Protokoll zur Vorlesung Algorithmische Zahlentheorie WS 25/26

W. Bley

29. Oktober 2025

1 Lineare Algebra über \mathbb{Z}

1.1 Der Hauptsatz für endlich erzeugte \mathbb{Z} -Moduln

Für einen \mathbb{Z} -Modul V sei $V_{tors}:=\{v\in V\mid \exists 0\neq n\in \mathbb{Z} \text{ mit } nv=0\}$ der Torsionsuntermodul.

Satz 1.1.1 Sei V ein endlich erzeugter \mathbb{Z} -Modul.

- (1) $V \simeq V_{tors} \oplus \mathbb{Z}^r$ und $|V_{tors}| < \infty$. Hierbei ist $r \in \mathbb{Z}_{\geq 0}$ und heißt Rang von V. Wir schreiben $r = \operatorname{rg}(V)$.
- (2) Sei $W \subseteq V$ ein Teilmodul. Dann ist W endlich erzeugt und es gilt $rg(W) \le rg(V)$.
- (3) Falls V frei ist und $W \subseteq V$ ein Teilmodul, so ist auch W frei.
- (4) Falls V ein endlicher \mathbb{Z} -Modul ist, so gibt es eine natürliche Zahl n und einen (freien) \mathbb{Z} -Teilmodul $L \subseteq \mathbb{Z}^n$, so dass $V \simeq \mathbb{Z}^n/L$ gilt.

Im Weiteren bezeichnen wir einen freien \mathbb{Z} -Modul auch als \mathbb{Z} -Gitter. Durch die Wahl einer \mathbb{Z} -Basis für ein \mathbb{Z} -Gitter V erhalten wir einen nicht-kanonischen Isomorphismus $V \simeq \mathbb{Z}^m$ mit $m = \operatorname{rg}(V)$. Teilmoduln $W \subseteq V$ beschreiben wir dann durch Matrizen $M \in \mathbb{Z}^{m \times n}$, wobei die Spalten von M den Erzeugenden von W entsprechen.

1.2 Hermitesche Normalform

Definition 1.2.1 Eine Matrix $M = (m_{ij}) \in \mathbb{Z}^{m \times n}$ ist in Hermitescher Normalform (kurz HNF), falls es eine streng monoton wachsende Funktion $f : \{r+1,\ldots,n\} \longrightarrow \{1,\ldots,m\}, \ 0 \le r \le n$ geeignet, gibt, die folgende Bedingungen erfüllt.

- (1) Für $r+1 \le j \le n$ ist $m_{f(j),j} \ge 1$, $m_{ij} = 0$ für i > f(j) und $0 \le m_{f(j),k} < m_{f(j),j}$ für k > j.
- (2) Die ersten r Spalten von M sind Nullspalten.

Satz 1.2.2 Sei $A \in \mathbb{Z}^{m \times n}$. Dann gibt es eine eindeutig bestimmte Matrix $B = (0 \mid H)$ in HNF und eine Matrix $U \in Gl_n(\mathbb{Z})$ mit B = AU.

Mit einem Algorithmus, der als Verallgemeinerung des Gaußschen Algorithmus angesehen werden kann, lässt sich zu einer gegebenen Matrix A die HNF $B = (0 \mid H)$ sowie die Matrix U berechnen.

1.3 Anwendungen der HNF

1.3.1 Bild einer ganzzahligen Matrix

Wir identifizieren $A \in \mathbb{Z}^{m \times n}$ mit der \mathbb{Z} -linearen Abbildung $A \colon \mathbb{Z}^n \longrightarrow \mathbb{Z}^m$. Sei $B = (0 \mid H)$ die HNF zu A. Dann bilden die Spalten von H eine \mathbb{Z} -Basis des Bildes von A.

1.3.2 Kern einer ganzzahligen Matrix

Sei B = AU die HNF von A. Sei r wie in der Definition der HNF. Dann ist eine \mathbb{Z} -Basis des Kerns von A durch die ersten r Spalten von U gegeben.

