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1 Lineare Algebra über Z
1.1 Der Hauptsatz für endlich erzeugte Z-Moduln

Für einen Z-Modul V sei Vtors := {v ∈ V | ∃0 6= n ∈ Z mit nv = 0} der Torsionsuntermodul.

Satz 1.1.1 Sei V ein endlich erzeugter Z-Modul.
(1) V ' Vtors ⊕ Zr und |Vtors| < ∞. Hierbei ist r ∈ Z≥0 und heißt Rang von V . Wir schreiben
r = rg(V ).
(2) Sei W ⊆ V ein Teilmodul. Dann ist W endlich erzeugt und es gilt rg(W ) ≤ rg(V ).
(3) Falls V frei ist und W ⊆ V ein Teilmodul, so ist auch W frei.
(4) Falls V ein endlicher Z-Modul ist, so gibt es eine natürliche Zahl n und einen (freien) Z-
Teilmodul L ⊆ Zn, so dass V ' Zn/L gilt.

Im Weiteren bezeichnen wir einen freien Z-Modul auch als Z-Gitter. Durch die Wahl einer Z-Basis
für ein Z-Gitter V erhalten wir einen nicht-kanonischen Isomorphismus V ' Zm mit m = rg(V ).
Teilmoduln W ⊆ V beschreiben wir dann durch Matrizen M ∈ Zm×n, wobei die Spalten von M
den Erzeugenden von W entsprechen.

1.2 Hermitesche Normalform

Definition 1.2.1 Eine Matrix M = (mij) ∈ Zm×n ist in Hermitescher Normalform (kurz HNF),
falls es eine streng monoton wachsende Funktion f : {r + 1, . . . , n} −→ {1, . . . ,m}, 0 ≤ r ≤ n
geeignet, gibt, die folgende Bedingungen erfüllt.
(1) Für r + 1 ≤ j ≤ n ist mf(j),j ≥ 1, mij = 0 für i > f(j) und 0 ≤ mf(j),k < mf(j),j für k > j.
(2) Die ersten r Spalten von M sind Nullspalten.

Satz 1.2.2 Sei A ∈ Zm×n. Dann gibt es eine eindeutig bestimmte Matrix B = (0 | H) in HNF
und eine Matrix U ∈ Gln(Z) mit B = AU .

Mit einem Algorithmus, der als Verallgemeinerung des Gaußschen Algorithmus angesehen werden
kann, lässt sich zu einer gegebenen Matrix A die HNF B = (0 | H) sowie die Matrix U berechnen.

1.3 Anwendungen der HNF

1.3.1 Bild einer ganzzahligen Matrix

Wir identifizieren A ∈ Zm×n mit der Z-linearen Abbildung A : Zn −→ Zm. Sei B = (0 | H) die
HNF zu A. Dann bilden die Spalten von H eine Z-Basis des Bildes von A.
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1.3.2 Kern einer ganzzahligen Matrix

Sei B = AU die HNF von A. Sei r wie in der Definition der HNF. Dann ist eine Z-Basis des Kerns
von A durch die ersten r Spalten von U gegeben.

1.4 Test auf Gleichheit

Seien L1, L2 ⊆ Zm zwei Gitter, beschrieben durch A1 ∈ Zm×n1 und A2 ∈ Zm×n2 . Dann gilt:

L1 = L2 ⇐⇒ HNF(A1) = HNF(A2).

1.5 Summe von zwei Gittern

Etwas allgemeiner betrachten wir Gitter L ⊆ Qm. Sei d ∈ N minimal mit dL ⊆ Zm. Dann nennt
man d den Nenner von L und unter der HNF von L verstehen wir das Paar (HNF(dL), d).
Seien nun L1, L2 ⊆ Qm zwei Gitter gegeben durch ihre jeweilige HNF (W1, d1) bzw. (W2, d2). Sei
D := kgV(d1, d2). Betrachte dann die Matrix W = (Dd1W1 | Dd2W2). Dann sind die nicht-trivialen
Spalten von HNF(W ) eine Z-Basis von D(L1 + L2).

1.6 Test auf Inklusion

Ohne Einschränkung seien L1, L2 ⊆ Zm. Dann gilt:

L1 + L2 = L2 ⇐⇒ L1 ⊆ L2.

Dies lässt sich mit den vorherigen Algorithmen testen.

1.7 Smithsche Normalform

Sei G eine endliche abelsche Gruppe. Sei g1, . . . , gn ein Erzeugendensystem von G. Dann induziert
der Epimorphismus π : Zn −→ G, (x1, . . . , xn)t 7→ x1g1+. . .+xngn einen Isomorphismus Zn/L ' G,
wobei hier L := ker(π) gesetzt ist. Das Z-Gitter kann dann durch eine Matrix A ∈ Zn×n beschrieben
werden, d.h. die Spalten von A sind eine Z-Basis von L.

Lemma 1.7.1 Es gilt in obiger Situation: |G| = |det(A)|.

Definition 1.7.2 Eine Matrix B ∈ Zn×n ist in Smithscher Normalform (kurz SNF), falls B eine
Diagonalmatrix mit nicht-negativen Koeffizienten ist, so dass bi+1,i+1 | bi für 1 ≤ i < n gilt.

Satz 1.7.3 Sei A ∈ Zn×n mit det(A) 6= 0. Dann gibt es genau eine Matrix B in SNF von der
Form B = V AU mit U, V ∈ Gln(Z).

Als Anwendung von HNF und SNF haben wir einen prinzipiellen Algorithmus skizziert, der zu einer
gegebenen endlichen abelschen Gruppe G die Struktur als abstrakte abelsche Gruppe bestimmt.
Der Algorithmus setzt voraus, dass wir ein endliches Z-Erzeugendensystem von G kennen sowie
eine gute Approximation an die Kardinalität von G.

