ω+ ⊗

1 + c

2
wι − iΩ− ⊗

1− c

2
wι

)
.

Next we compute the matrix of the map ρ̃K : (R ⊗Q K) −→ R ⊗Q HK with
respect to the basis 1⊗ α0 and 1⊗ wι. One has

ρ̃K(1⊗ α0) = (Re(ι(σ(α0)) + Im(ι(σ(α0)))σ∈G .

On the other hand one computes(∑
σ∈G

ι(σ(α0))σ−1

)(
1 + τ

2
− i

1− τ

2

)
(1⊗ wι)

= (Re(ι(σ(α0))) + Im(ι(σ(α0))))σ∈G .

Summarizing we obtain

πK(W ) =
((
ρ̃−1
K ⊗ id

)
◦ f
)
(W )

=
(

Ω+
1 + τ

2
− iΩ−

1− τ

2

)(
ρ̃−1
K ⊗ id

)
((1⊗ wι)⊗ (1⊗ ω∗0))

=
(

Ω+
1 + τ

2
− iΩ−

1− τ

2

)(
1 + τ

2
− i

1− τ

2

)−1
(∑
σ∈G

(ι ◦ σ)(α0)σ−1

)−1

(1⊗ α0 ⊗ ω∗0)

=
(

Ω+
1 + τ

2
− iΩ−

1− τ

2

)(
1 + τ

2
+ i

1− τ

2

)(∑
σ∈G

(ι ◦ σ)(α0)σ−1

)−1

(1⊗ α0 ⊗ ω∗0)

=
(

Ω+
1 + τ

2
+ Ω−

1− τ

2

)(∑
σ∈G

(ι ◦ σ)(α0)σ−1

)−1

(1⊗ α0 ⊗ ω∗0)

�

For a ring R and a R-module W we set W ∗ := HomR(W,R) whenever there is
no danger of confusion. Following [12, (29)] we de�ne

Ξ = Ξ(MK) := [H1
f (MK)]−1

Q[G][H
1
f (K,M

∗
K(1))∗]Q[G][M+

B ]−1
Q[G][MdR/M

0
dR]Q[G]

= [E(K)⊗Z Q]−1
Q[G][(E(K)⊗Z Q)∗]Q[G][M+

B ]−1
Q[G][MdR/M

0
dR]Q[G]

The height pairing induces an R[G]-equivariant isomorphism

δ : E(K)⊗Z R −→ (E(K)⊗Z R)∗ .

Together with the period isomorphism πK we obtain an isomorphism in V (AR) =
V (R[G])

θ∞ : Ξ⊗Q[G] R[G] −→ 1R[G].

Let Sram(K/Q) be the set of rational primes which ramify in K/Q and Sbad(E)
the set of rational primes where E has bad reduction. We put S := Sram(K/Q) ∪
Sbad(E) and for a �xed prime l we set Sl := S ∪ {l}. We let Tl(E) := lim

←−
E[ln]

denote the l-adic Tate module of E and set Tl := Zl[G]⊗Zl
Tl(E) which we regard as
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a (left) module over GQ×G. Explicitly, GQ acts diagonally and g(λ⊗ t) = λg−1⊗ t
for g ∈ G,λ ∈ Zl[G] and t ∈ Tl(E). We further de�ne

Vl(E) := Tl(E)⊗Zl
Ql, Vl := Tl ⊗Zl

Ql.

Although not visible in the notation, the modules Tl and Vl depend both on E and
K.

We let RΓc(ZSl
, Tl) denote the complex de�ned in [12, Sec. 3.2 - 3.3] and let

θl : Ξ⊗A Al −→ [RΓc(ZSl
, Tl)]⊗A Al.

be the isomorphism de�ned in [12, Sec. 3.4]. Given this data we obtain an element

RΩ := ιZ[G],R

(((∏
l

[RΓc(ZSl
, Tl)],Ξ,

∏
l

θ−1
l

)
, θ∞

))
in K0(Z[G],R).

Next we will formulate the conjecture for which we wish to provide numerical
evidence. For each character ψ ∈ Irr(G) we write L(E/Q, ψ, s) for the twisted
Hasse-Weil- L-function. We assume that L(E/Q, ψ, s) has analytic continuation to
all of C and write L∗(E/Q, ψ, 1) for the leading term in its Taylor expansion at
s = 1.

In order to compare the vector of twisted Hasse-Weil-L-functions to the motivic
L-function it is necessary to recall the precise de�nition of the twisted Hasse-Weil-
L-functions. The l-adic representation attached to E is

Hl(E) := Hom(Vl(E),Ql)⊗Ql
Q̄l.

For χ ∈ Irr(G) we write Vχ for a representation space for χ and without loss of
generality we may regard Vχ as a Q̄l-vector space. For primes p 6= l we de�ne local
polynomials by

Pp(E,χ, T ) := det
(
1− Fr−1

p T |
(
Hl(E)⊗Q̄l

Vχ
)Ip
)
.

As usual we put Lp(E,χ, s) := Pp(E,χ, p−s) and L(E/Q, χ, s) :=
∏
p Lp(E,χ, s)

−1.
The l-adic realization of MK is given by

Hl(MK) := Hom(Vl(E),Ql)(1)⊗Ql
HK,l.

where we have put HK,l := HK ⊗Z Zl. If we �x an embedding ι : K ↪→ Q̄
then Hl(MK) gets identi�ed with Hom(Vl(E),Ql)(1) ⊗Ql

Ql[G]∗ where Ql[G]∗ :=
Hom(Ql[G],Ql) denotes the contragredient representation. By [12, Rem. 7], the
motivic L-function associated to MK is de�ned by the Euler factors

NrdC[G]

(
1− Fr−1

p T | Hl(MK)Ip
)

=
(

det
(

1− 1
p
Fr−1

p T | (Hl(E)⊗Q̄l
Vχ̄)Ip

))
χ∈Irr(G)

.

It easily follows that L(MK , s) = (L(E/Q, χ̄, s+ 1))χ∈Irr(G).

Remark 3.2. Since L(E/Q, χ̄, s+1) is the complex conjugate of L(E/Q, χ, s+1) for
each real value s, it follows from Proposition 2.8 that L∗(MK) = (L(E/Q, χ̄, 1))χ∈Irr(G)

belongs to ζ(R[G])×.

Remark 3.3. For later reference we compute the re�ned Euler characteristic of
the complex

T
Ip

l

1−Fr−1
p−→ T

Ip

l
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where the non-trivial modules are placed in degrees 0 and 1 under the assumption

that T
Ip

l is Zl[G]-perfect. In this case the re�ned Euler characteristic associated
with the above complex is represented by (Lp(E, χ̄, 1))χ∈Irr(G) via the middle verti-
cal isomorphism of diagram (5). Indeed, the Weil pairing induces a GQ-equivariant
isomorphism Tl(E) ' Hom(Tl(E),Zl)(1). Moreover, Tl = Zl[G]⊗Zl

Tl(E) as (left)
G-module, so that the assertion easily follows. For the same reason we always have

(13) det
(
1− Fr−1

p | V Ip

l

)
= (Lp(E, χ̄, 1))χ∈Irr(G).

We now set
L∗ :=

(
L∗(E/Q, ψ̄, 1)

)
ψ∈Irr(G)

∈ ζ(R[G])×,

so that L∗(MK) = L∗. If we de�ne
TΩ := RΩ + δ(L∗),

then the ETNC (see [12, Conj. 4 (iv)]) for the pair (MK ,Z[G]) can be stated in the
form

Conjecture 3.4.
TΩ = 0 in K0(Z[G],R).

For a set of places P of Q we write P (K) for the set of places of K lying above
places in P . In the next section we will (assuming the rationality conjecture [12,
Conj. 4 (iii)] and certain further hypothesis on K, E and l) describe the l-part
TΩl ∈ K0(Zl[G],Ql) of TΩ in terms of re�ned Euler characteristics. To that end
we will de�ne a Zl[G]-perfect complex RΓf (Q, Tl) and for each v ∈ S∞(K)∪Sl(K)
a Zl[G]-perfect complex RΓf (Kv, Tl(E)) such that there is an exact triangle⊕

v∈S∞(K)∪Sl(K)

RΓf (Kv, Tl(E))[−1] −→ RΓc(ZSl
, Tl) −→ RΓf (K,Tl(E)).

This may be considered as an explicit integral version of the middle column of
diagram (26) in [12].

We will now use the additivity of re�ned Euler characteristics (see [9, Th. 5.7]
and our Remark 2.2) and the explicit nature of the complexes RΓf (K,Tl(E)) and
RΓf (Kv, Tl(E)) to describe RΩ. We write χZl[G],Cl

for the re�ned Euler character-
istic introduced in [13]. In this way we obtain

RΩl = χZl[G],Cl

 ⊕
v∈S∞(K)∪Sl(K)

RΓf (Kv, Tl(E))[−1], π−1
K


+ χZl[G],Cl

(
RΓf (K,Tl(E)), δ−1

)
.(14)

To conclude this section we aim to formulate an explicit rationality conjecture.
As we will see one has

(15) Hi
f (K,Vl(E)) = Hi

f (K,Tl(E))⊗Zl
Ql =


0, i 6= 1, 2,
E(K)⊗Z Ql, i = 1,
(E(K)⊗Z Ql)

∗
, i = 2.

Moreover, by [12, (28)] there is an isomorphism in Dperf (Ql[G])⊕
v∈S∞(K)

RΓf (Kv, Vl(E)) '
(
M+
B ⊗Q Ql

)
[0],
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and by [12, (22)] an exact triangle((
MdR/M

0
dR

)
⊗Q Qp

)
[−1] −→

⊕
v|l

RΓf (Kv, Vl(E)) −→
⊕
v|l

(
Vl,v

φv−→ Vl,v

)
.

Just for the moment, we content ourselves with observing that the terms resulting

from
(
Vl,v

φv−→ Vl,v

)
for v ∈ Sl(K) are rational and, in fact, will give certain Euler

factors. In order to state the rationality conjecture we can therefore neglect these
terms. To tie up with the situation described in (4) we set

Y ev := (E(K)⊗Z Q)∗ ⊕
(
MdR/M

0
dR

)
,

Y od := (E(K)⊗Z Q)⊕M+
B ,

θR := δ−1 ⊕ π−1
K ,

X•l := RΓf (K,Tl(E))⊕
⊕
v|l∞

RΓf (Kv, Tl(E))[−1].