1.4 Test auf Gleichheit

Seien $L_1, L_2 \subseteq \mathbb{Z}^m$ zwei Gitter, beschrieben durch $A_1 \in \mathbb{Z}^{m \times n_1}$ und $A_2 \in \mathbb{Z}^{m \times n_2}$. Dann gilt:

$$L_1 = L_2 \iff HNF(A_1) = HNF(A_2).$$

1.5 Summe von zwei Gittern

Etwas allgemeiner betrachten wir Gitter $L\subseteq \mathbb{Q}^m$. Sei $d\in \mathbb{N}$ minimal mit $dL\subseteq \mathbb{Z}^m$. Dann nennt man d den Nenner von L und unter der HNF von L verstehen wir das Paar (HNF(dL), d). Seien nun $L_1, L_2\subseteq \mathbb{Q}^m$ zwei Gitter gegeben durch ihre jeweilige HNF (W_1, d_1) bzw. (W_2, d_2) . Sei $D:= \mathrm{kgV}(d_1, d_2)$. Betrachte dann die Matrix $W=(\frac{D}{d_1}W_1\mid \frac{D}{d_2}W_2)$. Dann sind die nicht-trivialen Spalten von HNF(W) eine \mathbb{Z} -Basis von $D(L_1+L_2)$.

1.6 Test auf Inklusion

Ohne Einschränkung seien $L_1, L_2 \subseteq \mathbb{Z}^m$. Dann gilt:

$$L_1 + L_2 = L_2 \iff L_1 \subseteq L_2.$$

Dies lässt sich mit den vorherigen Algorithmen testen.

1.7 Smithsche Normalform

Sei G eine endliche abelsche Gruppe. Sei g_1, \ldots, g_n ein Erzeugendensystem von G. Dann induziert der Epimorphismus $\pi \colon \mathbb{Z}^n \longrightarrow G, (x_1, \ldots, x_n)^t \mapsto x_1g_1 + \ldots + x_ng_n$ einen Isomorphismus $\mathbb{Z}^n/L \simeq G$, wobei hier $L := \ker(\pi)$ gesetzt ist. Das \mathbb{Z} -Gitter kann dann durch eine Matrix $A \in \mathbb{Z}^{n \times n}$ beschrieben werden, d.h. die Spalten von A sind eine \mathbb{Z} -Basis von A.

Lemma 1.7.1 Es gilt in obiger Situation: $|G| = |\det(A)|$.

Definition 1.7.2 Eine Matrix $B \in \mathbb{Z}^{n \times n}$ ist in Smithscher Normalform (kurz SNF), falls B eine Diagonalmatrix mit nicht-negativen Koeffizienten ist, so dass $b_{i+1,i+1} \mid b_i$ für $1 \le i < n$ gilt.

Satz 1.7.3 Sei $A \in \mathbb{Z}^{n \times n}$ mit $\det(A) \neq 0$. Dann gibt es genau eine Matrix B in SNF von der Form B = VAU mit $U, V \in \mathrm{Gl}_n(\mathbb{Z})$.

Als Anwendung von HNF und SNF haben wir einen prinzipiellen Algorithmus skizziert, der zu einer gegebenen endlichen abelschen Gruppe G die Struktur als abstrakte abelsche Gruppe bestimmt. Der Algorithmus setzt voraus, dass wir ein endliches \mathbb{Z} -Erzeugendensystem von G kennen sowie eine gute Approximation an die Kardinalität von G.