1.8 Weitere Algorithmen für endlich erzeugte abelsche Gruppen

Literatur: H.Cohen, Advanced topics in computational number theory, Chapter 4.1

Wir benutzen im Folgenden die folgende Matrixnotation: Sei A eine e-e abelsche Gruppe und
A = (α1, . . . , αr) mit αi ∈ A ein Zeilenvektor von Elementen in A. Für eine Spaltenvektor X =
(x1, . . . , xr)

t ∈ Zr sei

AX =

r∑
i=1

xiαi oder

r∏
i=1

αxi
i ,

2



je nachdem, ob wir die Gruppenoperation in A additiv oder multiplikativ schreiben. Entsprechend
ist für eine Matrix M = (mij) ∈ Zr×n

AM = (β1, . . . , βn) mit βj =

r∑
i=1

mijαi oder

r∏
i=1

α
mij

i .

Definition 1.8.1 Sei A eine e-e abelsche Gruppe und G = (g1, . . . , gr) mit gi ∈ A. Sei M ∈ Zr×k.
Dann ist (G,M) ein System von Erzeugern und Relationen, falls

• es für jedes α ∈ A ein X ∈ Zr mit α = GX gibt.

• für alle X ∈ Zr gilt:
GX = 1A ⇐⇒ ∃Y ∈ Zk mit X = MY.

Inbesondere gilt also GM = (1A, . . . , 1A). Mit anderen Worten kann man äquivalent sagen:

Zk M−→ Zr G−→ A −→ 1

ist eine Präsentation von A.

Definition 1.8.2 Sei A eine e-e abelsche Gruppe und (A,D) ein System von Erzeugern und
Relationen. Wir sagen, (A,D) ist in SNF, falls

D =


d1

d2
. . .

dr


mit di+1 | di für 1 ≤ i < r, 0 ≤ di und di 6= 1 für 1 ≤ i ≤ r.

Der folgende Algorithmus berechnet zu einem System (G,M) von Erzeugern und Relationen für A
eine SNF (A,D) für A sowie eine Matrix Ua zur Berechnung von diskreten Logarithmen. Zusätzlich
setzen wir |A| <∞ voraus. Sei n := |G|.

1. HNF Schritt: Berechne die HNF (0 | H) von M .

2. SNF Schritt: Berechne U, V ∈ Gln(Z), so dass UHV = D′ in SNF ist. Setze

A′ = (α1, . . . αm, αn+1, . . . αr) := GU−1,

wobei m in Schritt 3 definiert ist.

3. Lösche triviale Komponenten: Sei

d1
. . .

dm
1

. . .

1


mit dm 6= 1. Setze dann D := diag(d1, . . . , dm), A := (α1, . . . αm). Ferner sei Ua die Matrix
der ersten m Zeilen von U .

4. Ausgabe: Gib (A,D) und Ua aus.
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Es gilt dann AUa = G, d.h., die alten Erzeuger können mit der Matrix Ua durch die neuen Erzeuger
in A ausgedrückt werden.

Sprechweise: Sei A eine endliche abelsche Gruppe. Wir sagen, dass A effektiv berechnet ist,
wenn

• wir eine System (G,M) von Erzeugern und Relationen haben, oder äquivalent, eine SNF
(A,D).

• wir einen effektiven Algorithmus haben, der zu α ∈ A ein X ∈ Z|A| berechnet mit α = AX.
Wir nennen X den diskreten Logarithmus von α bezüglich A.

Sprechweise: Sei ψ : A −→ B ein Homomophismus von effektiv berechneten (endlichen) abelschen
Gruppen. Seien (A,DA) und (B,DB) jeweils Erzeugende und Relationen in SNF. Wir sagen, dass
ψ effektiv berechnet ist, wenn man

1. zu α ∈ A das Element ψ(α) in der Form ψ(α) = BY mit berechenbarem Y ∈ Z|B| schreiben
kann.

2. zu β ∈ ψ(A) ein α ∈ A berechnen kann mit ψ(α) = β.

1.9 Ein Algorithmus zur Berechnung von Quotienten

Sei

A ψ−→ B φ−→ C −→ 1

eine exakte Sequenz von (endlichen) abelschen Gruppen. Wir setzen voraus, dass A,B effektiv
berechnet sind. Zusätzlich brauchen wir, dass ψ und φ folgende Bedingungen erfüllen:

1. Zu α ∈ A kann man ψ(α) in der Form ψ(α) = BY mit berechenbarem Y ∈ Z|B| schreiben.
Dies ist im Wesentlichen das DL-Problem in B.

2. Zu γ ∈ ϕ(C) kann man β ∈ B berechnen kann mit ϕ(β) = γ.

Sei C ′ := ϕ(B). Dann ist C ′ ein Erzeugendensystem von C. Sei P ∈ Z|B|×|A|, so dass

ψ(A) = (ψ(α1), . . . , ψ(α2) = BP

gilt. Da wir in B das DL-Problem lösen können, ist P berechenbar.
Sei nun V ∈ Z|C′| eine Relation, d.h. C ′V = 1C . Es gilt:

C ′V = 1C ⇐⇒ V ∈ Im(P | DB).

Also ist (φ(B), (P | DB) ein System von Erzeugern und Relationen, aus dem wir eine SNF (C,DC)
berechnen können.
Wir fassen zusammen:

1. DL Schritt: Mit dem DL-Algorithmus in B berechne P mit ψ(A) = BP .

2. SNF Schritt: Berechne die SNF zu (φ(B), (P | DB) und gib (C,DC) sowie die Matrix Ua
aus.

Damit C effektiv berechnet ist, müssen wir noch einen Algorithmus zur Berechnung des DL-
Problems in C angeben. Sei γ ∈ C und φ(β) = γ. Wegen der zweiten Voraussetzung können
wir β berechnen. Da wir das DL-Problem in B lösen können, finden wir X ∈ Z|B| mit β = BX.
Dann gilt

γ = φ(β) = φ(BX) = φ(B)X = C ′X = CUaX.

Also ist UaX der DL von γ bezüglich dem Erzeugendensystem C von C.
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1.10 Ein Algorithmus zur Berechnung von Gruppenerweiterungen

Seien A und C zwei endliche abelsche Gruppen, die effektiv berechnet sind. Seien (A,DA) und
(C,DC) Erzeugende und Relationen in SNF. Sei

1 −→ A ψ−→ B φ−→ C −→ 1

eine exakte Sequenz abelscher Gruppen. Zusätzlich setzen wir voraus:

(i) Zu γ ∈ C kann man β ∈ B berechnen mit φ(β) = γ.