Recall that for the rationality conjecture we do not have to consider the maps θevl
and θodl (see Remark 2.6). Note also that it is usually more convenient to separate
the height and period isomorphism and thus to consider

Y ev1 := (E(K)⊗Z Q)∗, Y od1 := E(K)⊗Z Q, θ1,R := δ−1,

X•1,l := RΓf (K,Tl(E))

and

Y ev2 :=
(
MdR/M

0
dR

)
, Y od2 := M+

B , θ2,R := π−1
K ,

X•2,l :=
⊕
v|l∞

RΓf (Kv, Tl(E))[−1].

Let τ1 be de�ned as in Remark 2.6 (b) with respect to Y ev1 and Y od1 . Let α0 be a
normal basis element for K/Q. For each χ ∈ Irr(G) we choose a C-space Vχ which
realizes χ. Let Tχ : G −→ Gl(Vχ) denote the corresponding representation and

de�ne d+(χ) := dimC

(
V

Gal(C/R)
χ

)
and d−(χ) := codimC

(
V

Gal(C/R)
χ

)
.

We set

Reg =
(
Regχ

)
χ∈Irr(G)

:= NrdR[G](τ1),

R = R(α0) = (Rχ)χ∈Irr(G) :=

(
det

(∑
σ∈G

ι(σ(α0))Tχ(σ−1)

))
χ∈Irr(G)

,

Ω = (Ωχ)χ∈Irr(G) :=
(
Ωd+(χ)

+ Ωd−(χ)
−

)
χ∈Irr(G)

,

and note that NrdR[G](λα0) = Ω/R(α0), where λα0 is de�ned in Proposition 3.1.
From Remark 2.6 (b) we deduce that the rationality part of [12, Conjecture 4] is
equivalent to

Conjecture 3.5.

u ∈ ζ(Q[G])×, where u :=
L∗R
ΩReg

and L∗ :=
(
L∗(E/Q, ψ̄, 1)

)
ψ∈Irr(G)

.

Remark 3.6. Conjecture 3.5 does not depend on the choice of α0. Indeed, if β0

is another normal basis element, then β0 = λα0 with λ ∈ Q[G]×. It is then easy to
see that R(β0) = NrdQ[G](λ)R(α0).
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We will compute complex approximations to

u = (uχ)χ∈Irr(G) ∈
∏
χ

C× ' ζ(C[G])×

and then use Lemma 2.8 to numerically verify the rationality conjecture.

4. Explicit version of the ETNC

In this section we will de�ne the complexes RΓf (Q, Tl) and RΓf (Qp, Tl) and
explicitly describe their cohomology. We will closely follow [11] and [14, Sec. 12].

Under certain hypothesis on E, K and l (see below), we will derive an explicit
version of ETNC in terms of re�ned Euler characteristics of classical objects of the
theory of elliptic curves, such as the Mordell-Weil group and the Tate-Shafarevic
group.

We �x an algebraic closure Q̄ of Q and an embedding ι : Q̄ −→ C. Recall that we
have de�ned τ ∈ G by c◦ι = ι◦τ with c ∈ Gal(C/R) denoting complex conjugation.
We set G∞ = Gal(C/R) and identify G∞ via ι with a subgroup of GQ. For each
rational prime p we �x an embedding jp : Q̄ −→ Q̄p. With respect to jp we let
Gp ⊆ GQ denote the decomposition group and Ip ⊆ Gp the rami�cation subgroup.
Finally we let Īp ⊆ Ḡp ⊆ G denote the rami�cation and decomposition group of p
in K/Q.

For a pro�nite group Π and a continuous Π-moduleN we denote by C•(Π, N) the
standard complex of continuous cochains. We write ZSl

for the ring of Sl integers
and GSl

for the Galois group of the maximal subextension of Q̄ which is unrami�ed
outside Sl. Following [12, Sec. 3.2-3.4] we set

RΓ(ZSl
, Tl) := C•(GSl

, Tl),

RΓc(ZSl
, Tl) := Cone

RΓ(ZSl
, Tl) −→

⊕
p∈Sl

C•(Gp, Tl)

 [−1],

where the morphism here is induced by the natural maps Gp ⊆ GQ −→ GSl
.

We now proceed to de�ne the remaining complexes in the true triangle

RΓc(ZSl
, Tl) −→ RΓf (Q, Tl) −→

⊕
p∈Sl∪{∞}

RΓf (Qp, Tl)

Our aim is to de�ne these complexes such that they are Zl[G]-perfect. We point
out that for l - #G the algebra Zl[G] is regular, so that every complex of Zl[G]-
modules with only �nitely many non-trivial cohomology groups all of which are
�nitely generated is automatically perfect.

For a �nite place v of K we write OKv for the valuation ring in the completion
Kv and mv for the maximal ideal. Let kv := OKv/mv denote the residue class �eld.
We write E0(Kv) for the points of E(Kv) which reduce to a non-singular point on
the reduced curve Ē(kv). Let Ēns(kv) denote the group of non-singular points of
Ē(kv).

We will need the following
Hypothesis:

(H0) X(E/K) is �nite.
(H1) l is at most tamely rami�ed in K/Q.
(H2) (a) If l ∈ S or l = 2, then l - #G.

(b) If l 6∈ S and l 6= 2, then l - Īp for all p ∈ S.
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(H3) Sbad(E) ∩ Sram(K/Q) = ∅.
(H4) If l | #G, then

(a) E(K)⊗Z Zl, (E(K)⊗Z Zl)∗ are Zl[G]-perfect and l - #E(K)tors.
(b) l - #X(E/K).

(H5) If l 6∈ S and l 6= 2, then l - #(E(Kv)/E0(Kv)) for all v ∈ S(K).

(H2) and (H3) are needed to show that the above complexes are perfect. (H1),
(H4) and (H5) will be needed to be able to compute the re�ned Euler characteristics
of these complexes. Note that (H2) possibly excludes certain prime divisors l of #G
from our considerations. However, in certain circumstances all of the hypothesis
(H1) - (H5) are conjecturally satis�ed for some divisors l of #G. Explicit examples
are given in Section 6. We remark also that with some additional e�ort it would
be possible to relax (H5) by stipulating it only for l | #G, but for a related,
more complicated module. However, in this case the computation of the relevant
Euler characteristics becomes more complicated and less suitable for numerical
computations (see Remark 4.3).

If p = ∞ we de�ne RΓf (Qp, Tl) to be the complex H0(Q∞, Tl)[0] = TG∞l [0].
Then RΓf (Q∞, Tl) is indeed a perfect complex. This is clear for l - #G by the
preceeding remark. In general, we may identify E(C) with the complex torus
C/(ZΩ+ ⊕ ZΩ−). In this way we obtain an isomorphism of G∞-modules Tl(E) '
ZlΩ+ ⊕ ZlΩ−. Using this identi�cation it is clear that

Tl(E)Gv '

{
ZlΩ+, if v is real,

ZlΩ+ ⊕ ZlΩ−, if v is complex,

for each v | ∞. Hence RΓf (Q∞, Tl) is free of rank 1 as a Zl[G]-module generated
by Ω+ if K is totally real, and by 1+τ

2 ⊗Ω+ + 1−τ
2 ⊗Ω− if K is complex (note that

l 6= 2 by (H2a) if K is complex). For later reference we record

(16) TG∞l ' Zl[G]
(

1 + τ

2
⊗ Ω+ +

1− τ

2
⊗ Ω−

)
.

For a Z-module A we write A∧l for the l-completion lim
←−

A/lnA. For each pair of

primes p and l we write H1
f (Qp, Tl)BK for the �nite support cohomology group de-

�ned by Bloch and Kato in [6, Sec. 3]. We will explicitly describe this group. From
Kummer theory we obtain a natural monomorphism E(Kv)∧l −→ H1(Kv, Tl(E))
for each place v | p. By [6, after (3.2)] the group H1

f (Kv, Tl(E))BK is equal

to the image of E(Kv) in H1(Kv, Tl(E)) under the composite map E(Kv) −→
E(Kv)∧l −→ H1(Kv, Tl(E)). Using (23) one can show that E(Kv) −→ E(Kv)∧l is
onto, so that

H1
f (Qp, Tl)BK '

⊕
v|p

E(Kv)∧l.

The next de�nition is motivated by [14, Sec. 12.2 and Rem. 12.4.2]. We need
the following notations. If p 6∈ S and p 6= 2, then we de�ne a �nitely generated
Zp[G]-module by setting Dp := Dcr,p(Tp) ' OK,p ⊗Zp Dcr,p(Tp(E)) where OK,p :=
Zp ⊗Z OK and Dcr,p is the quasi-inverse to the functor of Fontaine and Lafaille
that is used by Niziol in [31]. For each such p we also write φp for the natural
Zp[G]-equivariant Frobenius on Dp.
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We de�ne

RΓf (Qp, Tl) =


T
Ip

l

1−Fr−1
p−→ T

Ip

l , if l 6∈ S, l 6= 2, l 6= p,

F 0Dp
1−φ0

p−→ Dp, if l 6∈ S, l 6= 2, l = p,

H1
f (Qp, Tl)BK , if l ∈ S or l = 2,

where Frp is the natural Frobenius in Gal(Qur
p /Qp), φ0

p is the restriction of φp to

F 0Dp ⊆ Dp. In the �rst two cases the modules are placed in degrees 0 and 1, in
the third case the module is placed in degree 1.

The following lemma and its proof are analogous to [14, Lem. 12.2.1].

Lemma 4.1. Assume (H2) and (H3). Then RΓf (Qp, Tl) is a perfect complex of
Zl[G]-modules.

