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1 Lineare Algebra iiber Z

1.1 Der Hauptsatz fiir endlich erzeugte Z-Moduln
Fiir einen Z-Modul V' sei Viprs := {v € V' | 30 # n € Z mit nv = 0} der Torsionsuntermodul.

Satz 1.1.1 Sei V ein endlich erzeugter Z-Modul.

(1) V =~ Vigrs ® Z" und |Viors| < oo. Hierbei ist r € Z>o und heilt Rang von V. Wir schreiben
r=rg(V).

(2) Sei W C V ein Teilmodul. Dann ist W endlich erzeugt und es gilt rg(W) < rg(V).

(3) Falls V' frei ist und W C V ein Teilmodul, so ist auch W frei.

(4) Falls V ein endlicher Z-Modul ist, so gibt es eine natiirliche Zahl n und einen (freien) 7Z-
Teilmodul L C Z™, so dass V ~ Z" /L gilt.

Im Weiteren bezeichnen wir einen freien Z-Modul auch als Z-Gitter. Durch die Wahl einer Z-Basis
fiir ein Z-Gitter V erhalten wir einen nicht-kanonischen Isomorphismus V' ~ Z™ mit m = rg(V).
Teilmoduln W C V beschreiben wir dann durch Matrizen M € Z™*", wobei die Spalten von M
den Erzeugenden von W entsprechen.

1.2 Hermitesche Normalform

Definition 1.2.1 Eine Matrix M = (m;;) € Z™*" ist in Hermitescher Normalform (kurz HNF),
falls es eine streng monoton wachsende Funktion f: {r+1,...,n} — {1,...,m}, 0 <r <n
geeignet, gibt, die folgende Bedingungen erfiillt.

(1) Firr+1<j<mnist Mgy, = 1, mi; =0 fiir i > f(G) und 0 < My e < My, fir k> j.
(2) Die ersten r Spalten von M sind Nullspalten.

Satz 1.2.2 Sei A € Z™*™. Dann gibt es eine eindeutig bestimmte Matrix B = (0 | H) in HNF
und eine Matrix U € Gl,(Z) mit B = AU.

Mit einem Algorithmus, der als Verallgemeinerung des Gaufischen Algorithmus angesehen werden
kann, 14sst sich zu einer gegebenen Matrix A die HNF B = (0 | H) sowie die Matrix U berechnen.

1.3 Anwendungen der HNF
1.3.1 Bild einer ganzzahligen Matrix

Wir identifizieren A € Z™*™ mit der Z-linearen Abbildung A: Z" — Z™. Sei B = (0 | H) die
HNF zu A. Dann bilden die Spalten von H eine Z-Basis des Bildes von A.



1.3.2 Kern einer ganzzahligen Matrix

Sei B = AU die HNF von A. Sei r wie in der Definition der HNF. Dann ist eine Z-Basis des Kerns
von A durch die ersten r Spalten von U gegeben.

1.4 Test auf Gleichheit

Seien L1, Ly C Z™ zwei Gitter, beschrieben durch A; € Z™*" und Ay € Z"*™2. Dann gilt:

L1 =Ly <— HNF(Al) = HNF(AQ)

1.5 Summe von zwei Gittern

Etwas allgemeiner betrachten wir Gitter L C Q™. Sei d € N minimal mit d. C Z™. Dann nennt
man d den Nenner von L und unter der HNF von L verstehen wir das Paar (HNF(dL), d).

Seien nun L1, Lo C Q™ zwei Gitter gegeben durch ihre jeweilige HNF (W7, dq) bzw. (Wa,ds). Sei
D :=kgV(dy,ds). Betrachte dann die Matrix W = (%Wl | d—DQWQ). Dann sind die nicht-trivialen
Spalten von HNF(W) eine Z-Basis von D(Ly + Ls).

1.6 Test auf Inklusion
Ohne Einschrénkung seien Ly, Lo C Z™. Dann gilt:
L1+L2:L2 <~ L1 QLQ

Dies ldsst sich mit den vorherigen Algorithmen testen.

1.7 Smithsche Normalform

Sei G eine endliche abelsche Gruppe. Sei g1, ..., g, ein Erzeugendensystem von G. Dann induziert
der Epimorphismus 7: Z" — G, (21, ..., 2,)" = 2101+ . .4+Tp g, einen Isomorphismus Z" /L ~ G,
wobei hier L := ker(r) gesetzt ist. Das Z-Gitter kann dann durch eine Matrix A € Z"*"™ beschrieben
werden, d.h. die Spalten von A sind eine Z-Basis von L.

Lemma 1.7.1 Es gilt in obiger Situation: |G| = | det(A)].