(ii) Zu β ∈ ψ(A) kann man α ∈ A mit ψ(α) = β berechnen.

Wir wollen B effektiv berechnen. Hier ist der Algorithmus.

1. Berechne Erzeugende: Berechne mittels (i) B′ mit φ(B′) = C sowie ψ(A).

2. DL Schritt: Setze B′′ := B′DC = (β′′1 , . . . , β
′′
|C|) und A′′ = (α′′1 , . . . , α

′′
|C|) mit ψ(α′′i ) = β′′i .

Dies ist möglich wegen (ii). Berechne mit dem DL-Algorithmus in A eine Matrix P ∈ Z|A|×|C|
mit A′′ = AP .

3. SNF Schritt: Setze G := (ψ(A) | B′) und M :=

(
DA −P
0 DC

)
. Dann ist (G,M) eine

Darstellung von B durch Erzeugende und Relationen. Berechne hiervon die SNF (B,DB)
sowie die Matrix Ua.

Zur Lösung des DL-Problems in B: Sei β ∈ B gegeben. Da wir den diskreten Logarithmus in
C berechnen können, kann man Y mit φ(β) = CY = φ(B′)Y berechnen. Dann ist β − B′Y ∈
ker(φ) = im(ψ), so dass wir wegen (ii) ein α ∈ A mit ψ(α) = β − B′Y berechnen können. Mit
dem DL-Algorithmus in A berechnen wir X mit α = AX. Dann gilt β = ψ(A)X + B′Y , d.h. wir
können β als Linearkombination der Erzeugenden G = (ψ(A) | B′) darstellen. Mit der Matrix Ua
kann man jetzt den diskreten Logarithmus bezüglich der SNF (B,DB) berechnen.

1.11 Weitere Algorithmen für e-e abelsche Gruppen

Für weitere Algorithmen dieser Art sei auf das Buch von Cohen verwiesen. Insbesondere kann man
für eine exakte Sequenz endlicher abelscher Gruppen

A ψ−→ B φ−→ C π−→ D −→ 1

und der effektiven Kenntnis von A,B,D (+ gewisser Anforderungen an ψ, φ und π) die Gruppe C
effektiv berechnen.

2 Zahlkörper

2.1 Darstellung von algebraischen Zahlen

Sei K/Q ein Zahlkörper vom Grad [K : Q] = n und

{σ1, . . . σn} = {σ1, . . . , σr1 , σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2}

die Einbettungen K ↪→ C. Hierbei bezeichnen σ1, . . . , σr1 die reellen Einbettungen und
σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 die Paare komplex-konjugierter Einbetttungen.
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2.1.1 Algebraische Zahlen als Wurzeln der Minimalgleichung

Sei f ∈ Q[X] normiert und irreduzibel. Dann ist K = Q[X]/(f(X)) ein Zahlkörper vom Grad
n = deg(f). Oftmals wollen wir K als Teilkörper der komplexen Zahlen C betrachten. Dazu
braucht man Approximationen an die Nullstellen

α = α1, α2, . . . , αn

von f . Diese entsprechen den EinbettungenK ↪→ C und werden entsprechend wie oben nummeriert.
Es gilt:

Q[X]/(f(X)) ' Q(α) induziert von g(X) 7→ g(α).

Diese Darstellung nennen wir die Standarddarstellung. Die Rechenoperationen finden in
Q[X]/(f(X)) statt und benötigen als wesentliche Subroutinen Teilen mit Rest und den erweiterten
euklidischen Algorithmus.

2.1.2 Darstellung bezüglich einer Q-Basis

Die weiteren Darstellungen setzen voraus, dass K durch eine Q-Vektorraumbasis θ1, . . . , θn gegeben
ist. Zum Beispiel ist für K = Q[X]/(f(X) = Q(α) eine solche Basis durch 1, α, . . . , αn−1 gegebenen.
Es gelte

θiθj =

n∑
k=1

aij,kθk.

Für die Multiplikation speichert man in der Regel die Koeffizienten aij,k ∈ Q ab. Für die Division
muss man umrechnen zur Standarddarstellung.

2.1.3 Die Matrixdarstellung

Sei θ1, . . . , θn eine Q-Basis von K und β ∈ K. Dann ist die Multiplikation mit β ein Endomorphis-
mus von K,

µβ : K −→ K, ξ 7→ βξ.

Sei Mβ ∈ Qn×n die Darstellungmatrix bezüglich der fixierten Basis θ1, . . . , θn. Dann ist β 7→ Mβ

ein basisabhängiger injektiver Q-Algebrenhomomorphismus K ↪→ Qn×n.

2.1.4 Konjugiertenvektoren

Im Gegensatz zu den bisherigen Darstellungen ist diese Darstellung nicht exakt. Wir stellen β ∈ K
durch einen sogenannten Konjugiertenvektor

(σ1(β), . . . , σr1(β), σr1+1(β), . . . , σr1+r2(β)) ∈ Cr1+r2

dar. Die Rechenoperationen sind hier einfach, da komponentenweise, allerdings braucht man in der
Regel sehr gute Approximationen, um zu exakten Werten umzurechnen.
Als Beispiel haben wir die Erzeugung des Hilbertschen Zahlkörpers K(1)/K für einen imaginär-
quadratischen Körper K betrachtet. Hier gilt K(1) = K(j(OK)) und die Konjugierten von j(OK)
sind in natürlicher Weise durch komplexe Zahlen gegeben, die man nur approximativ berechnen
kann. Literatur hierzu:

• H. Cohen, Advanced Topics in Computational Number Theory, Chapter 3

• Silverman, Advanced topics in the arithmetic of elliptic curves

• Schertz, Complex multiplication
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2.2 Spur, Norm und charakeristisches Polynom

Definition 2.2.1 (a) Sei β ∈ K. Dann heißt

χβ(X) :=

n∏
i=1

(X − σi(β))

charakteristisches Polynom von β.
(b) Es sei χβ(X) =

∑n
i=0(−1)n−isn−iX

i. Dann nennt man sk(β) die k-te elementarsymmetrische
Funktion von β.