Proof. If l ∈ S or l = 2 the result is clear because in this case Zl[G] is regular.
If l 6∈ S, l 6= 2 and l = p we note that p is unrami�ed in K/Q by de�nition of
S, and hence OK,p is a free Zp[G]-module.Thus F 0Dp ' OK,p ⊗Zp

F 0Dcr,p(Tp(E))
and Dp ' OK,p ⊗Zp Dcr,p(Tp(E)) are �nitely generated Zp[G]-modules of �nite
projective dimension.

Finally, if l 6∈ S, l 6= 2 and l 6= p, we �rst note that

T
Ip

l = (Zl[G]⊗Zl
Tl(E))Ip = Zl[G]Ip ⊗Zl

Tl(E)Ip

because of (H3). If p ∈ Sram(K/Q), then T
Ip

l = Zl[G]Īp ⊗Zl
Tl(E). We write

eĪp
for the idempotent associated with Īp. By (H2b) we have Zl[G] = Zl[G]eĪp

⊕
Zl[G](1 − eĪp

) = Zl[G]Īp ⊕ Zl[G](1 − eĪp
). Therefore T

Ip

l is a direct summand of

Zl[G]⊗Zl
Tl(E) ' Zl[G]2 and thus projective.

If p ∈ Sbad(E), then T Ip

l = Zl[G]⊗Zl
Tl(E)Ip is clearly Zl[G]-free. �

We de�ne the complex RΓ(Q, Tl) as in [11, (1.33)] and proceed to recall the
computation of its cohomology (for more details see [11, Sec. 1.5.1]). For an arbi-
trary Zl-module W we write W ∗ for the linear dual HomZl

(W,Zl) and W∨ for the
Pontriyagin dual Homcont(W,Ql/Zl).

We note that the Weil pairing induces an isomorphism between Tl and T ∗l (1).
Furthermore, we recall that

Hi(ZSl
, Tl) '

{
0, if i = 0,
E(K)⊗Z Zl, if i = 1.

4.1. The case l 6∈ S and l 6= 2. For a �nite Z-module C we write Cl∞ for the
l-Sylow subgroup of C.

From [11, (1.35)-(1.37)] we derive

H0
f (Q, Tl) = H0(ZSl

, Tl) = 0,

H3
f (Q, Tl) =

(
H1(ZSl

, T ∗l (1))tors
)∨ ' ((E(K)⊗Z Zl)tors)∨ ,

Hi
f (Q, Tl) = 0 for i ≥ 4.

De�ning X(T ∗l (1)) as in [11] we have the short exact sequence (see [11, (1.36)])

(17) 0 −→ X(T ∗l (1))∨ −→ H2
f (Q, Tl) −→ H1

f (Q, T ∗l (1))∗ −→ 0.

By this sequence we identify H2
f (Q, Tl)tors with X(T ∗l (1))∨ and H2

f (Q, Tl)tf with

H1
f (Q, T ∗l (1))∗.
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We let

C(Qp, Tl) ' H0(Qp,H
1(Ip, Tl)tors)

be the module introduced in [11, (1.38)], so that we have exact sequences (by [11,
1.38)] and the displayed exact sequence succeeding it)

(18) 0 −→ H1
f (Qp, Tl) −→ H1

f (Qp, Tl)BK −→ C(Qp, Tl) −→ 0

and
(19)
0 −→ H1

f (Q, Tl) −→ H1
f (Q, Tl)BK −→ C −→ X(T ∗l (1))∨ −→ X(T ∗l (1))∨BK −→ 0.

with

C :=
⊕
p∈Sl

C(Qp, Tl).

We claim that under our assumptions the module C is trivial. If p = l, then
H1(Il, Tl) = Homcont(Il, Tl) because Il acts trivial on Tl (recall that l 6∈ S). There-
fore H1(Il, Tl) is torsion free and C(Ql, Tl) is trivial. Assume now that p 6= l.
We �x a place v of K above p and set L := KvQur

p where Qur
p denotes the maxi-

mal unrami�ed extension of Qp. Furthermore we put U := Gal(Q̄p/L). From the
in�ation-restriction sequence we derive

0 −→ H1(Īp, TUl ) −→ H1(Ip, Tl) −→ H1(U, Tl)Īp −→ H2(Īp, TUl ).

If p ∈ Sram(K/Q), then p 6∈ Sbad(E) because of (H3) and we obtain TUl =
Zl[G] ⊗Zl

Tl(E) which is a cohomologically trivial Īp-module. Hence H1(Ip, Tl) '
H1(U, Tl)Īp ' Homcont(U, Tl)Īp , where the second isomorphism holds because U
acts trivially on Tl. It follows that H

1(Ip, Tl) is torsion free which, in turn, proves
the claim for primes p ∈ Sram(K/Q).

For p 6∈ Sram(K/Q) we have Īp = 1, so that we get H1(Ip, Tl) ' H1(U, Tl). Now
U = Ip acts trivially on Zl[G] and we obtain H1(Ip, Tl) ' Zl[G]⊗Zl

H1(U, Tl(E)).
It follows that

H1(Ip, Tl)
Gp

tors

'
(
Zl[G]⊗Zl

H1(Ip, Tl(E))tors
)Gp

' Zl[G]⊗Zl[Ḡp] H
1(Ip, Tl(E))Gal(Q̄p/Kv)

tors .

By [23, Exp. IX, (11.3.8)] the group H1(Ip, Tl(E))Gal(Q̄p/Kv)
tors can be identi�ed with

the l-primary part of E(Kv)/E0(Kv) and the claim follows now from (H5).
From (18) and (19) we now deduce

H1
f (Qp, Tl) ' H1

f (Qp, Tl)BK ,H1
f (Q, Tl) ' H1

f (Q, Tl)BK ,X(T ∗l (1)) ' X(T ∗l (1))BK .

By [11, (1.39)] we may identify X(T ∗l (1))∨BK with X(Tl)BK , which in turn identi-
�es with X(E/K)⊗Z Zl.

We recall from [6, Prop. 5.4] that H1
f (Q, Tl)BK ' E(K)⊗Z Zl, so that

H1
f (Q, Tl) ' E(K)⊗Z Zl, H2

f (Q, Tl)tf ' (E(K)⊗Z Zl)∗ .

Our next aim is to compute the re�ned Euler characteristic χZl[G],Cl
(RΓf (Q, Tl), δ−1)

introduced in (14) in terms of classical modules of the theory of elliptic curves. In
full generality this is a very di�cult task because it seems to be very hard to com-
pute the complex RΓf (Q, Tl). Our hypothesis allow us to use [12, Prop. 2.1 (4)],
so that we can work entirely with the cohomology modules.
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Lemma 4.2. Assume (H0) - (H5) and write χ = χZl[G],Cl
. Then

χ(RΓf (Q, Tl), δ−1) = [(E(K)⊗Z Zl)∗ , δ−1, E(K)tf ⊗Z Zl]
− χ(X(E/K)l∞ , 0)
+ χ(E(K)l∞ , 0) + χ(E(K)∨l∞ , 0)

Proof. The proof follows from the preceeding computation of cohomology and
Lemma 2.3. �

Remark 4.3. If we relax (H5) the module C is possibly non-trivial. Combining
the exact sequences (17) and (19) we derive

(20) 0 −→ H1
f (Q, Tl) −→ H1

f (Q, Tl)BK −→ C −→ H2
f (Q, Tl) −→ S −→ 0

with a module S which sits is a short exact sequence of the form

(21) 0 −→ X(E/K)⊗Z Zl −→ S −→ H1
f (Q, Tl)∗ −→ 0.

The module S is related to the integral Selmer group de�ned by Mazur and Tate
in [29] (see [14, Lem. 12.2.2] and its proof). It is certainly possible to compute
χ(RΓf (Q, Tl), δ−1) in this more general setting for l - #G, however, any description
of χ(RΓf (Q, Tl), δ−1) would then involve the modules S, C and X(T ∗l (1)). For
computational purposes this seems to be less useful.

We now compute χ(RΓf (Qp, Tl), 0) for p 6= l,∞. Recall that we are still in the
case l 6∈ S, l 6= 2. From the de�nition of RΓf (Qp, Tl) we immediately obtain

χ(RΓf (Qp, Tl), 0) = [T Ip

l , 1− Fr−1
p , T

Ip

l ].

By Remark 3.3 this Euler characteristic is represented by (L(E/Q, χ̄, 1))χ∈Irr(G).
We let E be a Néron model for E over Z. Because of hypothesis (H3) we

may regard Spec(OK) ×Spec(Z) E as a Néron model EK of E over K. Recall

that we identi�ed tdR(MK) := MdR/M
0
dR ' H1(EK ,OEK

) ' K ⊗Q Ω1
E(E)∗. In

this way the integral lattice H1(EK ,OEK
) is identi�ed with OK ⊗Z Ω1

E(E)∗. Re-
call that Ω1

E(E)∗ = Zω∗0 . We de�ne HK,Z :=
⊕

σ∈Σ(K) Z ⊆ HK and HZ :=
HomZ(H1(E(C),Z), 2πiZ) ⊆ H. Finally we de�ne HK,Zl

:= Zl ⊗Z HK,Z and
HZl

:= Zl ⊗Z HZ.
We will compare the re�ned Euler characteristic of

RΓf (Q∞, Tl)⊕RΓf (Ql, Tl).

with the l-part of[
(HK,Z ⊗Z HZ)+ , πK ,H1(EK ,OEK

)
]

=
[
(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1

E(E)∗
]

in K0(Zl[G],Cl).
Using the �xed embedding ι : K −→ C we identify HK,Z ' Z[G]. It is easily

shown that

(HK,Zl
⊗Zl

HZl
)+ = Zl[G]

(
1 + τ

2
⊗ γ∗+ +

1− τ

2
⊗ γ∗−

)
.

By (16) we may therefore identify RΓf (Q∞, Tl) = TG∞l [0] and (HK,Zl
⊗Zl

HZl
)+.
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For each prime p we write tp(Vp) for the tangent space DdR(Vp)/F 0DdR(Vp) of
Vp (see [12, page 521] for the precise de�nition) and

κp : Qp ⊗Q tdR(MK) −→ tp(Vp)

for the canonical comparison isomorphism of [12, (23)]. For any embedding j : R −→
Cl we write πK,j for the composite map

Cl⊗R,j R⊗Q (HK ⊗Q H)+]
(Cl⊗πK)−→ Cl⊗R,j R⊗QK⊗Q Ω1

E(E)∗
(Cl⊗κl)−→ Cl⊗Ql

tl(Vl).