Definition 1.7.2 Eine Matrix B € Z"*" ist in Smithscher Normalform (kurz SNF), falls B eine
Diagonalmatrix mit nicht-negativen Koeffizienten ist, so dass bjy1 41 | b; fiir 1 <i < n gilt.

Satz 1.7.3 Sei A € Z™*™ mit det(A) # 0. Dann gibt es genau eine Matrix B in SNF von der
Form B =V AU mit U,V € Gl,,(Z).

Als Anwendung von HNF und SNF haben wir einen prinzipiellen Algorithmus skizziert, der zu einer
gegebenen endlichen abelschen Gruppe G die Struktur als abstrakte abelsche Gruppe bestimmt.
Der Algorithmus setzt voraus, dass wir ein endliches Z-Erzeugendensystem von G kennen sowie
eine gute Approximation an die Kardinalitdt von G.

1.8 Weitere Algorithmen fiir endlich erzeugte abelsche Gruppen
Literatur: H.Cohen, Advanced topics in computational number theory, Chapter 4.1

Wir benutzen im Folgenden die folgende Matrixnotation: Sei A eine e-e abelsche Gruppe und
A= (aq,...,q,) mit @; € A ein Zeilenvektor von Elementen in A. Fiir eine Spaltenvektor X =

(x1,...,2.)t € Z" sei
s T
AX = E x;0, oder Hozf",
i=1 i=1



je nachdem, ob wir die Gruppenoperation in 4 additiv oder multiplikativ schreiben. Entsprechend
ist fiir eine Matrix M = (m;;) € Z"™"

AM = (B1,...,[0n) mit §; = Zmijai oder Hazn“.
i=1 i=1

Definition 1.8.1 Sei A eine e-e abelsche Gruppe und G = (g1, ..., g,) mit g; € A. Sei M € Z"™**.
Dann ist (G, M) ein System von Erzeugern und Relationen, falls

e cs fiir jedes o € A ein X € Z" mit o = GX gibt.

o fiir alle X € Z" gilt:
GX =14 <= 3Y € Z* mit X = MY.

Inbesondere gilt also GM = (14,...,14). Mit anderen Worten kann man #quivalent sagen:
7k Mz S A —1
ist eine Présentation von A.

Definition 1.8.2 Sei A eine e-e abelsche Gruppe und (A, D) ein System von Erzeugern und
Relationen. Wir sagen, (A, D) ist in SNF, falls

dy
do
d,
mit djpq | d; fir 1<i<r,0<d;und d; #1fir1 <i<r.

Der folgende Algorithmus berechnet zu einem System (G, M) von Erzeugern und Relationen fiir A
eine SNF (A, D) fiir A sowie eine Matrix U, zur Berechnung von diskreten Logarithmen. Zusitzlich
setzen wir |A| < oo voraus. Sei n := |G].

1. HNF Schritt: Berechne die HNF (0 | H) von M.
2. SNF Schritt: Berechne U,V € Gl,(Z), so dass UHV = D’ in SNF ist. Setze
A = (a1,. ..y g1y ... ) = GU L,
wobei m in Schritt 3 definiert ist.
3. Losche triviale Komponenten: Sei

dq

mit d,, # 1. Setze dann D := diag(ds,...,dn), A := (a1, ...ay,). Ferner sei U, die Matrix
der ersten m Zeilen von U.

4. Ausgabe: Gib (4, D) und U, aus.



Es gilt dann AU, = G, d.h., die alten Erzeuger kénnen mit der Matrix U, durch die neuen Erzeuger
in A ausgedriickt werden.

Sprechweise: Sei A eine endliche abelsche Gruppe. Wir sagen, dass A effektiv berechnet ist,
wenn

e wir eine System (G, M) von Erzeugern und Relationen haben, oder dquivalent, eine SNF
(A, D).

e wir einen effektiven Algorithmus haben, der zu a € A ein X € Z!4! berechnet mit @ = AX.

Wir nennen X den diskreten Logarithmus von « beziiglich A.

Sprechweise: Sei): A — B ein Homomophismus von effektiv berechneten (endlichen) abelschen
Gruppen. Seien (A, D4) und (B, D) jeweils Erzeugende und Relationen in SNF. Wir sagen, dass
1) effektiv berechnet ist, wenn man

1. zu a € A das Element () in der Form ¢(a) = BY mit berechenbarem Y € Z!B! schreiben
kann.

2. zu B € Y(A) ein o € A berechnen kann mit ¢(a) = S.

1.9 Ein Algorithmus zur Berechnung von Quotienten

Sei
A B2 —1

eine exakte Sequenz von (endlichen) abelschen Gruppen. Wir setzen voraus, dass A, B effektiv
berechnet sind. Zusétzlich brauchen wir, dass 1 und ¢ folgende Bedingungen erfiillen:

1. Zu a € A kann man () in der Form t(a) = BY mit berechenbarem Y € ZIB! schreiben.
Dies ist im Wesentlichen das DL-Problem in 5.