Es gilt: TrK/Q(β) = s1(β), NK/Q(β) = sn(β).
Die approximative Berechnung von χβ ist leicht, wenn β als Konjugiertenvektor gegeben ist. Es
gilt ferner:

χβ(X) = det(XE −Mβ).

Insbesondere sind Norm und Spur von β durch die Determinante und Spur von Mβ gegeben.

Satz 2.2.2 Sei β =
∑n−1
i=0 aiα

i ∈ K = Q(α). Sei A(X) :=
∑n−1
i=0 aiX

i. Dann gilt:

χβ(X) = ResY (f(Y ), X −A(Y )).

Insbesondere gilt für die Norm

NK/Q(β) = ResY (f(Y ), A(Y )).

Hierbei bezeichnet ResY die Resultante bezüglich Y über dem Ring R = Q[X]. Resultanten sind
relativ einfach zu berechnen, siehe [Cohen, Lemma 3.3.4].

2.3 Ordnungen und Ideale

Definition 2.3.1 Eine Ordnung R in K ist ein Teilring R ⊆ K, der als Z-Modul endlich erzeugt
ist und eine Q-Basis von K enthält.

Sei R eine Ordnung und I ⊆ R ein Ideal. Dann ist R/I stets endlich und wir definieren

N(I) := |R/I| .

Definition 2.3.2 Sei R ⊆ K eine Ordnung.
(a) Eine nicht-leere Teilmenge (0) 6= I ⊆ K heißt gebrochenes Ideal von R, falls es ein d ∈ Z gibt,
so dass dI ⊆ R ein Ideal ist.
(b) Ein gebrochenes Ideal heißt invertierbar, wenn es ein gebrochenes Ideal J gibt mit IJ = R.

Lemma 2.3.3 Sei I ein gebrochenes Ideal und I ′ := {α ∈ K | αI ⊆ R}. Dann gilt:

I ist invertierbar ⇐⇒ II ′ = R.

2.4 Darstellung von Moduln und Idealen

Definition 2.4.1 Sei R ⊆ K eine Ordnung und sei ω1, . . . , ωn eine Z-Basis von R. Sei M ⊆ K ein
voller Z-Teilmodul. Dann gibt es eine eindeutig bestimmte Z-Basis µ1, . . . , µn von M mit

µj =
1

d

n∑
i=j

wijωi,

so dass d,wij die folgenden Eigenschaften erfüllen:
(1) d,wij ∈ Z, d > 0, ggT(d,wij ,∀i, j) = 1,
(2) Die Matrix W = (wij) ist in HNF.
Dann heißt das Paar (W,d) HNF von M bezüglich R, genauer bezüglich der fixierten Basis
ω1, . . . , ωn von R.
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Bei dieser Darstellung ist die Berechnung von Modulsumme, der Test auf Gleichheit von zwei
Moduln sowie, falls M ⊆ R, die Berechnung des Index [R : M ] einfach. Insbesondere, falls M ⊆ R
ein Ideal ist, erhalten wir auf einfache Weise die Norm von M als Produkt der Diagonalelemente
der HNF. Ferner lässt sich einfach testen, ob ein Element α ∈ K in M enthalten ist.
Eine zweite wichtige Art, um Ideale zur Maximalordnung R = OK darzustellen, beruht auf folgen-
dem Satz.

Satz 2.4.2 Sei a ⊆ OK ein Ideal. Dann gibt es zu jedem 0 6= α ∈ a ein β ∈ a, so dass a = (α, β) =
αOK + βOK gilt.

Zum Beweis verwenden wir den sogenannten schwachen Approximationssatz:

Satz 2.4.3 Sei S = {p1, . . . , pr} eine endliche Menge von maximalen Idealen von OK und sei
e1, . . . , er ∈ Z≥0. Dann gibt es ein β ∈ OK mit vpi(β) = ei für i = 1, . . . , r.

3 Grundlegende Algorithmen in Dedekindringen

3.1 Verallgemeinerter euklidischer Algorithmus

Sei R ein Dedekindring. In aller Regel stellen wir uns R als den Ring der ganzen Zahlen in einem
Zahlkörper vor. Dann ist R ein e-e Z-Modul und wir können Resultate aus der Theorie der e-e
Z-Moduln benutzen. Ebenso kann man sich auch einen Dedekindring R vorstellen, der über einem
Polynomring k[T ], wobei k ein Körper ist, vorstellen. Hier können wir dann die Modultheorie für
e-e k[T ]-Moduln verwenden.

Proposition 3.1.1 Seien a, b ganze Ideale in R mit a + b = R. Dann kann man in polynomialer
Zeit Elemente a ∈ a und b ∈ b mit a+ b = 1 berechnen.

Satz 3.1.2 Seien a, b ∈ IR zwei gebrochene Ideale, a, b ∈ K und es gelte (a, b) 6= (0, 0). Sei
d := aa+ bb. Dann gibt es u ∈ ad−1 und v ∈ bd−1 mit u+ v = 1. Die Elemente u und v können in
polynomialer Zeit berechnet werden.

Der folgende Satz ist eine geringfügige Verallgemeinerung des obigen schwachen Approximations-
satzes. Auch hierfür kann man einen polynomialen Algorithmus angeben, der im wesentlichen auf
Proposition 3.1.1 beruht.

Satz 3.1.3 Sei S = {p1, . . . , pr} eine endliche Menge von maximalen Idealen von R und sei
e1, . . . , er ∈ Z. Dann gibt es ein β ∈ R mit vpi

(β) = ei für i = 1, . . . , r und vp(β) ≥ 0 für
alle p 6∈ S. Das Element β kann in polynomialer Zeit berechnet werden.