Since l 6∈ S and l 6= 2 the theory of Fontaine and Messing implies that

κl
(
Zl ⊗Z H

1(EK ,OEK
)
)

= Dl/F 0Dl
(see the proof of [14, Lem. 12.4.1]). In particular, Dl/F 0Dl is Zl[G]-projective since
Zl ⊗Z H

1(EK ,OEK
) ' Zl ⊗Z OK ⊗Z Ω1

E(E)∗ is Zl[G]-free as l 6∈ S is unrami�ed in
K/Q.

Since Dl
1−φl−→ Dl is injective, the short exact sequence of complexes (with vertical

di�erentials)

0 //F 0Dl
⊆ //

1−φ0
l

��

Dl //

1−φl

��

Dl/F 0Dl //

��

0

0 //Dl
= //Dl //0

implies that 0 −→ Dl/F 0Dl −→ H1
f (Ql, Tl) −→ Dl/(1 − φl)Dl −→ 0 is exact. It

follows that H1
f (Ql, Tl) is Zl[G]-perfect and

j∗

([
(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1

E(E)∗
])

=
[
TG∞l , πK,j , κl

(
Zl ⊗Z OK ⊗Z H

1(EK ,OEK
)
)]

=
[
TG∞l , πK,j ,Dl/F 0Dl

]
=

[
TG∞l , πK,j ,H

1
f (Ql, Tl)

]
− [Dl, 1− φl,Dl]

= χZl[G],Cl
(RΓf (Q∞, Tl)⊕RΓf (Ql, Tl), πK)− [Dl, 1− φl,Dl] ,

where the last equality follows from Lemma 2.3.
In summary, we obtain for l 6∈ S, l 6= 2

RΩl =
[(E(K)⊗Z Zl)∗ , δ−1, E(K)tf ⊗Z Zl] + χ(E(K)l∞ , 0) + χ(E(K)∨l∞ , 0)

−χ(X(E/K)l∞ , 0)−
∑
p∈S

[
T
Ip

l , 1− Fr−1
p , T

Ip

l

]
(22)

−j∗
([

(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1
E(E)∗

])
− [Dl, 1− φl,Dl] .

4.2. The case l ∈ S or l = 2. By our assumptions l - #G. We recall from [11,
end of Sec. 1.5] that

Hi
f (Q, Tl)BK = 0 for i 6= 1, 2, 3,

H1
f (Q, Tl)BK = E(K)⊗Z Zl,

H3
f (Q, Tl)BK = E(K)∨l∞
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and

0 −→ X(E/K)⊗Z Zl −→ H2
f (Q, Tl)BK −→ (E(K)⊗Z Zl)∗ −→ 0.

As before we write χ = χZl[G],Cl
for the re�ned Euler characteristic. If v is a

�nite place of K we also put χv = χZl[Gv ],Cl
for the re�ned Euler characteristic

in K0(Zl[Gv],Cl). If we write indGGv
: K0(Zl[Gv],Cl) −→ K0(Zl[G],Cl) for the

natural induction map, then χ = indGGv
◦ χv.

Applying Lemma 2.3 we obtain

χ(RΓf (Q, Tl), δ−1) = [(E(K)⊗Z Zl)∗, δ−1, E(K)tf ⊗Z Zl]
+ χ(E(K)l∞ , 0) + χ(E(K)∨l∞ , 0)− χ(X(E/K)l∞ , 0).

We write Ê for the formal group associated with E. Then we have the basic
short exact sequence

(23) 0 −→ Ê(mv) −→ E0(Kv) −→ Ēns(kv) −→ 0.

We recall that H1
f (Qp, Tl) '

⊕
v|pE(Kv)∧l. For p 6= l and v | p we �rst note

that Ê(mv)∧l = 0. From (23) we derive the short exact sequence

0 −→ Ēns(kv)l∞ −→ E(Kv)∧l −→ (E(Kv)/E0(Kv))l∞ −→ 0,

so that H1
f (Qp, Tl)BK is �nite and, by Lemma 2.3,

χ(RΓf (Qp, Tl), 0) = indGGv
χv
(
Ēns(kv)l∞ , 0

)
+ indGGv

χv ((E(Kv)/E0(Kv))l∞ , 0) .

As in the previous case we must now relate the Euler characteristic ofRΓf (Q∞, Tl)⊕
RΓf (Ql, Tl) and the element

[
(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1

E(E)∗
]
l
.

We write

expBKp : tp(Vp) −→ H1
f (Qp, Vp)

for the isomorphism given by the Bloch-Kato exponential map and recall that the
logarithm attached to the formal group Ê induces an isomorphism

logv : E(Kv)∧l ⊗Zl
Ql ' Kv.

We use the commutative diagram

Ql ⊗Q K ⊗Q Ω1
E(E)∗

κl //

=

��

tl(Vl)

expBK
l

��⊕
v|lKv ⊗ ω∗0

'
��

Ql ⊗Zl
H1
f (Ql, Tl)BK

'
��⊕

v|lKv
⊕

v|lE(Kv)∧l ⊗Zl
Ql⊕ logv

oo

For each place v | l we choose a positive integer nv such that logv induces an

isomorphism between Ê(mnv
v ) and mnv

v . For every prime p we �x a place vp above
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p. We obtain

j∗

([
(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1

E(E)∗
])

=
[
TG∞l , πK,j , κl(Zl ⊗Z OK ⊗Z Ω1

E(E)∗)
]

=
[
TG∞l , πK,j , κl(⊕v|lOKv ⊗ ω∗0)

]
=

[
TG∞l , expBKl ◦πK,j , (expBKl ◦κl)(⊕v|lOKv ⊗ ω∗0)

]
=

[
TG∞l , expBKl ◦πK,j , (expBKl ◦κl)(⊕v|lmnv

v ⊗ ω∗0)
]

+
[
⊕v|lmnv , id,⊕v|lOKv

]
(i)
=

[
TG∞l , expBKl ◦πK,j ,⊕v|lÊ(mnv

v )
]

+
[
⊕v|lmnv , id,⊕v|lOKv

]
=

[
TG∞l , expBKl ◦πK,j ,⊕v|lÊ(mv)

]
−
[
⊕v|lÊ(mnv ), id,⊕v|lÊ(m)

]
+
[
⊕v|lmnv , id,⊕v|lOKv

]
(ii)
=

[
TG∞l , expBKl ◦πK,j ,⊕v|lE0(Kv)∧l

]
− χ(⊕v|lĒns(kv)l∞ , 0) +

[
⊕v|lm, id,⊕v|lOKv

]
=

[
TG∞l , expBKl ◦πK,j ,H1

f (Ql, Tl)BK
]

−χ(⊕v|l (E(Kv)/E0(Kv))l∞ , 0)− χ(⊕v|lĒns(kv)l∞ , 0) +
[
⊕v|lm, id,⊕v|lOKv

]
=

[
TG∞l , expBKl ◦πK,j ,H1

f (Ql, Tl)BK
]

−indGGvl

(
χvl

((E(Kvl
)/E0(Kvl

))l∞ , 0)
)
− indGGvl

(
χvl

(Ēns(kvl
)l∞ , 0)

)
+ indGGvl

(χvl
(kvl

, 0))

(iii)
= χ (RΓf (Q∞, Tl)⊕RΓf (Ql, Tl), πK)

−indGGvl

(
χvl

((E(Kvl
)/E0(Kvl

))l∞ , 0)
)
− indGGvl

(
χvl

(Ēns(kvl
)l∞ , 0)

)
+ indGGvl

(χvl
(kvl

, 0))

Here (i) is induced by the diagram and our choice of integers nv, (ii) comes from
(23) and (iii) follows from Lemma 2.3.

In summary, we obtain for l ∈ S or l = 2 (always assuming l - #G)

RΩl = [(E(K)⊗Z Zl)∗, δ−1, E(K)tf ⊗Z Zl]

−j∗
([

(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1
E(E)∗

])
+χ(E(K)l∞ , 0) + χ(E(K)∨l∞ , 0)− χ(X(E/K)l∞ , 0)

−
∑
p∈Sl

indGGvp

(
χvp(Ēns(kvp)l∞ , 0)

)
(24)

−
∑
p∈Sl

indGGvp

(
χvp(

(
E(Kvp)/E0(Kvp)

)
l∞
, 0)
)

+indGGvl
(χvl

(kvl
, 0))

If E(K)tf ⊗Z Zl and (E(K)⊗Z Zl)∗ are Zl[G]-projective, then by the arguments
of Remark 2.6(a) we can �nd a Zl[G]-module Z such that both (E(K)tf ⊗Z Zl)⊕Z
and (E(K)⊗Z Zl)∗ ⊕ Z are Zl[G]-free. Then one has

[(E(K)⊗ZZl)∗, δ−1, E(K)tf⊗ZZl] = [(E(K)⊗ZZl)∗⊕Z, δ−1⊕id, (E(K)tf⊗ZZl)⊕Z]

so that without loss of generality we may assume that we can work with Zl[G]-basis.
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If T is a �nite perfect Zl[G]-module, then we write χ̃Zl[G],Cl
(T, 0) for any lift of

χZl[G],Cl
(T, 0) via the middle vertical map of (5). Analogously we use the notation

χ̃ and χ̃v.
Recall the de�nition of u = L∗R

ΩReg in Conjecture 3.5.

Proposition 4.4. Assume hypothesis (H0) - (H5) and let α0 be a normal basis
element such that OK,l = Zl[G]α0. Assume that u = ul is computed with respect to
α0 and a Zl[G]-basis of E(K)tf ⊗Z Zl and (E(K) ⊗Z Zl)∗. Assume also that the
rationality conjecture holds.
If l 6∈ S and l 6= 2 we set

ξl := χ̃(E(K)l∞ , 0)−1 · χ̃(E(K)∨l∞ , 0)−1 · χ̃(X(E/K)l∞ , 0).