2. Zu v € ¢(C) kann man 8 € B berechnen kann mit ¢(8) = ~.

Sei €’ := ¢(B). Dann ist C’ ein Erzeugendensystem von C. Sei P € ZIBI*I4l 5o dass

¢(A) - (w(al)a s 71/)(@2) = BP

gilt. Da wir in B das DL-Problem l6sen kénnen, ist P berechenbar.
Sei nun V € ZI¢l eine Relation, d.h. C'V = 1¢. Es gilt:

C'V=1c < V eIm(P | D).

Also ist (¢(B), (P | Dg) ein System von Erzeugern und Relationen, aus dem wir eine SNF (C, D¢)
berechnen koénnen.
Wir fassen zusammen:

1. DL Schritt: Mit dem DL-Algorithmus in B berechne P mit 1)(A) = BP.

2. SNF Schritt: Berechne die SNF zu (¢(B), (P | Dg) und gib (C, D¢) sowie die Matrix U,
aus.

Damit C effektiv berechnet ist, miissen wir noch einen Algorithmus zur Berechnung des DL-
Problems in C angeben. Sei v € C und ¢(8) = 7. Wegen der zweiten Voraussetzung konnen
wir 8 berechnen. Da wir das DL-Problem in B lésen kénnen, finden wir X € Z!Zl mit § = BX.
Dann gilt

v = 6(8) = B(BX) = 9(B)X = C'X = CU,X.

Also ist U, X der DL von v beziiglich dem Erzeugendensystem C von C.



1.10 Ein Algorithmus zur Berechnung von Gruppenerweiterungen
Seien A und C zwei endliche abelsche Gruppen, die effektiv berechnet sind. Seien (A, D4) und
(C, D¢) Erzeugende und Relationen in SNF. Sei

1—>Ai>8i>C—>1

eine exakte Sequenz abelscher Gruppen. Zusétzlich setzen wir voraus:
(i) Zu v € C kann man 3 € B berechnen mit ¢(8) = 7.
(ii) Zu B € ¢(A) kann man a € A mit ¥(«) = 8 berechnen.

Wir wollen B effektiv berechnen. Hier ist der Algorithmus.

1. Berechne Erzeugende: Berechne mittels (i) B’ mit ¢(B’) = C sowie 1(A).

2. DL Schritt: Setze B” := B'D¢ = ( {’7...,6(’0‘) und A” = (0/1’7...,04'0') mit Y(af) = BY.
Dies ist moglich wegen (ii). Berechne mit dem DL-Algorithmus in A eine Matrix P € ZIAXICI
mit A” = AP.

Dy —P

0 D¢

Darstellung von B durch Erzeugende und Relationen. Berechne hiervon die SNF (B, Dg)

sowie die Matrix U,.

3. SNF Schritt: Setze G := (¢(A) | B') und M := ) Dann ist (G, M) eine

Zur Losung des DL-Problems in B: Sei § € B gegeben. Da wir den diskreten Logarithmus in
C berechnen konnen, kann man Y mit ¢(8) = CY = ¢(B’)Y berechnen. Dann ist § — B'Y €
ker(¢) = im(v)), so dass wir wegen (ii) ein a € A mit ¢(a) = f — B'Y berechnen kénnen. Mit
dem DL-Algorithmus in 4 berechnen wir X mit a« = AX. Dann gilt 8 = ¢(4)X + B'Y, d.h. wir
konnen (3 als Linearkombination der Erzeugenden G = (¢(A) | B') darstellen. Mit der Matrix U,
kann man jetzt den diskreten Logarithmus beziiglich der SNF (B, D) berechnen.

1.11 Weitere Algorithmen fiir e-e abelsche Gruppen

Fiir weitere Algorithmen dieser Art sei auf das Buch von Cohen verwiesen. Insbesondere kann man
fiir eine exakte Sequenz endlicher abelscher Gruppen

AL B2 D1

und der effektiven Kenntnis von A, B, D (+ gewisser Anforderungen an ¢, ¢ und =) die Gruppe C
effektiv berechnen.

2 Zahlkorper

2.1 Darstellung von algebraischen Zahlen
Sei K/Q ein Zahlkérper vom Grad [K : Q] = n und

{O-la cee Un} = {0-1) sty OT130T1+13 0-7‘1-‘1-17 s 70-7‘1-‘1-7‘270-7‘1-‘1-7'2}
die Einbettungen K < C. Hierbei bezeichnen o1,...,0,, die reellen Einbettungen und
Ori4+150r+1s---30r +rys O+, die Paare komplex-konjugierter Einbetttungen.