Satz 3.1.4 (Stärkerer Approximationssatz) Sei S eine endliche Menge von Primidealen in R,
(ep)p∈S ∈ Z|S| und (xp)p∈S ∈ K |S|. Dann gibt es ein x ∈ K mit

vp(x− xp) = ep,∀p ∈ S, vp(x) ≥ 0,∀p 6∈ S.

Das Element x kann in polynomialer Zeit berechnet werden.

Der Beweis hierfür konnte bislang nicht geführt werden.
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3.2 Die HNF in Dedekindringen

Satz 3.2.1 Sei M ein e-e torsionsfreier R-Modul und V = KM . Dann gibt es ω1, . . . , ωn ∈ V und
a1, . . . , an ∈ IR, so dass

M = a1ω1 ⊕ . . .⊕ anωn.

Falls M = a′1ω
′
1 ⊕ . . .⊕ a′nω

′
n, so stimmen die Klassen von

a := a1 · · · an und a′ := a′1 · · · a′n

in der Klassengruppe clR überein.

Definition 3.2.2 Setze St(M) := Klasse von a. Dann nennt man St(M) die Steinitzklasse von
M .

Für zwei e-e torsionsfreie R-Moduln gilt: N 'M ⇐⇒ rg(N) = rg(M) und St(N) = St(M).

Definition 3.2.3 Sei M ein e-e torsionsfreier R-Modul und V = KM .

1. Sei 0 6= ω ∈ V und a ∈ IR. Dann nennen wir die Äquivalenzklasse des Paares (a, ω) ein
Pseudoelement, wobei wir definieren:

(a, ω) ∼ (b, η) :⇐⇒ aω = bη.

2. Das Pseudoelement (a, ω) heißt ganz, falls aω ⊆M .

3. Seien (ai, ωi), i = 1, . . . , k, Pseudoelemente. Dann nennt man {(ai, ωi) : i = 1, . . . , k} ein
Pseudoerzeugendensystem, falls

M = a1ω1 + . . .+ akωk.

4. Seien (ai, ωi), i = 1, . . . , k, Pseudoelemente. Dann nennt man {(ai, ωi) : i = 1, . . . , k} eine
Pseudobasis, falls

M = a1ω1 ⊕ . . .⊕ akωk.

Wegen Satz 3.2.1 besitzt jeder e-e torsionsfreie R-Modul M eine Pseudobasis. Die folgende Propo-
sition beschreibt den Übergang zwischen zwei Pseudobasen.

Proposition 3.2.4 Sei

M =

n⊕
i=1

aiωi =

n⊕
j=1

bjηj .

Sei (η1, . . . , ηn) = (ω1, . . . , ωn)U mit einer Matrix U ∈ Gln(K). Seien a := a1 · · · an und b :=
b1 · · · bn. Dann gilt uij ∈ aib

−1
j und a = det(U)b.

Sei umgekehrt M =
⊕n

i=1 aiωi. Seien weiter b1, . . . , bn ∈ IR und U ∈ Gln(K) gegeben. Es gelte
a = det(U)b und uij ∈ aib

−1
j . Definiert man dann η1, . . . , ηn durch (η1, . . . , ηn) = (ω1, . . . , ωn)U ,

dann gilt

M =

n⊕
j=1

bjηj .

Definition 3.2.5

1. Eine Pseudomatrix ist ein Paar (A, I), wobei A ∈ Kn×k und I = (a1, . . . , ak), aj ∈ IR.
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2. Man nennt M :=
∑k
j=1 ajAj ⊆ Kn den von (A, I) erzeugten R-Modul. Hierbei bezeichnet

wie üblich Aj die j-te Spalte der Matrix A.

Die Abbildung

f : a1 ⊕ . . .⊕ ak −→M, (a1, . . . , ak) 7→
k∑
j=1

ajAj ,

nennt man die von (A, I) induzierte Abbildung.

3. ker(f) nennt man den Kern von (A, I).

Satz 3.2.6 Sei (A, I) eine Pseudomatrix. Sei rg(A) = n und M der von (A, I) erzeugten R-Modul.
Dann gibt es Ideale b1, . . . , bk ∈ IR und eine Matrix U = (uij) ∈ Glk(K) mit den folgenden
Eigenschaften:

1. uij ∈ aib
−1
j , ∀1 ≤ i, j ≤ k.

2. a = det(U)b, wobei a := a1 · · · ak und b := b1 · · · bk.

3. AU = (0|H) mit H =


1 ∗ ∗ . . . ∗

1 ∗ . . . ∗
. . .

1


4. Sei cj = bk−n+1, j = 1, . . . , n und seien ωj = Hj , j = 1, . . . , n die entsprechenden Spalten von
H. Dann gilt

M = c1ω1 ⊕ . . .⊕ cnωn,

d.h. (cj , ωj)j=1,...,n ist eine Pseudobasis von M .

5. (Uj , bj)1≤j≤k−n ist eine Pseudobasis von ker(f).

Der Beweis wurde in Form eines Algorithmus erbracht, siehe [Cohen, Advanced Topics, Algorithmus
1.4.7].

Proposition 3.2.7 Sei Sij ein Vertretersystem von K/cic
−1
j . Dann kann man oE für alle j > i

annehmen, dass hij ∈ Sij . In diesem Fall ist dann die Matrix H eindeutig.

Literatur: Biasse, Fieker, Hofmann, J.Symb.Comp. (2017), On the computation of the HNF over
the ring of integers of a number field.

3.3 Berechnung von Bewertungen

Für ein Primideal p von OK und ein Ideal a ⊆ OK wollen wir den Wert vp(a) berechnen. Naiv
könnte man pe für e = 0, 1, . . . berechnen, denn es gilt:

vp(a) = max{e | pe + a = pe}.

Eine alternative Vorgehensweise beruht auf folgendem Lemma.

Lemma 3.3.1 Es gibt ein a ∈ K \ OK mit ap ⊆ OK . Für jedes solche a gilt:

p−1 = OK + aOK , vp(a) = −1, vq(a) ≥ 0,∀q 6= p.

Es gilt dann:

vp(a) = max{e | aea ⊆ OK}.
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3.4 Berechnung der Differente und Idealinversion

Wir errinnern an die Spurform

K ×K −→ Q, (α, β) 7→ TrK/Q(αβ).