1.8 Weitere Algorithmen für endlich erzeugte abelsche Gruppen

Literatur: H.Cohen, Advanced topics in computational number theory, Chapter 4.1

Wir benutzen im Folgenden die folgende Matrixnotation: Sei \mathcal{A} eine e-e abelsche Gruppe und $A = (\alpha_1, \dots, \alpha_r)$ mit $\alpha_i \in \mathcal{A}$ ein Zeilenvektor von Elementen in \mathcal{A} . Für eine Spaltenvektor $X = (x_1, \dots, x_r)^t \in \mathbb{Z}^r$ sei

$$AX = \sum_{i=1}^{r} x_i \alpha_i \text{ oder } \prod_{i=1}^{r} \alpha_i^{x_i},$$

je nachdem, ob wir die Gruppenoperation in \mathcal{A} additiv oder multiplikativ schreiben. Entsprechend ist für eine Matrix $M = (m_{ij}) \in \mathbb{Z}^{r \times n}$

$$AM = (\beta_1, \dots, \beta_n) \text{ mit } \beta_j = \sum_{i=1}^r m_{ij} \alpha_i \text{ oder } \prod_{i=1}^r \alpha_i^{m_{ij}}.$$

Definition 1.8.1 Sei \mathcal{A} eine e-e abelsche Gruppe und $G = (g_1, \dots, g_r)$ mit $g_i \in \mathcal{A}$. Sei $M \in \mathbb{Z}^{r \times k}$. Dann ist (G, M) ein System von Erzeugern und Relationen, falls

- es für jedes $\alpha \in \mathcal{A}$ ein $X \in \mathbb{Z}^r$ mit $\alpha = GX$ gibt.
- für alle $X \in \mathbb{Z}^r$ gilt:

$$GX = 1_{\mathcal{A}} \iff \exists Y \in \mathbb{Z}^k \text{ mit } X = MY.$$

Inbesondere gilt also $GM = (1_A, \dots, 1_A)$. Mit anderen Worten kann man äquivalent sagen:

$$\mathbb{Z}^k \xrightarrow{M} \mathbb{Z}^r \xrightarrow{G} \mathcal{A} \longrightarrow 1$$

ist eine Präsentation von \mathcal{A} .

Definition 1.8.2 Sei \mathcal{A} eine e-e abelsche Gruppe und (A, D) ein System von Erzeugern und Relationen. Wir sagen, (A, D) ist in SNF, falls

$$D = \left(\begin{array}{ccc} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_r \end{array} \right)$$

mit $d_{i+1} \mid d_i$ für $1 \le i < r$, $0 \le d_i$ und $d_i \ne 1$ für $1 \le i \le r$.

Der folgende Algorithmus berechnet zu einem System (G, M) von Erzeugern und Relationen für \mathcal{A} eine SNF (A, D) für \mathcal{A} sowie eine Matrix U_a zur Berechnung von diskreten Logarithmen. Zusätzlich setzen wir $|\mathcal{A}| < \infty$ voraus. Sei n := |G|.

- 1. **HNF Schritt:** Berechne die HNF $(0 \mid H)$ von M.
- 2. SNF Schritt: Berechne $U, V \in Gl_n(\mathbb{Z})$, so dass UHV = D' in SNF ist. Setze

$$A' = (\alpha_1, \dots \alpha_m, \alpha_{n+1}, \dots \alpha_r) := GU^{-1},$$

wobei m in Schritt 3 definiert ist.

3. Lösche triviale Komponenten: Sei

$$\begin{pmatrix} d_1 & & & & & & & \\ & \ddots & & & & & & \\ & & d_m & & & & \\ & & & 1 & & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix}$$

mit $d_m \neq 1$. Setze dann $D := \operatorname{diag}(d_1, \ldots, d_m), A := (\alpha_1, \ldots, \alpha_m)$. Ferner sei U_a die Matrix der ersten m Zeilen von U.

4. Ausgabe: Gib (A, D) und U_a aus.

Es gilt dann $AU_a = G$, d.h., die alten Erzeuger können mit der Matrix U_a durch die neuen Erzeuger in A ausgedrückt werden.

Sprechweise: Sei \mathcal{A} eine endliche abelsche Gruppe. Wir sagen, dass \mathcal{A} effektiv berechnet ist, wenn

- wir eine System (G, M) von Erzeugern und Relationen haben, oder äquivalent, eine SNF (A, D).
- wir einen effektiven Algorithmus haben, der zu $\alpha \in \mathcal{A}$ ein $X \in \mathbb{Z}^{|A|}$ berechnet mit $\alpha = AX$. Wir nennen X den diskreten Logarithmus von α bezüglich A.