2.1.1 Algebraische Zahlen als Wurzeln der Minimalgleichung

Sei f € Q[X] normiert und irreduzibel. Dann ist K = Q[X]/(f(X)) ein Zahlkorper vom Grad
n = deg(f). Oftmals wollen wir K als Teilkérper der komplexen Zahlen C betrachten. Dazu
braucht man Approximationen an die Nullstellen

@ = Qq,02,...,0,

von f. Diese entsprechen den Einbettungen K < C und werden entsprechend wie oben nummeriert.
Es gilt:

Q[X]/(f(X)) ~ Q(«) induziert von g(X) — g(«).
Diese Darstellung nennen wir die Standarddarstellung. Die Rechenoperationen finden in

Q[X]/(f(X)) statt und benétigen als wesentliche Subroutinen Teilen mit Rest und den erweiterten
euklidischen Algorithmus.

2.1.2 Darstellung beziiglich einer Q-Basis

Die weiteren Darstellungen setzen voraus, dass K durch eine Q-Vektorraumbasis 64, . . ., 0,, gegeben
ist. Zum Beispiel ist fiir K = Q[X]/(f(X) = Q(«) eine solche Basis durch 1, o, ..., a" ! gegebenen.
Es gelte

91»91- = Z aij7k9k.
k=1

Fiir die Multiplikation speichert man in der Regel die Koeffizienten a;; € Q ab. Fiir die Division
muss man umrechnen zur Standarddarstellung.

2.1.3 Die Matrixdarstellung

Sei 61, ...,0, eine Q-Basis von K und g € K. Dann ist die Multiplikation mit 8 ein Endomorphis-
mus von K,
ng: K — K, &~ f€.

Sei Mz € Q™*™ die Darstellungmatrix beziiglich der fixierten Basis 61, ...,6,. Dann ist 5 — Mg
ein basisabhingiger injektiver Q-Algebrenhomomorphismus K <« Q™*™,
2.1.4 Konjugiertenvektoren

Im Gegensatz zu den bisherigen Darstellungen ist diese Darstellung nicht exakt. Wir stellen g € K
durch einen sogenannten Konjugiertenvektor

(01(6)7 sy Oy (5)7 0T1+1<6)’ ce s Orgdry (6)) € (CTH_T?

dar. Die Rechenoperationen sind hier einfach, da komponentenweise, allerdings braucht man in der
Regel sehr gute Approximationen, um zu exakten Werten umzurechnen.

Als Beispiel haben wir die Erzeugung des Hilbertschen Zahlkérpers K(1)/K fiir einen imaginér-
quadratischen Kérper K betrachtet. Hier gilt K (1) = K(j(Ok)) und die Konjugierten von j(Ok)
sind in natiirlicher Weise durch komplexe Zahlen gegeben, die man nur approximativ berechnen
kann. Literatur hierzu:

e H. Cohen, Advanced Topics in Computational Number Theory, Chapter 3
e Silverman, Advanced topics in the arithmetic of elliptic curves

e Schertz, Complex multiplication



2.2 Spur, Norm und charakeristisches Polynom

Definition 2.2.1 (a) Sei § € K. Dann heift

charakteristisches Polynom von /.
(b) Es sei x3(X) = > ;(=1)""s,,—; X". Dann nennt man s;(3) die k-te elementarsymmetrische
Funktion von §.

Es gilt: Trg/q(8) = s1(8), Nk/o(8) = sn(B).
Die approximative Berechnung von xg ist leicht, wenn 3 als Konjugiertenvektor gegeben ist. Es
gilt ferner:

xg(X) = det(XE — Mpg).

Insbesondere sind Norm und Spur von § durch die Determinante und Spur von Mg gegeben.
Satz 2.2.2 Sei 8 = Y7 a0’ € K = Q(a). Sei A(X) := Y"1} a;X". Dann gilt:
xp(X) = Resy (f(Y), X — A(Y)).
Insbesondere gilt fiir die Norm
Nk o(B) = Resy (f(Y), A(Y)).

Hierbei bezeichnet Resy die Resultante beziiglich Y iiber dem Ring R = Q[X]. Resultanten sind
relativ einfach zu berechnen, siehe [Cohen, Lemma 3.3.4].

2.3 Ordnungen und Ideale

Definition 2.3.1 Eine Ordnung R in K ist ein Teilring R C K, der als Z-Modul endlich erzeugt
ist und eine Q-Basis von K enthélt.

Sei R eine Ordnung und I C R ein Ideal. Dann ist R/I stets endlich und wir definieren
N(I) :=|R/I|.