If l ∈ S or l = 2 we set

ξl := χ̃(E(K)l∞ , 0)−1 · χ̃(E(K)∨l∞ , 0)−1 · χ̃(X(E/K)l∞ , 0)∏
p∈Sl

indGGvp
χ̃vp

(
Ēns(kvp)l∞ , 0

)
·
∏
p∈Sl

indGGvp
χ̃vp

((
E(Kvp)/E0(Kvp)

)
l∞
, 0
)

indGGvl
χ̃vl

(kvl
, 0)−1

∏
p∈Sl

(Lp(E, χ̄, 1))−1
χ∈IrrQ(G)

Then

(25) TΩl = 0 ⇐⇒ ul = ξl in cok(µl)⊕ Il(C).

Proof. The Euler factor terms [T Ip

l , 1−Fr−1
p , T

Ip

l ] and [Dl, 1−φl,Dl] in (22) cancel
because of the identi�cation made in [12, (24)] applied to (19) and (22) of loc.cit.
See Remark 3.3.

For the same reason we obtain the local Euler factors (Lp(E, χ̄, 1))χ∈IrrQ(G) in
(24). Indeed, by (13) the local factors (Lp(E, χ̄, 1))χ∈IrrQ(G) represent the re�ned

Euler characteristics of the complexes (Vp
φp−→ Vp) which occur in (19) and (22) of

loc.cit. �

Remark 4.5. The local Euler factors in the above formulae can be computed using
their explicit de�nition. For the computation of the re�ned Euler characteristics of
�nite modules we use the method explained in Example 2.7. Hence we obtain ξl as
an element in C×.

If ulξ
−1
l = (η1, . . . , ηr) with ηi ∈ Ki, then TΩl = 0 if and only if

vP(ηi) = 0, ∀i ∈ {1, . . . , r} and P | l in Ki/Q, and
(η̄1, . . . , η̄r) ∈ im(µl),

where η̄i denotes the image of ηi under the projection O×Ki,l
−→ (OKi/gi,l)

×
and

µl is the isomorphism from (8). Recall that this means that the ηi have to satisfy
certain complicated congruences. In Section 2.3 we made these congruences explicit
for cyclic groups Zl, dihedral groups D2l and the alternating group A4. For explicit
examples see Sections 6.1, 6.2 and 6.3 where we consider dihedral extensions K/Q
of degree 2l for an odd prime l. In each of these examples the prime l is of particular
interest because we have to check that the BSD quotients satisfy the congruence
(10).

Remark 4.6. The element ul in (25) depends on the choice of α0, however, the
validity of the statement ul = ξl in cok(µl)⊕ Il(C) is independent of this choice. If
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β0 is another Zl[G]-generator of OK,l, then β0 = λα0 with a unit λ ∈ Zl[G]×. As
in (3.6) we see that ul(β0) = NrdQl[G](λ)ul(α0). Hence the independence follows
from the fact that NrdQl[G](λ) is a unit in OC,l which is contained in the image of
µl.

We �x a normal basis element α0 and Q[G]-basis of E(K)⊗ZQ and (E(K)⊗ZQ)∗

in the sense of Remark 2.6 b) and compute u with respect to these basis. Note that
for almost all primes l the element α0 constitutes a Zl[G]-basis of OK,l and the
chosen Q[G]-basis of E(K) ⊗Z Q, respectively (E(K) ⊗Z Q)∗, is a Zl[G]-basis of
E(K)tf ⊗Z Zl, respectively (E(K) ⊗Z Zl)∗. For all these primes l we can use this
�xed u as ul in Proposition 4.4.

We de�ne two �nite sets of rational primes

HP1 = S ∪ {2} ∪ {l : l | #G} ∪ {l : l | #E(Kv)/E0(Kv) for a v ∈ Sl(K)} ∪
{l : l | #E(K)tors} ∪ {l : l | #X(E/K)},

HP2 = {l : ul 6= u}.
So for all l 6∈ HP2 we can use the �xed u as ul in Proposition 4.4. Note that HP2

depends on the choice of α0 and the Q[G]-basis of E(K) ⊗Z Q and (E(K) ⊗Z Q)∗.
Finally we set

HP := HP1 ∪HP2.

We say that an element w = (w1, . . . , wr) ∈ ζ(Q[G])× has support in HP , if
(wi, p) = 1 for i = 1, . . . , r and all primes p 6∈ HP .

Corollary 4.7. Assume (H0) and (H3) and the rationality conjecture. Let l 6∈ HP
be a rational prime. Then l satis�es the hypothesis (H1),( H2), (H4) and (H5) and

TΩl = 0 ⇐⇒ u has support in HP.

Proof. There �rst assertion is clear from the de�nition of HP . If l 6∈ HP , then
we are in the case l 6∈ S and l 6= 2. By de�nition of HP1 the element ξl is trivial.
By de�nition of HP2 we have u = ul. Since l - #G, we have cok(µl) = 0, so that
TΩl = 0 if and only if u is prime to l in the sense of Remark 4.5. �

By the corollary we can, in principle, numerically verify ETNC for almost all
primes l as soon as we have computed a good approximation of u ∈

∏
χ∈Irr(G) C×.

If the computed u makes us believe that the rationality conjecture holds, and if we
are able to round u to an element of u′ ∈

∏
χ∈IrrQ(G) Q(χ)×, we only have to check

if u′ has support in HP .
Of course, the main restriction to our approach is our incapability of computing

the Mordell-Weil group and the Tate-Shafarevic group. In order to obtain at least
some numerical evidence we will usually trust in the equivariant rank conjecture
and thus assume that the analytic rank equals the geometric rank r and compute
r by computing approximations to the L-values. Even here our approach is rather
vague since we do not dispose of a criterion which would allow to decide whether
an L-value is actually 0 from the knowledge of numerical approximations.

However, numerical computations can prove that the analytic rank is 0 and in
this case (assuming that K is totally real) we can use results proved independently
by Longo and Tian-Zhang (see [16, Th. 3.7]) to deduce that the algebraic rank is
also 0.

If r = 0 or in the rare case that r > 0 and we know generators for E(K) we use
the usual Birch and Swinnerton-Dyer conjecture to compute a conjectural value
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for #X(E/K). In a sense our results can be characterized as `deducing numerical
evidence for ETNC from the classical BSD-conjecture for E/K'.

5. Computational remarks

In this section we describe how we perform our computations.

5.1. Computation of L-values. For the computation of the leading coe�cients
L∗(E/Q, χ, 1), χ ∈ Irr(G), we use the algorithm of Dokchitser decribed in [17].
Actually we apply the MAGMA [28] implementation of this algorithm.

We use the algorithm to compute complex approximations to the derivatives
L(k)(E/Q, χ, 1) of the twisted Hasse-Weil-L-functions at s = 1. We also use these
values to guess the order of vanishing of L(E/Q, χ, s) at s = 1 in a very naive way.
Explicitly we set

r̃(χ) := min{k ≥ 0 | |L(k)(E/Q, χ, 1)| > ε}
where ε > 0 is a chosen lower bound which seems to be reasonable in an unspeci�c
way. At least one can hope that r̃(χ) is equal to the order of L(E/Q, χ, s) at s = 1.

5.2. Computation of periods. For the computation of periods associated to
h1(EK)(1) considered as a motive over Q with coe�cients in Q[G] we apply Propo-
sition 3.1. The computation of Ω+ and Ω− is standard and we just use the imple-
mentation provided by MAGMA. It is usually very e�cient to compute a normal
basis element α0 just by trial and error. Without loss of generality we assume that
α0 ∈ OK . Then the exceptional set HP2 contains

HP ′2 = {l | l divides [OK : Z[G]α0]}
which can be computed easily.

If we want to check the conjecture for primes l ∈ HP we must assume hypothesis
(H), in particular, that l is at most tamely rami�ed in K/Q. In this case we can
use algorithm [5, Alg. 4.2] to compute α0 ∈ OK such that OK,l = Zl[G]α0.

However, it is reasonable to compute u such that the exceptional set HP is
as small as possible. Under certain assumptions on the group G (which are, e.g.,
satis�ed for all groups with #G < 32) we can often use the methods of [3, 4]
to compute α0 ∈ OK such that HP ′2 ⊆ HP1. This is possible because for small
groups G the ring of integers OK is often free over the associated order A =
A(Q[G];OK) := {λ ∈ Q[G] | λ(OK) ⊆ OK} and in this case the algorithm of
loc.cit. computes a free generator α0 such that OK = Aα0. Basic properties of
associated orders then imply that OK,l = Zl[G]α0 for all l - #G.

5.3. Computation of equivariant regulators. Our possibilities to compute reg-
ulators are very limited because in most cases we are not able to compute the
Mordell-Weil group E(K) when K 6= Q (or a subgroup of �nite index in E(K)).
Henceforth we assume r > 0 and that

E(K) = E(K)tors ⊕ ZP1 ⊕ . . . x⊕ ZPr
is explicitly known. Note, however, that for the rationality conjecture it would be
enough to know a subgroup of �nite index.

We consider E(K) ⊗Z Q and remind the reader of Remark 2.6 b) where the
general recipe for the computation of regulators is described. However, for our
actual computations described in the next section it will be enough to consider
irreducible rational characters χ ∈ IrrQ(G) which factor through the commutator
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subgroup G′. For all other characters we assume that eχ(E(K) ⊗Z Q) is trivial.
Under these circumstances it is rather straightforward to compute a Q[G]-basis
in the sense of Remark 2.6 b). We describe the computation of the equivariant
regulator in this case.

Let ψ ∈ Irr(G) denote an absolutely irreducible abelian character and set F :=
Kker(ψ). Let χ =

∑
σ∈Gal(Q(ψ)/Q) ψ

σ be the associated rational character. Then

eχQ[G] ' Q(ψ) is a �eld and eχ(E(K)⊗ZQ) = eχ(E(F )⊗ZQ) is a �nite dimensional
eχQ[G]-vector space. Let Q1, . . . , Qd be a eχQ[G]-basis.