Sprechweise: Sei $\psi \colon \mathcal{A} \longrightarrow \mathcal{B}$ ein Homomophismus von effektiv berechneten (endlichen) abelschen Gruppen. Seien $(A, D_{\mathcal{A}})$ und $(B, D_{\mathcal{B}})$ jeweils Erzeugende und Relationen in SNF. Wir sagen, dass ψ effektiv berechnet ist, wenn man

- 1. zu $\alpha \in \mathcal{A}$ das Element $\psi(\alpha)$ in der Form $\psi(\alpha) = BY$ mit berechenbarem $Y \in \mathbb{Z}^{|B|}$ schreiben kann.
- 2. zu $\beta \in \psi(A)$ ein $\alpha \in A$ berechnen kann mit $\psi(\alpha) = \beta$.

1.9 Ein Algorithmus zur Berechnung von Quotienten

Sei

$$\mathcal{A} \xrightarrow{\psi} \mathcal{B} \xrightarrow{\phi} \mathcal{C} \longrightarrow 1$$

eine exakte Sequenz von (endlichen) abelschen Gruppen. Wir setzen voraus, dass \mathcal{A}, \mathcal{B} effektiv berechnet sind. Zusätzlich brauchen wir, dass ψ und ϕ folgende Bedingungen erfüllen:

- 1. Zu $\alpha \in \mathcal{A}$ kann man $\psi(\alpha)$ in der Form $\psi(\alpha) = BY$ mit berechenbarem $Y \in \mathbb{Z}^{|B|}$ schreiben. Dies ist im Wesentlichen das DL-Problem in \mathcal{B} .
- 2. Zu $\gamma \in \varphi(\mathcal{C})$ kann man $\beta \in \mathcal{B}$ berechnen kann mit $\varphi(\beta) = \gamma$.

Sei $C' := \varphi(B)$. Dann ist C' ein Erzeugendensystem von \mathcal{C} . Sei $P \in \mathbb{Z}^{|B| \times |A|}$, so dass

$$\psi(A) = (\psi(\alpha_1), \dots, \psi(\alpha_2) = BP$$

gilt. Da wir in $\mathcal B$ das DL-Problem lösen können, ist P berechenbar. Sei nun $V\in\mathbb Z^{|C'|}$ eine Relation, d.h. $C'V=1_{\mathcal C}$. Es gilt:

$$C'V = 1_{\mathcal{C}} \iff V \in \operatorname{Im}(P \mid D_{\mathcal{B}}).$$

Also ist $(\phi(B), (P \mid D_{\mathcal{B}})$ ein System von Erzeugern und Relationen, aus dem wir eine SNF $(C, D_{\mathcal{C}})$ berechnen können.

Wir fassen zusammen:

- 1. **DL Schritt:** Mit dem DL-Algorithmus in \mathcal{B} berechne P mit $\psi(A) = BP$.
- 2. **SNF Schritt:** Berechne die SNF zu $(\phi(B), (P \mid D_B))$ und gib (C, D_C) sowie die Matrix U_a aus.

Damit \mathcal{C} effektiv berechnet ist, müssen wir noch einen Algorithmus zur Berechnung des DL-Problems in \mathcal{C} angeben. Sei $\gamma \in \mathcal{C}$ und $\phi(\beta) = \gamma$. Wegen der zweiten Voraussetzung können wir β berechnen. Da wir das DL-Problem in \mathcal{B} lösen können, finden wir $X \in \mathbb{Z}^{|\mathcal{B}|}$ mit $\beta = BX$. Dann gilt

$$\gamma = \phi(\beta) = \phi(BX) = \phi(B)X = C'X = CU_aX.$$

Also ist U_aX der DL von γ bezüglich dem Ereugendensystem C von C.