Die Spurform ist eine nicht-ausgeartete symmetrische Bilinearform auf dem Q-Vektroraum K.
Für eine vollen Z-Teilmodul M ⊆ K sei

M∗ := {α ∈ K | TrK/Q(αM) ⊆ Z}.

Falls M = 〈γ1, . . . , γn〉Z, so ist
M∗ = 〈γ∗1 , . . . , γ∗n〉Z

mit der Dualbasis (bez. der Spurform) γ∗1 , . . . , γ
∗
n definiert durch TrK/Q(γiγ

∗
j ) = δij (Kronecker

delta).
Für ein gebrochenes Ideal I wollen wir nun I−1 = {α ∈ K | αI ⊆ OK} berechnen. Dazu führen
wir die folgenden drei Schritte aus.

(1) Berechne O∗K .

(2) Berechne I · O∗K .

(3) Berechne (I · O∗K)∗.

Lemma 3.4.1 Es gilt (I · O∗K)∗ = I−1.

Die Berechnungen der Duale in den Schritten (1) und (3) ist lineare Algebra, zur Berechnung des
Produkts in Schritt (2) ist eine HNF zu berechnen.

Remark 3.4.2 O∗K ist die sogenannte inverse Differente oder Kodifferente.

4 Berechnung der Maximalordnung

4.1 Die Sätze von Pohst-Zassenhaus

Sei K = Q(θ), θ ganz, ein algebraischer Zahlkörper. Wir wollen den Ring der ganzen Zahlen OK
berechnen.

Definition 4.1.1 Sei O eine Ordnung und p eine Primzahl.

(1) O heißt p-maximal, falls p - [OK : O].

(2) Ip :=
√
pO = {α ∈ O | ∃m ∈ Z>0 : αm ∈ pO} heißt p-Radikal von O.

Satz 4.1.2 Sei O ⊆ K eine Ordnung in K und p eine Primzahl. Dann gilt:

• Ip ist ein Ideal in O.

• Ip = p1 · · · pg, wobei p1, . . . , pg die paarweise verschiedenen Primideal von O über pZ sind.

• Es gibt ein m > 0 mit Imp ⊆ O.

Satz 4.1.3 (Pohst-Zassenhaus) Sei O ⊆ K eine Ordnung in K und p eine Primzahl. Sei

O′ := {α ∈ K | αIp ⊆ Ip}.

Dann ist O′ eine Ordnung und es gilt entweder (i) oder (ii), wobei
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(i) O = O′ und O ist p-maximal.

(ii) O ⊆ O′,O 6= O′ and p - [O′ : O] | pn

Der Satz von Pohst-Zassenhaus legt folgenden groben Algorithmus nahe. Ausgehend von O = Z[θ]
berechnen wir für jedes p mit p2 | d(θ) = [OK : Z[θ]]2dK sukzessive größere Ordnungen O′ solange
bis O′ p-maximal ist. In der Praxis ist d(θ) oft sehr groß und die Berechnung der relevanten
Primzahlen p daher ein Problem.

4.2 Das Dedekindkriterium

Für Ordnungen der Form O = Z[θ] kann man mit dem Dedekindkriterium effizient (d.h. schneller
als mit Pohst-Zassenhaus) feststellen, ob O p-maximal ist.

Satz 4.2.1 (Dedekindkriterium) Sei K = Q(θ), θ ganz, und m(x) ∈ Z[x] das Minimalpolynom
von θ. Sei p eine Primzahl. Sei

m̄(x) =

k∏
i=1

m̄i(x)ei

die Zerlegung in irreduzible Faktoren in Fp[x]. Sei

g(x) :=

k∏
i=1

mi(x)

mit normierten Lifts mi(x) ∈ Z[x] von m̄i(x). Dann gilt:

• Das p-Radikal Ip von O = Z[θ] ist gegeben durch

Ip = pZ[θ] + g(θ)Z[θ].

• Sei h(x) ∈ Z[x] ein normierter Lift von m̄(x)/ḡ(x). Setze

f(x) :=
1

p
(g(x)h(x)−m(x)) .

Dann ist f(x) ∈ Z[x] und es gilt

O = Z[θ] ist p−maximal ⇐⇒ (f̄ , ḡ, h̄) = 1 in Fp[x].

• Sei O′ = {x ∈ K | xIp ⊆ Ip}. Sei U(x) ∈ Z[x] ein normierter Lift von m̄/(f̄ , ḡ, h̄). Dann gilt:

(i) O′ = Z[θ] + 1
pU(θ)Z[θ].

(ii) Für d = deg((f̄ , ḡ, h̄) gilt

[O′ : Z[θ]] = pd, d(O′) = d(θ)/p2d.

4.3 Der Round2-Algorithmus

Ausgehend von der HNF von O sind die HNF von Ip und O′ zu bestimmen.

Lemma 4.3.1 Sei n = [K : Q] und j ≥ 1, so dass pj ≥ n. Dann gilt:

Rad(O/pO) = ker(x 7→ xp
j

).
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Man beachte, dass O/pO −→ O/pO, x 7→ xp
j

, eine Fp-lineare Abbildung ist. Der Kern kann also
mit Methoden der linearen Algebra berechnet werden. Es gilt dann:

Ip = Lift(Rad(O/pO)) + pO.

Lemma 4.3.2 Sei U der Kern der Fp-linearen Abbildung

O/pO −→ End(Ip/pIp), ᾱ 7→ (β̄ 7→ ᾱβ̄).

Dann gilt: O′ = Lift( 1
pU) + pO.

Den Kern U kann man wieder mit Methoden der linearen Algebra berechnet werden.

5 Berechnung von Klassengruppe, Regulator und Funda-
mentaleinheiten

5.1 Definitionen und Notationen, grundlegende Resultate

Sei K ein algebraischer Zahlkörper. Es sei

• I(K) die Gruppe der gebrochenen Ideale,

• P (K) die Untergruppe der Hauptideale,

• cl(K) = I(K)/P (K) die Idealklassengruppe,

• hK = |cl(K)| die Klassenzahl,

• U(K) = O×K die Einheitengruppe und

• µ(K) die Gruppe der in K gelegenen Einheitswurzeln.