Definition 2.3.2 Sei R C K eine Ordnung.

(a) Eine nicht-leere Teilmenge (0) # I C K heifit gebrochenes Ideal von R, falls es ein d € Z gibt,
so dass dI C R ein Ideal ist.

(b) Ein gebrochenes Ideal heifit invertierbar, wenn es ein gebrochenes Ideal J gibt mit IJ = R.

Lemma 2.3.3 Sei I ein gebrochenes Ideal und I’ :== {a € K | ol C R}. Dann gilt:

I ist invertierbar <= II' = R.

2.4 Darstellung von Moduln und Idealen

Definition 2.4.1 Sei R C K eine Ordnung und sei wy, . ..,w, eine Z-Basis von R. Sei M C K ein
voller Z-Teilmodul. Dann gibt es eine eindeutig bestimmte Z-Basis u1, ..., g, von M mit

1 n
Hi=5 ;wu‘wi,

so dass d,w;; die folgenden Eigenschaften erfiillen:

(1) d,wi; € Z,d > 0,ggT(d, w;;,Vi,7) =1,

(2) Die Matrix W = (w;;) ist in HNF.

Dann heit das Paar (W,d) HNF von M beziiglich R, genauer beziiglich der fixierten Basis
W1y, Wy von R.



Bei dieser Darstellung ist die Berechnung von Modulsumme, der Test auf Gleichheit von zwei
Moduln sowie, falls M C R, die Berechnung des Index [R : M] einfach. Insbesondere, falls M C R
ein Ideal ist, erhalten wir auf einfache Weise die Norm von M als Produkt der Diagonalelemente
der HNF. Ferner lisst sich einfach testen, ob ein Element oo € K in M enthalten ist.

Eine zweite wichtige Art, um Ideale zur Maximalordnung R = O darzustellen, beruht auf folgen-
dem Satz.

Satz 2.4.2 Sei a C Ok ein Ideal. Dann gibt es zu jedem 0 # « € a ein 8 € a, so dass a = («, 8) =
aOk + Ok gilt.

Zum Beweis verwenden wir den sogenannten schwachen Approximationssatz:

Satz 2.4.3 Sei S = {p1,...,p,} eine endliche Menge von maximalen Idealen von Ok und sei
€1,...,6r € Z>g. Dann gibt es ein § € O mit vy, (f) =e; firi=1,...,r.

3 Grundlegende Algorithmen in Dedekindringen

3.1 Verallgemeinerter euklidischer Algorithmus

Sei R ein Dedekindring. In aller Regel stellen wir uns R als den Ring der ganzen Zahlen in einem
Zahlkorper vor. Dann ist R ein e-e Z-Modul und wir kénnen Resultate aus der Theorie der e-e
Z-Moduln benutzen. Ebenso kann man sich auch einen Dedekindring R vorstellen, der iiber einem
Polynomring k[T'], wobei k ein Kérper ist, vorstellen. Hier kénnen wir dann die Modultheorie fiir
e-e k[T]-Moduln verwenden.

Proposition 3.1.1 Seien a,b ganze Ideale in R mit a + b = R. Dann kann man in polynomialer
Zeit Elemente a € a und b € b mit a + b = 1 berechnen.

Satz 3.1.2 Seien a,b € Ip zwei gebrochene Ideale, a,b € K und es gelte (a,b) # (0,0). Sei
0 :=aa+bb. Dann gibt esu € ad~ ' und v € bd~! mit u+ v = 1. Die Elemente u und v kénnen in
polynomialer Zeit berechnet werden.

Der folgende Satz ist eine geringfiigige Verallgemeinerung des obigen schwachen Approximations-
satzes. Auch hierfiir kann man einen polynomialen Algorithmus angeben, der im wesentlichen auf
Proposition 3.1.1 beruht.

Satz 3.1.3 Sei S = {p1,...,p.} eine endliche Menge von maximalen Idealen von R und sei
e1,...,ep, € Z. Dann gibt es ein § € R mit v,,(8) = e; fir i = 1,...,r und v,(8) > 0 fiir

alle p € S. Das Element 8 kann in polynomialer Zeit berechnet werden.

Satz 3.1.4 (Stirkerer Approximationssatz) Sei S eine endliche Menge von Primidealen in R,
(ep)pes € ZI9 und (wy)pes € K!9I. Dann gibt es ein x € K mit

vp(x —xp) =ep,Vp S, vy(x) >0,Vp &S.
Das Element x kann in polynomialer Zeit berechnet werden.

Der Beweis hierfiir konnte bislang nicht gefithrt werden.



3.2 Die HNF in Dedekindringen

Satz 3.2.1 Sei M ein e-e torsionsfreier R-Modul und V = KM . Dann gibt es w,
ay,...,0, € Ig, so dass
M:alwl@...@anwn.