For an abelian character ϕ we write ϕ | χ if ϕ is a constituent of χ. If a =
(aϕ)ϕ∈Irr(G) ∈

∏
ϕ∈Irr(G) ' ζ(C[G]), then we write aχ for the χ-part (aϕ)ϕ|χ ∈∏

ϕ|χ ' ζ(eχC[G])

Proposition 5.1. Assume the above notation. With respect to the eχQ[G]-basis
Q1, . . . , Qd and Q∗1, . . . , Q

∗
d with Q∗i de�ned below in (26) the χ-part of the regulator

is given by

Regχ :=
(
det
(
〈Qi, eψ̄σQj〉

)
1≤i,j≤d

)
σ∈Gal(Q(ψ)/Q)

.

Proof. The set {eϕQi | i = 1, . . . , d, ϕ | χ} is a C-basis of eχ(E(K)⊗Z C). We de�ne
the dual basis by

(eϕQi)
∗ (eλQj) =

{
1, if ϕ = λ and i = j,

0, otherwise.

Then one easily veri�es that

eλ (eϕQi)
∗ =

{
(eϕQi)

∗
, if ϕ = λ̄,

0, otherwise.

The elements

(26) Q∗i :=
∑
ϕ|χ

(eϕ̄Qi)
∗
, i = 1, . . . , d,

form a eχQ[G]-basis of (eχ(E(K)⊗Z Q))∗. Then

〈eϕQi,_〉 =
∑
j,λ

〈eϕQi, eλQj〉(eλQj)∗

=
∑
j,λ

〈Qi, eϕ̄eλQj〉(eλQj)∗

=
∑
j

〈Qi, eϕ̄Qj〉(eϕ̄Qj)∗

Hence

〈eχQi,_〉 =
∑
ϕ|χ

∑
j

〈Qi, eϕ̄Qj〉(eϕ̄Qj)∗

=
∑
j

∑
ϕ|χ

〈Qi, eϕ̄Qj〉eϕ

∑
ϕ|χ

(eϕ̄Qj)∗


=

∑
j

∑
ϕ|χ

〈Qi, eϕ̄Qj〉eϕ

Q∗j .



EQUIVARIANT BSD 33

Therefore with respect to the basis Q1, . . . , Qd and Q
∗
1, . . . , Q

∗
d the regulator map is

represented by the matrix
(∑

ϕ|χ〈Qi, eϕ̄Qj〉eϕ
)

1≤i,j≤d
and the result follows upon

computing the reduced norm.
�

For integrality considerations we restrict ourselves to the case where l 6= 2 and
l - #G. Then E(K)⊗Z Zl is Zl[G]-perfect and we wish to compute a eχZl[G]-basis
Q1, . . . , Qd of eχ(E(K) ⊗Z Zl). Since eχZl[G] naturally identi�es with

∏
P|l Zl[ψ]

which is a product of discrete valuation rings such a basis always exists. From

Q∗i (Qj) =

{
χ(1), if i = j,

0, if i 6= j

we see that 1
χ(1)Q

∗
1, . . . ,

1
χ(1)Q

∗
d is a eχZl[G]-basis of eχ(E(K)⊗Z Zl)∗.

Working with localisations rather than completions we can also consider eχ(E(K)⊗Z
Z(l)) as a module over eχZ(l)[G] ' Z(l)[ψ] ⊆ Q(ψ) which is principal ideal ring (be-
cause it is Dedekind with only �nitely many maximal ideals). It is then quite
standard to compute a basis from the knowledge of P1, . . . , Pr.

Example 5.2. In [21] Fearnley and Kisilevsky consider the situation whenK/Q is a
cyclic extension of odd prime degree l and examine the case that L(E/Q, ψ, s) have
simple zeroes for all non-trivial characters ψ ∈ Irr(G). We write Ĝ for the group

of linear characters of G and �x a generator ψ0 of Ĝ. Let χ :=
∑
γ∈Gal(Q(ψ0)/Q) ψ

γ
0

denote the associated irreducible rational character. The computations described
in loc.cit. suggest that for non-trivial ψ and a point P ∈ E(K) of in�nite order
with trace 0 (i.e., P ∈ eχ(E(K)⊗Z Q) is a eχQ[G]-basis) one has

L′(E/Q, ψ, 1) =
τ(ψ)
fψ

Ω+λψ(P )αψ(P )

with a Gauss sum τ(ψ), the conductor fψ of ψ, λψ(P ) :=
∑
σ∈G ψ(σ−1)〈P, P σ〉

and an algebraic number αψ(P ) ∈ Q(ψ) which satis�es αψγ (P ) = αψ(P )γ for all
γ ∈ Gal(Q(ψ)/Q). In other words this means that (αψ(P ))ψ|χ ∈ ζ(eχQ[G])×.

The results and computations of loc.cit. are completely consistent with the ra-
tionality conjecture 3.5 and provide numerical evidence for it. Indeed, one easily
shows that λψ(P ) = 〈P, eψ̄P 〉, so that we deduce from Proposition 5.1

Regχ ≡
(
λψγ

0
(P )
)
γ∈Gal(Q(ψ0)/Q)

where ≡ means up to a multiplicative factor in eχQ[G]× ⊆
∏
ψ 6=1 C×. Furthermore,

by [20, �9(i), (ii)] one has

(τ(ψγ0 ))γ∈Gal(Q(ψ0)/Q) ≡

(∑
σ∈G

ψγ0 (σ)σ(α0)

)
γ∈Gal(Q(ψ0)/Q)

.

Recall that the right hand side is exactly the χ-part of the resolvent R from Con-
jecture 3.5.
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5.4. Computation of re�ned Euler characteristics of �nite perfect mod-
ules. Let T be a �nite perfect Zl[G]-module. The recipe for the computation of
χZl[G],Ql

(T ) is already given in Example 2.7. We give two applications.

Proposition 5.3. Let F/Qp denote a �nite Galois extension with group D. Let
v denote the normalized discrete valuation of F . Let E/Qp be an elliptic curve so
that E/F has split multiplicative reduction. Then

(a) #E(F )/E0(F ) = c with c := −v(j(E)).
(b) Let l be a prime. Then E(F )/E0(F )⊗Z Zl is Zl[D]-perfect if and only if l - c

or l - #D.
(c) Set cl := # (E(F )/E0(F )⊗Z Zl). If l - c or l - #D, then χZl[D],Ql

(E(F )/E0(F )⊗Z
Zl) is represented by (cl, 1, . . . , 1) ∈ ζ(Q[D])×.

Proof. We apply [32, Th. 14.1]. E is isomorphic over F to the Tate curve Eq with
v(q) = c. The isomorphism Eq(F ) ' F×/qZ induces a D-equivariant isomorphism
E(F )/E0(F ) ' F×/(qZ × O×F ). Note that D acts trivially on the right hand side

so that F×/(qZ × O×F ) ' Z/cZ as Galois modules. a) and b) are now immediate.
To prove c) we may assume l - #D. Then we have a projective resolution of
Z(l)[D]-modules

0 −→ Z(l)[D]
cleD+(1−eD)−→ Z(l)[D] −→ Z/clZ −→ 0.

The result follows. �

Proposition 5.4. Let F/Ql denote a �nite Galois extension with group D and
rami�cation subgroup I. Let v denote the normalized discrete valuation of F . Let
kv denote the residue class �eld. Then kv is Zl[D]-perfect if and only if l - #I. In
this case χZl[D],Ql

(kv) is represented by (aψ)ψ ∈ ζ(Q[D])× '
∏
ψ∈IrrQ(D) Q(ψ) with

aψ =

{
l, if I ⊆ ker(ψ),
1, otherwise.

Proof. By the normal basis theorem on has kv ' Fl[D/I]. One easily shows that

Ĥ0(D,Fl[D/I]) ' Fl/|I|Fl. It follows that if kv is perfect, then l - #I. Conversely,
if l - #I, then we have the projective resolution

0 −→ Zl[D]
leI+(1−eI)−→ Zl[D] −→ kv −→ 0

and the result follows. �

In general we assume that the �nite perfect Zl[G]-module T is given by a Z[G]-
generating set t1, . . . , td with explicitly known G-action, i.e.

gti =
d∑
j=1

ag,jtj , ag,j ∈ Z[G], g ∈ G.

It is then easy to compute a Z[G]-resolution of the form

0 −→ Q −→ P
π−→ T −→ 0

with P := Z[G]d, π(ei) := ti where ei denotes the canonical basis and Q := ker(π).
We then proceed as described in Example 2.7.

In this way it is, in principle, possible to compute the re�ned Euler characteristics
of E(K)l∞ , E(K)∨l∞ and Ēns(kvp)l∞ , at least in small examples where we are able
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to provide an explicit generating set with explicitly known G-action. If v is a place
of bad reduction we can use Tate's algorithm to determine the reduction type and
then use [32, Ex. III, 3.5] in order to compute Ēns(kv)l∞ .

5.5. Computation of E(K) and X(E/K). The computation of E(K) is very
di�cult even if K = Q and does usually not work if K 6= Q. In our examples we
mostly consider pairs (E,K) such that the analytic rank of E/K is 0 and K is
totally real. In this case we use [16, Th. 3.7] to deduce that the algebraic rank is
also equal to 0. In small examples (see e.g. Section 6.1) it is sometimes possible to
prove that the algebraic rank is trivial by a Selmer group computation.

If r > 0 we generally assume the validity of the equivariant rank conjecture
and only consider examples where the equivariant rank conjecture implies that
E(K) is built from subgroups E(F ) where F ranges over the sub�elds of K/Q with
[F : Q] ≤ 2. For F = Q we use the MAGMA routine to compute E(Q) and if
F is a quadratic extension we look at the associated quadratic twist Ed of E and
compute Ed(Q). Computing the isomorphism E ' Ed (de�ned over F ) we then
obtain E(F ).

Our ability to compute X(E/K) is even more limited. We remind the reader
that throughout the manuscript we assume �niteness of X(E/K). In order to
compute #X(E/K) we use the classical BSD conjecture for E/K. In this way
we obtain a conjectural value for #X(E/K) which we wish to use to compute the
associated re�ned Euler characteristic. Since we only dispose of the (conjectural)
order of X(E/K) we are usually restricted to deal with primes l which do not
divide this order. However, in some rare cases (see e.g. Section 6.2) it su�ces to
know this order to compute the re�ned Euler characteristic of X(E/K). Moreover,
in some examples (see Section 6.1 and 6.3) the computations lead to a conjectural
description of the structure of X(E/K) as a Galois module.