Zentrale Resultate der algebraischen Zahlentheorie sind die beiden folgenden Sätze.

Satz 5.1.1 hK <∞.

Satz 5.1.2 U(K) = µ(K) × ηZ1 × . . . × ηZru mit sogenannten Fundamentaleinheiten η1, . . . ηru ∈
U(K). Hierbei ist ru = r1 +r2−1, wobei r1 die Anzahl der reellen Einbettungen und r2 die Anzahl
der Paare komplex-konjugierter Einbettungen bezeichnet.

Für das Weitere legen wir die folgende Numerierung zugrunde. Es sei

σ1, . . . , σr1 , σr1+1, . . . , σr1+r2 , σ̄r1+1, . . . , σ̄r1+r2

die Gesamtheit der Q-Einbettungen σ : K ↪→ C.
Wir definieren

|α|σ = ||σ(α)|| =

{
|σ(α)|, falls σ reell ist,

|σ(α)|2, falls σ komplex ist.

Definition 5.1.3 Sei η1, . . . ηru ein System von Fundamentaleinheiten. Sei M eine beliebige ru ×
ru-Matrix, die aus

(log σj(ηi)) 1≤i≤ru,

1≤j≤ru+1

durch Streichen einer beliebigen Spalte entsteht. Dann setzt man:

R(K) := |det(M)|

und nennt dies den Regulator von K.

Remark 5.1.4 Diese Definition ist unabhängig von der Wahl der Fundamentaleinheiten sowie der
Wahl der zu streichenden Spalte.
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5.2 Berechnung von µ(K)

Lemma 5.2.1 Sei α ∈ OK . Dann gilt:

α ∈ µ(K) ⇐⇒ |σ(α)| = 1 für alle Q-Einbettungen σ : K ↪→ C.

Für r1 > 0 ist µ(K) = {±1}. Daher sei im Weiteren r1 = 0.
Sei OK = Zω1 ⊕ . . .⊕ Zωn. Dann ist jede Einheitswurzel ζ von der Form

ζ =

n∑
i=1

xiωi

mit ganzen Zahlen x1, . . . , xn. Die Ungleichnung zwischen geometrischen und arithmetischen Mittel
zeigt, dass die Einheitswurzeln inK genau durch die Minima auf dem Gitter Zn der positiv definiten
quadratischen Form

Q(x1, . . . , xn) :=

n∑
j=1

|σj(
n∑
i=1

xiωi)|2

gegeben sind. Diese kann man z.B. mit dem Fincke-Pohst-Algorithmus bestimmen.‘

5.3 Die Dedekindsche Zeta-Funktion

Definition 5.3.1 Die Dedekindesche Zetafunktion ist für Re(s) > 1 definiert durch

ζK(s) =
∑
a

1

N(a)s
=
∏
p

(
1− 1

N(p)s

)−1
,

wobei a 6= (0) die ganzen Ideale und p 6= (0) die Primideale von OK durchläuft.

Definition 5.3.2 Die Funktion

ΛK(s) = |dK |s/2
(
π−s/2Γ(s/2)

)r1+r2 (
π(1−s)/2Γ((s+ 1)/2)

)r2
ζK(s)

heißt vervollständigte Dedekindsche Zetafunktion.

Satz 5.3.3 (Analytische Klassenzahlformel)

• ζK(s) hat eine meromorphe Fortsetzung auf C. Sie ist holomorph auf C \ {1} und hat einen
einfachen Pol bei s = 1.

• Die vervollständigte Zetafunktion genügt der Funktionalgleichung

Λ(1− s) = Λ(s).

• ζK(s) hat eine Nullstelle der Ordnung ru bei s = 0 und es gilt

lim
s→0

s−ruζK(s) = −h(K)R(K)/|µ(K)|.

• ζK(s) hat einen Pol der Ordnung 1 bei s = 1 und es gilt

lim
s→0

(s− 1)ζK(s) = 2r1(2π)r2
h(K)R(K)

|µ(K)|
√
|dK |

.
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5.4 Idealreduktion

Definition 5.4.1 a) Sei a ∈ I(K) ein gebrochenes Ideal und α ∈ a, α 6= 0. Dann nennt man α ein
Minimum von a, falls für alle β ∈ a gilt:

|σi(β)| < |σi(α)| für i = 1, . . . , n =⇒ β = 0.

b) a heißt reduziert, falls `(a) ein Minimum von a ist. Hierbei ist `(a)Z = a ∩Q.

Definition 5.4.2 Sei α ∈ K und v = (v1, . . . , vr1 , vr1+1, . . . , vr1+r2 , vr1+1, . . . , vr1+r2) ∈ Rn. Dann
heißt

||α||v :=

√√√√ n∑
i=1

evi |σi(α)|2

v-Norm von α.

Sei α1, . . . , αn eine Z-Basis von a. Sei

qij :=

n∑
k=1

evkσk(αi)σk(αj).

Dann definiert Q = (qij)1≤i,j≤n eine positiv-definite symmetrische Bilinearform auf Rn und für

α =
∑n
i=1 xiαi ∈ a und x = (x1, . . . , xn)t ∈ Zn gilt:

xtQx = ||α||2v.

Satz 5.4.3 Falls α ∈ a ein Element kürzester Länge in a bez. der v-Norm ist, so ist α−1a reduziert.

Mit dem LLL-Algorithmus kann man nun kurze Elemente in β ∈ a berechnen. Dann ist b := β−1a
”fast” reduziert und man hofft, dass b dann ausschließlich kleine Primidealteiler hat.

5.5 Berechnung einer Relationenmatrix

Sei P = {p1, . . . , pk} eine Menge von Primidealen, deren Klassen [pi] die Klassengruppe cl(K)
erzeugen. Dann ist der Gruppenhomomorphismus

π : Zk −→ cl(K), (x1, . . . , xk)t 7→

[
k∏
i=1

pxi
i

]

surjektiv und wir wollen Λf := ker(π) bestimmen. Dazu berechne man zufällige Produkte I =∏k
i=1 p

ei
i und mittels LLL einen kurzes Element α bezüglich der v-Norm. Falls dann J := α−1I

über P faktorisiert, d.h.