Falls M = djw| @ ... ® aj,w),, so stimmen die Klassen von

a:=a;---a, unda :=a}---a

in der Klassengruppe clg tiberein.

.o.,wn €'V und

Definition 3.2.2 Setze St(M) := Klasse von a. Dann nennt man St(M) die Steinitzklasse von

M.

Fiir zwei e-e torsionsfreie R-Moduln gilt: N ~ M <= rg(N) =rg(M) und St(N

Definition 3.2.3 Sei M ein e-e torsionsfreier R-Modul und V = K M.

) = St(M).

1. Sei 0 # w € V und a € Iz. Dann nennen wir die Aquivalenzklasse des Paares (a,w) ein

Pseudoelement, wobei wir definieren:
(a,w) ~ (b,n) : <= aw = bn.

2. Das Pseudoelement (a,w) heiit ganz, falls aw C M.

3. Seien (a;,w;),i = 1,...,k, Pseudoelemente. Dann nennt man {(a;,w;) : ¢ = 1,...,k} ein
Pseudoerzeugendensystem, falls
M=aqwi + ...+ apwg.
4. Seien (a;,w;),i = 1,...,k, Pseudoelemente. Dann nennt man {(a;,w;) : # = 1,...,k} eine

Pseudobasis, falls
M=aw &...Papwg.

Wegen Satz 3.2.1 besitzt jeder e-e torsionsfreie R-Modul M eine Pseudobasis. Die
sition beschreibt den Ubergang zwischen zwei Pseudobasen.

Proposition 3.2.4 Sei

n n
M = @aiwi = @[’ﬂb
i=1 j=1

Sei (1,-.-,mm) = (w1,...,w,)U mit einer Matrix U € Gl,(K). Seien a := a;
by -+ b,. Dann gilt u;; € a;b; " und a = det(U)b.

folgende Propo-

---a, und b =

Sei umgekehrt M = @?:1 a;w;. Seien weiter by, ..., b, € Ir und U € Gl,(K) gegeben. Es gelte
a = det(U)b und u;; € uibgl. Definiert man dann 1y, ...,n, durch (n1,...,n,) = (w1,...,w,)U,

dann gilt
M = @ bj’l]j.
j=1

Definition 3.2.5

1. Eine Pseudomatrix ist ein Paar (A, I), wobei A € K™*¥ und I = (ay,...,az), a; € Ig.



2. Man nennt M := Z?Zl ajA; C K™ den von (A,I) erzeugten R-Modul. Hierbei bezeichnet
wie iiblich A; die j-te Spalte der Matrix A.

Die Abbildung

k
fra®...®a, — M, (al,...,ak)HZajAj,
j=1

nennt man die von (A, I) induzierte Abbildung.

3. ker(f) nennt man den Kern von (A4, I).

Satz 3.2.6 Sei (A, I) eine Pseudomatrix. Seirg(A) = n und M der von (A, I) erzeugten R-Modul.
Dann gibt es Ideale bq,...,by € Ir und eine Matrix U = (u;;) € Gli(K) mit den folgenden
Eigenschaften:

1. Ujj € a,»bj_l, V1<i,j<k.

2. a=det(U)b, wobei a:=ay---a; und b := by --- by.

1 % % ... %
1 % .. %
3. AU = (0|H) mit H =
1
4. Seicj =bp_py1,5=1,...,n und seien w; = Hj,j =1,...,n die entsprechenden Spalten von

H. Dann gilt
M=cw &...Pcpwy,

d.h. (¢j,w;);=1,...n ist eine Pseudobasis von M.
5. (Uj,b5)1<j<k—n Ist eine Pseudobasis von ker(f).

Der Beweis wurde in Form eines Algorithmus erbracht, siehe [Cohen, Advanced Topics, Algorithmus
1.4.7).

Proposition 3.2.7 Sei S;; ein Vertretersystem von K/cicj !, Dann kann man oF fiir alle j > i
annehmen, dass h;; € S;;. In diesem Fall ist dann die Matrix H eindeutig.

Literatur: Biasse, Fieker, Hofmann, J.Symb.Comp. (2017), On the computation of the HNF over
the ring of integers of a number field.

3.3 Berechnung von Bewertungen

Fiir ein Primideal p von Ok und ein Ideal a C Ox wollen wir den Wert v, (a) berechnen. Naiv
konnte man p¢ fiir e = 0,1, ... berechnen, denn es gilt:

vp(a) = max{e | p* +a=p°}.
Eine alternative Vorgehensweise beruht auf folgendem Lemma.
Lemma 3.3.1 Es gibt ein a € K \ Ok mit ap C Ok. Fiir jedes solche a gilt:
p =0k +a0k, vp(a)=—1, wvq(a)>0,Yq#p.