5.6. Computation of induction. IfH is a subgroup ofG then there is a canonical
induction map indGH : K0(Zl[H],Ql) −→ K0(Zl[G],Ql). We refer the reader to [5,
Sec. 6] where we provide an algorithmic description of this map.

6. Examples

In this section we illustrate our results with some explicit examples. The com-
putational results of this section can be reproduced using the MAGMA implemen-
tations available from

http://www.mathematik.uni-kassel.de/∼bley/pub.html.

6.1. Navilarekallu`s example. In this subsection we redo the example from [30].
Let

E : y2 + y = x3 − x2 − 10x− 20

and K be the splitting �eld of f(x) = x3 − 4x+ 1. Then K/Q is an S3-extension.
The elliptic curve E is denoted 11A1 in Cremona`s database. Its conductor is
NE = 11 and the discriminant of K is given by dK/Q = 2293. The �eld K is totally

real and contains the quadratic sub�eld F := Q(
√

229). Actually, K is the Hilbert
class �eld of F .
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We have S = {11, 229}. For a rational prime q we �x a place vq of K above q.
One easily computes

#Ī229 = 2,
#Ēns(kv2) = 5,#Ēns(kv3) = 20,#Ēns(kv5) = 140,
#Ēns(kv11) = 1330,#Ēns(kv229) = 215
E(K)tors = E(Q)tors is cyclic of order 5,
E has split multiplcative reduction at v11 with cv11 = 5,
(L11(E/Q, χ̄, 1)) = (10/11, 10/11, 133/121),
(L229(E/Q, χ̄, 1)) = (215/229, 1, 215/229)

indGGv11
χGv11

(kv11) = (11, 11, 121),

indGGv229
χGv11

(kv229) = (229, 1, 229).

The L-values can easily be computed with a precision of 20 or more decimal
digits. We give here only the �rst 6 decimal digits: (L(E/Q, χ̄, 1))χ∈IrrQ(G) =
(0.253842, 0.419359, 2.66127). Therefore the analytic rank for each of the L-functions
is trivial. By [16, Th. 3.7] (which has been proved independently by Longo and
Tian-Zhang) we have E(K) = E(K)tors = E(Q)tors.

In this small case this can also be proved by algorithmic methods. Let K1 be
the number �eld de�ned by f(x) = x3 − 4x + 1. Then the computation of Selmer

groups using the MAGMA routine TwoSelmerGroup shows that Sel(2)(E/K1) and
Sel(2)(E/F ) are trivial. It follows quite easily that E(K) must be torsion.

We obtain
u = (0.200000,−5.00000,−25.0000),

which numerically con�rms the rationality conjecture. We point out that the re-
solvents and therefore also the value for u depend on the choice of the integral
normal basis element α0. The algorithm of [3] does not always produce the same
generator, so that one may obtain di�erent results when running the algorithm.
Note, however, that the validity of the ETNC does not depend on this choice (see
Remark 4.6).

From the BSD-conjecture we conclude the conjectural order #X(E/K) = 625,
so thatHP = {2, 3, 5, 11, 229}. By Corollary 4.7 we immediately obtain a numerical
con�rmation for all primes l 6∈ HP .

For l = 2 hypothesis (H2a) is not satis�ed and for l = 5 we do not have (H5). For
l = 3 we have ξl = (1, 1, 1). So u = uξ−1

l is a torsion element inK0(Z3[G],Q3). Here
K0(Z3[G],Q3)tors is cyclic of order 2 and by the methods of [5] we can check that
u is indeed trivial in this group. We can also directly check the explicit congruence
(10) which becomes −1 ≡ −25(mod 3) in this example.

For l ∈ {11, 229} the group K0(Zl[G],Ql)tors is trivial and from the above data
one easily deduces the validity of the l-part of ETNC.

Although we do not have (H5) for l = 5 one can try to proceed as in Remark
4.3. By Proposition 5.3 we can compute the re�ned Euler characteristic of C (see
Remark 4.3 for the notation). Since we do not know how to rigorously compute
the Euler characteristics of S and H1

f (Q, Tl)∗ we only get a very vague idea about

the Galois structure of X(E/K). However, by the conjectural validity of ETNC at
l = 5 one is tempted to guess that χ̃(X(E/K)5∞) = (1, 1, 1

25 ). One may therefore
guess that X(E/K)5∞ lives in the 2-dimensional component of Q5[G] and has the
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resolution

0 −→M2(Z5)

0@ 5 0
0 5

1A
−→ M2(Z5) −→ X(E/K)5∞ −→ 0.

This was veri�ed by T.Fisher in private communication.

6.2. A D5-Example. In this example we let E be the curve 73A1 in Cremona`s
notation. We let K be the number �eld de�ned by the irreducible polynomial

f(x) = x10 − 2x9 − 20x8 + 2x7 + 69x6 − x5 − 69x4 + 2x3 + 20x2 − 2x− 1.

Then K/Q is a Galois extension with dihedral group D5. We have NE = 73
and dK/Q = 4015. The �eld K is totally real and contains the quadratic sub�eld

F := Q(
√

401). Hence S = {73, 401}. Actually, K is the Hilbert class �eld of F .
We have four characters

id τ σ σ2

χ1 1 1 1 1
χ2 1 −1 1 1
χ3 2 0 ζ5 + ζ−1

5 ζ2
5 + ζ−2

5

χ4 2 0 ζ2
5 + ζ−2

5 ζ5 + ζ−1
5

Hence Q[G] ' Q ⊕ Q ⊕M2(K3) with K3 = Q(β) where β := ζ5 + ζ−1
5 . Elements

in the center of C[G] will be denoted by 4-tuples z = (z1, . . . , z4), zi ∈ C. Recall
that z ∈ ζ(Q[G]) if and only if z1, z2 ∈ Q, z3, z4 ∈ K3 and ϕ(z3) = z4, where
〈ϕ〉 = Gal(K3/Q). Elements in z ∈ ζ(Q[G]) will be represented by tuples z =
(zχ1 , zχ2 , zχ3).

The L-values were computed with a precision of 20 decimal digits and are given
by

(L(E/Q, χ̄, 1))χ∈IrrQ(G)

= (1.1826604672413298661, 2.1261328339601570537,
0.16304872052191552777, 7.6598191709443800630).

The analytic rank of each of the twisted L-functions is therefore 0 and as in the
�rst example the theorem of Longo and Tian-Zhang (see [16, Th. 3.7]) allows us to
conclude that E(K) is �nite.

The numerical computation of L-values, resolvents and periods leads to

u = (0.49999999999999999999, 18.000000000000000008,
0.58359213500126187216, 27.416407864998738187).

Numerically this con�rms the rationality conjecture because u is close to

(1/2, 18,−12β + 8, 12β + 20)

and ϕ(−12β + 8) = 12β + 20. The minimal polynomial of −12β + 8 is given by
x2 − 28x+ 16. Again we point out that the resolvents and therefore also the value
for u depend on the choice of the integral normal basis element α0.
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We further see that

#Ī401 = 2,
#Ēns(kv2) = 22,#Ēns(kv3) = 16,#Ēns(kv5) = 3044,
#Ēns(kv73) = 2073071592,#Ēns(kv401) = 388,
E(K)tors = E(Q)tors is cyclic of order 2,
E has split multiplcative reduction at v73 with cv73 = 2,

(L73(E/Q, χ̄, 1)) = (72/73, 72/73,
1

5329
(73β + 5403),

1
5329

(−73β + 5330),

(L401(E/Q, χ̄, 1)) = (388/401, 1, 388/401, 388/401),

indGGv73
χGv11

(kv11) = (73, 73, 5329),

indGGv401
χGv401

(kv401) = (401, 1, 401).

Recall that any element z ∈ ζ(Q[G]) is represented by a tuple z = (zχ1 , zχ2 , zχ3).
This explains why some of the above tuples have only 3 components.

From the BSD conjecture we derive the conjectural order #X(E/K) = 2304 =
2832. Thus we have HP = {2, 3, 5, 73, 401} and by Corollary 4.7 the ETNC is
numerically con�rmed outside HP .

For l = 2 we cannot perform our computations because 2 divides #G.
For l = 3 our MAGMA implementation terminates without verifying the 3-part

of ETNC because 3 divides the order of X(E/K). In general we are not able to
compute the re�ned Euler characteristic ofX(E/K) if l divides #X(E/K) because
we have no information about its Galois structure. However, in some special cases
like this one, it is possible to pin down the exact Euler characteristic by purely
representation theoretic considerations. Here X(E/K)[3] is conjecturally bicyclic
of order 9 and we may consider it as a representation over F3. There are three
irreducible representations over F3, namely the trivial character, the sign character
and a 2-dimensional representation (de�ned over F9). A BSD-computation for
E/Q and E/F shows that #X(E/Q)[3] = 1 and #X(E/F ) = 9 so that we obtain
χ̃(X(E/K)) = (1, 9, 1). Using this we can also con�rm the validity of ETNC at
l = 3.

For l ∈ {73, 401} the K0(Zl[G],Ql)tors is trivial and from the above data one
easily deduces the validity of the l-part of the ETNC.

Most interesting is the case l = 5 because in this case we have non-trivial torsion
subgroup K0(Zl[G],Ql)tors so that we must verify the explicit congruence (10). We
have ξ5 = (1, 1, 1), so that η := uξ−1

5 = (1/2, 18,−12β + 8). Let p denote the
unique prime lying over 5 in K3. Then one easily checks that the valuation at p of
1
2 · 18− (−12β + 8) equals 1, as predicted by the ETNC.

6.3. A D7-Example. In this example we let E be the curve 11A1 in Cremona`s
notation. We let K be the number �eld de�ned by the irreducible polynomial

f(x) = x14 − 2x13 − 25x12 + 69x11 + 161x10 −
632x9 − 147x8 + 2146x7 − 1171x6 − 2669x5 + 2682x4 +
667x3 − 1466x2 + 336x+ 49.