J =

k∏
i=1

pdii ,

so gilt αOK =
∏k
i=1 p

ei−di
i und (e1 − d1, . . . , ek − dk)t liefert eine Spalte in der Relationenmatrix.

Zusätzlich zu dieser ”nicht-archimedischen” Information speichern wir den Vektor

L(α) := (log |σ1(α)|, . . . , log |σr1(α)|, 2 log |σr1+1(α)|, . . . , 2 log |σr1+r2(α)|)t

ab. Wir generieren auf diese Weise k2 > k Relationen und eine Matrix Λ der Form

Λ =

 Λf
· · ·
Λ∞


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5.6 Berechnung eines ganzzahligen Vielfachen des Regulators und un-
abhängiger Einheiten (Grobform)

Berechne den ganzzahligen Kern W von Λf . Sei V ∈ Zk2×s eine Matrix, deren Spalten eine Z-Basis
von W sind. Sei vi, i = 1, . . . , s, eine Spalte von V . Dann ist

εi :=

k2∏
j=1

α
vij
j

eine Einheit und die i-te Spalte in Λ∞V ist gegeben durch L(εi).
Falls s ≥ ru gilt, so kann man beliebige ru× ru-Minoren von Λ∞V betrachten und erhält entweder
0 oder im günstigen Fall ein ganzzahliges Vielfaches R des Regulators R(K). Aus verschiedenen
Werten R kann man durch Berechnung eines reellen ggT kleinere ganzzahlige Vielfache von RK
berechnen. Im folgenden Abschnitt stellen wir die benötigten Grundlagen dar und skizzieren einen
einfachen Algorithmus.

5.7 Unabhängige Einheitensysteme

Lemma 5.7.1 a) Seien η1, . . . , ηru Einheiten. Dann gilt:

[U(K) : 〈η1, . . . , ηru〉] <∞ ⇐⇒ R(η1, . . . , ηru) 6= 0.

Es gilt dann: [U(K) : 〈η1, . . . , ηru〉] =
R(η1,...,ηru )

R(K) .

b) Seien allgemeiner η1, . . . , ηru und ε1, . . . , εru unabhängige Einheitensysteme und es gelte
〈η1, . . . , ηru〉 ⊆ 〈ε1, . . . , εru〉. Dann gilt:

[〈ε1, . . . , εru〉 : 〈η1, . . . , ηru〉] =
R(η1, . . . , ηru)

R(ε1, . . . , εru)
.

Lemma 5.7.2 Seien η1, η2, . . . , ηru und η′1, η2, . . . , ηru zwei unabhängige Einheitensysteme mit
Regulatoren R und R′. Sei d = uR+vR′ der reelle ggT. Dann ist ηu1 η

′v
1 , η2, . . . , ηru ein unabhängiges

Einheitensystem mit Regulator d.

Aufbauend auf diesem Lemma kann man z.B. folgendermaßen vorgehen. Wir haben bereits Einhei-
ten ε1, . . . , εs mit s ≥ ru berechnet. Aus der Matrix C := Λ∞ ·V berechnen wir R1 := R(ε1, . . . , εru)
und R2 := R(ε2, . . . , εru+1). Falls R1R2 6= 0, so berechne man den reellen ggT d = uR1+vR2. Dann

hat ε2, . . . , εru , ε
(−1)ru−1u
1 εru+1 den Regulator d. Entsprechend ersetzen wir in C die (ru+1)-te Spal-

te durch (−1)ru−1L(ε1) + vL(εru+1). Im nächsten Schritt nehmen wir auf diese Weise die Einheit
εru+2 dazu und erhalten letztendlich hoffentlich Einheiten η1, . . . ηru mit R = R(η1, . . . ηru) 6= 0.
Dieses R ist dann ein ganzzahliges Vielfaches von RK .

5.8 Der vollständige Algorithmus

1. Berechne eine Ganzheitsbasis ω1, . . . , ωn von OK sowie die Diskriminante dK .

2. Berechne eine Menge von Primidealen P = {p1, . . . , pk}, so dass die Klassen der pi die
Idealklassengruppe erzeugen. Zum Beispiel kann man die Menge aller Primideal p mit Norm
≤MK nehmen, wobei MK die Minkowsischranke bezeichnet.

3. Setze k2 := k + ru + 10.

4. Finde k2 Relationen, z.B. so wie in Abschnitt 5.5 beschrieben.

5. Berechne die HNF von Λf . Falls Λf nicht vollen Rang hat, gehe zu Schritt 4 und nimm 10
weitere Relationen dazu.
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6. (Λf hat nun vollen Rang.) Berechne den ganzzahligen Kern von Λf und mit dem Verfahren
aus Abschnitt 5.7 Einheiten η1, . . . , ηru , so dass R = R(η1, . . . , ηru) 6= 0 gilt. Falls dies nicht
gelingt, gehe zu Schritt 4 und nimm 10 weitere Relationen dazu.

7. Sei h = det(H), wobei H die HNF von Λf bezeichnet. Dann ist hR ein ganzzahliges Vielfaches
von h(K)R(K).

8. Berechne µ(K).

9. Berechne z̃ :=
∏
p

(1−1/p)∏
p|p(1−1/Np) und

z := z̃
|µ(K)|

√
|dK |

2r1(2π)r2
,

wobei p die Primzahlen unterhalb einer geeigneten Schranke durchläuft. Dann gilt z ∼ hKRK .

10. Falls hR ≥ z
√

2, so gehe zu Schritt 4 und nimm 10 weitere Relationen dazu. Andernfalls gilt
hR = h(K)R(K).

11. Berechne die SNF von H. Dies liefert die Gruppenstruktur von cl(K) sowie deren Erzeuger.
Aus Schritt 6 haben wir Fundamentaleinheiten η1, . . . , ηru .
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