Es gilt dann:

vp(a) = max{e | a°a C Ok }.
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3.4 Berechnung der Differente und Idealinversion

Wir errinnern an die Spurform
KxK-—Q, (ap) Trg(aB).

Die Spurform ist eine nicht-ausgeartete symmetrische Bilinearform auf dem Q-Vektroraum K.
Fiir eine vollen Z-Teilmodul M C K sei

M* :={a € K| Trg,g(aM) C Z}.

Falls M = (y1,...,7n)z, so ist
M* = <7f)7fy:7,>z

mit der Dualbasis (bez. der Spurform) ~7,...,, definiert durch Trg/q(yi7;) = di; (Kronecker
delta).

Fiir ein gebrochenes Ideal I wollen wir nun I~ = {a € K | al C Ok} berechnen. Dazu fithren
wir die folgenden drei Schritte aus.

(1) Berechne Oj.
(2) Berechne I - O%.
(3) Berechne (I - O%)*.
Lemma 3.4.1 Es gilt (I - O})* =171,

Die Berechnungen der Duale in den Schritten (1) und (3) ist lineare Algebra, zur Berechnung des
Produkts in Schritt (2) ist eine HNF zu berechnen.

Remark 3.4.2 O} ist die sogenannte inverse Differente oder Kodifferente.

4 Berechnung der Maximalordnung

4.1 Die Satze von Pohst-Zassenhaus

Sei K = Q(0), 6 ganz, ein algebraischer Zahlkérper. Wir wollen den Ring der ganzen Zahlen O
berechnen.

Definition 4.1.1 Sei O eine Ordnung und p eine Primzahl.
(1) O heiit p-maximal, falls p{ [Ok : O].
(2) I, .= /pO ={a € O|3Im e Zsy: o™ € pO} heiBt p-Radikal von O.
Satz 4.1.2 Sei O C K eine Ordnung in K und p eine Primzahl. Dann gilt:
e I, ist ein Ideal in O.
o I, =pi---pg, wobei pq,...,p, die paarweise verschiedenen Primideal von O iiber pZ sind.
e Es gibt einm > 0 mit I* C O.
Satz 4.1.3 (Pohst-Zassenhaus) Sei O C K eine Ordnung in K und p eine Primzahl. Sei
O :={a€K|al,CI,}

Dann ist O' eine Ordnung und es gilt entweder (i) oder (ii), wobei

11



(i) O = O und O ist p-maximal.

(ii)) O C OO £ O and pt [0 : O] | p™
Der Satz von Pohst-Zassenhaus legt folgenden groben Algorithmus nahe. Ausgehend von O = Z[6)
berechnen wir fiir jedes p mit p? | d(0) = [O : Z[0]]*dk sukzessive groBere Ordnungen O’ solange

bis O’ p-maximal ist. In der Praxis ist d(f) oft sehr grofi und die Berechnung der relevanten
Primzahlen p daher ein Problem.

4.2 Das Dedekindkriterium

Fiir Ordnungen der Form O = Z[f] kann man mit dem Dedekindkriterium effizient (d.h. schneller
als mit Pohst-Zassenhaus) feststellen, ob O p-maximal ist.

Satz 4.2.1 (Dedekindkriterium) Sei K = Q(0), 6 ganz, und m(x) € Z[z] das Minimalpolynom
von 6. Sei p eine Primzahl. Sei

k
m(z) = H m;(x)%
i=1

die Zerlegung in irreduzible Faktoren in Fy[x]. Sei

k
g(x) := [ [ mi(z)
i=1
mit normierten Lifts m;(x) € Z[z] von m;(x). Dann gilt:
e Das p-Radikal I, von O = Z[6)] ist gegeben durch
1, = pZi6) + 9(0)Z[6).

e Sei h(x) € Z[x] ein normierter Lift von m(z)/g(x). Setze

Dann ist f(z) € Z[x] und es gilt
O = Z[0] ist p — mazimal <= (f,g,h) =1 in F,[z].
e Sei O' = {x € K | xI, C I,}. Sei U(x) € Z[x] ein normierter Lift von m/(f, g, h). Dann gilt:

(i) O' =70+ %U(G)Z[G].
(i) Fiir d = deg((f,g,h) gilt

[0 Z[f] = p?,  d(O') = d(6)/p*".

4.3 Der Round2-Algorithmus
Ausgehend von der HNF von O sind die HNF von I, und O’ zu bestimmen.

Lemma 4.3.1 Sein = [K : Q] und j > 1, so dass p’ > n. Dann gilt:

Rad(O/pO) = ker(z — a:pj).