Then K/Q is a Galois extension with dihedral group D7. We have NE = 11
and dK/Q = 5777. The �eld K is totally real and contains the quadratic sub�eld

F := Q(
√

577). Hence S = {11, 577}. Actually, K is the Hilbert class �eld of F .
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We have �ve characters

id τ σ σ2 σ3

χ1 1 1 1 1 1
χ2 1 −1 1 1 1
χ3 2 0 ζ7 + ζ−1

7 ζ2
7 + ζ−2

7 ζ3
7 + ζ−3

7

χ4 2 0 ζ2
7 + ζ−2

7 ζ4
7 + ζ−4

7 ζ6
7 + ζ−6

7

χ5 2 0 ζ3
7 + ζ−3

7 ζ6
7 + ζ−6

7 ζ2
7 + ζ−2

7

Hence Q[G] ' Q ⊕ Q ⊕M2(K3) with K3 = Q(β) where β := ζ7 + ζ−1
7 . Elements

in the center of C[G] will be denoted by 5-tuples z = (z1, . . . , z5), zi ∈ C. Recall
that z ∈ ζ(Q[G]) if and only if z1, z2 ∈ Q, z3, z4, z5 ∈ K3 are Galois conjugates.
Elements in z ∈ ζ(Q[G]) will be represented by tuples z = (zχ1 , zχ2 , zχ3).

The L-values were computed with a precision of 30 decimal digits and are given
by

(L(E/Q, χ̄, 1))χ∈IrrQ(G)

= (0.253841860855910684337758923351, 0.264189373454632540506329085616,
8.46480303158617169018788040257, 1.07820141250454111015938289065,
0.516343882321445768698269093336).

The analytic rank of each of the twisted L-functions is therefore 0 and as before
the theorem of Longo and Tian-Zhang (see [16, Th. 3.7]) allows us to conclude that
E(K) is �nite.

The numerical computation of L-values, resolvents and periods leads to

u = (−0.199999999999999999999999958641,−5.00000000000000000000000004909,
126.222933488057632838305516431, 16.0776033026947639028170113251,
7.69946320924760325930251071912).

Numerically this con�rms the rationality conjecture because u is close to

(−1/5,−5, 25β2 + 50β + 25,−50β2 − 25β + 125, 25β2 − 25β)

and the last three components are Galois conjugates. The minimal polynomial of
25β2 + 50β + 25 is given by x3 − 150x2 + 3125x− 15625. Once again we point out
that the resolvents and therefore also the value for u depend on the choice of the
integral normal basis element α0.

We further see that

#Ī577 = 2,
#Ēns(kv2) = 145,#Ēns(kv5) = 35,#Ēns(kv7) = 60,
#Ēns(kv11) = 19487170,#Ēns(kv577) = 545,
E(K)tors = E(Q)tors is cyclic of order 5,
E has split multiplcative reduction at v73 with cv73 = 5,

(L11(E/Q, χ̄, 1)) = (10/11, 10/11,
1

121
(−11β2 + 144))),

(L577(E/Q, χ̄, 1)) = (545/577, 1, 545/577),

indGGv11
χGv11

(kv11) = (11, 11, 121),

indGGv577
χGv577

(kv577) = (577, 1, 577).
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Recall that any element z ∈ ζ(Q[G]) is represented by a tuple z = (zχ1 , zχ2 , zχ3).
This explains why the above tuples have only 3 components.

From the BSD conjecture we derive the conjectural order #X(E/K) = 512.
Thus we have HP = {2, 5, 7, 11, 577} and by Corollary 4.7 the ETNC is numerically
con�rmed outside HP .

For l = 2 we cannot perform our computations because 2 divides #G.
For l = 5 we cannot perform the computations because 5 divides the order of

X(E/K) and the Tamagawa numbers. As in Example 6.1 we try to proceed as
in Remark 4.3. By the conjectural validity of ETNC at l = 5 one may guess that
χ̃(X(E/K)5∞) = (1, 1, 1

25 ). One may therefore guess that X(E/K)5∞ lives in the
2-dimensional component of Q5[G] and has the resolution

0 −→M2(Z5[ζ7]+)

0@ 5 0
0 5

1A
−→ M2(Z5[ζ7]+) −→ X(E/K)5∞ −→ 0.

Note that Z5[ζ7]+/5Z5[ζ7]+ = F53 so that this matches with the conjectural order
of X(E/K).

For l ∈ {11, 577} the K0(Zl[G],Ql)tors is trivial and from the above data one
easily deduces the validity of the l-part of the ETNC.

The most interesting prime is l = 7 because in this case we have non-trivial
torison subgroup K0(Zl[G],Ql)tors so that we must verify the explicit congruence
(10). We have ξ7 = (1, 1, 1), so that η := uξ−1

7 = (−1/5,−5, 25β2 + 50β + 25).
Let p denote the unique prime lying over 7 in K3. Then one easily checks that the
valuation at p of −1

5 · (−5)− (25β2 +50β+25) equals 1, as predicted by the ETNC.

6.4. More dihedral examples. We have numerically checked a few more Dl-
examples which are completely analogous to the previous examples. We searched
for cases where we could apply our methods for the prime l. In particular we
needed the Mordell-Weil group E(K) to be �nite. In all our examples K is a
totally real number �eld, so that we can apply [16, Th. 3.7]. In all the examples
our computations numerically con�rm the l-part of ETNC.

In the following we list our examples. In each of our examples K is the Hilbert
class �eld of the real quadratic �eld Q(

√
d). The elliptic curve is referenced as in
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Cremona's tables.
d E

D3 229 11a1
229 17a1
257 11a1
257 17a1
733 17a1
761 17a1

D5 19 · 43 17a1
19 · 43 37b1
7 · 199 17a1
7 · 199 19a1
1429 17a1
1429 19a1

D7 577 11a1
577 17b1
577 19a1
1009 37b1

With more e�ort it is certainly possible to compute more examples. We refer the
interested reader to the batch �les in

http://www.mathematik.uni-kassel.de/∼bley/pub.html .

6.5. Another D5-Example (incomplete). In this example we let again E be
the curve 11A1 in Cremona`s notation. We take the same number �eld K as in
the �rst D5 example, namely the Hilbert class �eld of F := Q(

√
401). We have

NE = 11 and dK/Q = 4014. Hence S = {11, 401}.
Recall thatQ[G] ' Q⊕Q⊕M2(K3) with K3 = Q(β) where β := ζ5 + ζ−1

5 .
The computation of L-values showed that conjecturally

ords=1(L(E/Q, χi, s)) = 0 for i = 1, 3, 4,
ords=1(L(E/Q, χ2, s)) = 2.

The leading terms in the Taylor expansion of the twisted L-series were computed
with a precision of 20 decimal digits and are given by

(L∗(E/Q, χ̄, 1))χ∈IrrQ(G)

= (0.25384186085591068434, 11.064607087619745148,
5.2651360430010329737, 0.76817299610176707595).

The validity of the rank conjecture would imply that the χ2-eigenspace of E(K)⊗Z
Q is 2-dimensional. Since Kker(χ2) = Q(

√
401) =: F this implies that conjecturally

rk(E(F )) = 2. By considering the quadratic twist of E/Q

E401 : y2 = x3 − 2153446992x− 69667552958832

we compute

E(F )/E(F )tors = 〈P1, P2〉
with

P1 =
(

74
9
,
53
54

√
401− 1

2

)
, P2 =

(
6,

1
2

√
401− 1

2

)
.
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One checks that the conjugate of Pi is −Pi for i = 1, 2 so that by Proposition 5.1
we obtain for the χ2-part of the equivariant regulator

det
(
(〈Pi, Pj〉)i,j∈{1,2}

)
= 34.914427985010413291.

Possibly 〈P1, P2〉 is not the full Mordell-Weil group E(K). However, if we content
ourselves with checking the rationality conjecture, then this information is enough.

Together with the computations of L-values, resolvents and periods we obtain

u = (0.20000000000000000000,−5.0000000000000000017,
−65.450849718747376977,−9.5491502812526296414).

Numerically this con�rms the rationality conjecture because u is close to

(1/5,−5,−25β − 50, 25β − 25)

and ϕ(−25β − 5) = 25β − 25. The minimal polynomial of −25β − 5 is given by
x2 + 75x+ 625. Again we note that u also depends on the choice of α0.

We further see that

#Ī401 = 2,
#Ēns(kv2) = 25,#Ēns(kv5) = 3025,#Ēns(kv11) = 161050,#Ēns(kv401) = 400
E(K)tors = E(Q)tors is cyclic of order 5,
E has split multiplcative reduction at v11 with cv11 = 5,

(L11(E/Q, χ̄, 1)) = (10/11, 10/11,
1

121
(−11β + 122)),

(L401(E/Q, χ̄, 1)) = (400/401, 1, 400/401),

indGGv11
χGv11

(kv11) = (11, 11, 121),

indGGv401
χGv401

(kv401) = (401, 1, 401).

Recall that any element z ∈ ζ(Q[G]) is represented by a tuple z = (zχ1 , zχ2 , zχ3).
Although we cannot be sure that we have computed the full Mordell-Weil group

E(K) it seems to be most likely that we have found a subgroup of �nite index and
that the only primes that possibly divide this index are 2 and 5. Therefore, as long
as we exclude these primes from our considerations, we still obtain some evidence
for the integrality conjecture.

Assuming E(K) = 〈P1, P2〉 we derive from the BSD conjecture the conjectural
order #X(E/K) = 58. Thus we have HP = {2, 5, 11, 401} and by Corollary 4.7
the ETNC is numerically con�rmed outside HP .

As already mentioned we cannot expect any integrality statements for l = 2, 5,
which would also not be possible for other reasons because for l = 2 we cannot
perform our computations because 2 divides #G, and l = 5 divides #G and we
have non-trivial cohomology modules such as X(E/K) and E(K) which may not
be Zl[G]-perfect. Also, (H5) is not satis�ed.

For l ∈ {11, 401} the K0(Zl[G],Ql)tors is trivial and from the above data one
easily deduces the validity of the l-part of the ETNC.
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