12



Man beachte, dass O/pO — O/pO, z xpj, eine [F)-lineare Abbildung ist. Der Kern kann also
mit Methoden der linearen Algebra berechnet werden. Es gilt dann:

I, = Lift(Rad(O/p0O)) + pO.
Lemma 4.3.2 Sei U der Kern der F,-linearen Abbildung
O/pO — End(I,/pl,), &+~ (B+ ap).
Dann gilt: 0" = Lift(%U) + pO.
Den Kern U kann man wieder mit Methoden der linearen Algebra berechnet werden.
5 Berechnung von Klassengruppe, Regulator und Funda-
mentaleinheiten

5.1 Definitionen und Notationen, grundlegende Resultate
Sei K ein algebraischer Zahlkorper. Es sei
e J(K) die Gruppe der gebrochenen Ideale,
e P(K) die Untergruppe der Hauptideale,
cl(K) = I(K)/P(K) die Idealklassengruppe,
hix = |cl(K)| die Klassenzahl,

e U(K) = O die Einheitengruppe und

e u(K) die Gruppe der in K gelegenen Einheitswurzeln.
Zentrale Resultate der algebraischen Zahlentheorie sind die beiden folgenden Sétze.
Satz 5.1.1 hig < co.

Satz 5.1.2 U(K) = u(K) x 0¥ x ... x n% mit sogenannten Fundamentaleinheiten ny,...1n,, €
U(K). Hierbei ist 1, = r1+7r2 — 1, wobei r1 die Anzahl der reellen Einbettungen und ro die Anzahl
der Paare komplex-konjugierter Einbettungen bezeichnet.

Fiir das Weitere legen wir die folgende Numerierung zugrunde. Es sei

017"'7UT1?UT1+17' "70T1+T236T1+13-"767‘1-‘1-7‘2

die Gesamtheit der Q-Einbettungen o: K — C.
Wir definieren
lo(a)],  falls o reell ist,

|alo = [lo()| :{

lo(a)|?, falls o komplex ist.

Definition 5.1.3 Sei 1, ...n,, ein System von Fundamentaleinheiten. Sei M eine beliebige r,, x
r.-Matrix, die aus
(loga;(ni)) 1<i<ry,
1<j<r.+1
durch Streichen einer beliebigen Spalte entsteht. Dann setzt man:
R(K) := | det(M)|
und nennt dies den Regulator von K.

Remark 5.1.4 Diese Definition ist unabhéingig von der Wahl der Fundamentaleinheiten sowie der
Wabhl der zu streichenden Spalte.
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5.2 Berechnung von u(K)
Lemma 5.2.1 Sei a € Ok. Dann gilt:

a € pu(K) < |o(a)| =1 fiir alle Q-Einbettungen o: K — C.

Fiir r1 > 0 ist u(K) = {£1}. Daher sei im Weiteren r; = 0.
Sei O = Zw1 P ... P Zw,. Dann ist jede Einheitswurzel ¢ von der Form

n
C = Z TiWs
i=1

mit ganzen Zahlen x4, ..., x,. Die Ungleichnung zwischen geometrischen und arithmetischen Mittel
zeigt, dass die Einheitswurzeln in K genau durch die Minima auf dem Gitter Z™ der positiv definiten

quadratischen Form
n n
Q(x1,...,xy) = Z |crj(z xiwi)|2
j=1 i=1

gegeben sind. Diese kann man z.B. mit dem Fincke-Pohst-Algorithmus bestimmen.*

5.3 Die Dedekindsche Zeta-Funktion
Definition 5.3.1 Die Dedekindesche Zetafunktion ist fiir Re(s) > 1 definiert durch

1 1 \!
=S ——=J[(1-——) .
i) = 2 e 11 (1 ~67)
wobei a # (0) die ganzen Ideale und p # (0) die Primideale von Ok durchliuft.

Definition 5.3.2 Die Funktion
r1+7T2 T2
Asc(s) = a7 (72T (s/2)) T (r07920((s + 1)/2)) Ce(s)
heifit vervollstéindigte Dedekindsche Zetafunktion.

Satz 5.3.3 (Analytische Klassenzahlformel)

e (x(s) hat eine meromorphe Fortsetzung auf C. Sie ist holomorph auf C \ {1} und hat einen
einfachen Pol bei s = 1.

e Die vervollstidndigte Zetafunktion geniigt der Funktionalgleichung

A(1 = s) = A(s).
e (x(s) hat eine Nullstelle der Ordnung r,, bei s = 0 und es gilt

m s~ (e (s) = —h(K)R(K)/|p(K)|-

li
s—0
e (i (s) hat einen Pol der Ordnung 1 bei s = 1 und es gilt

h(K)R(K)

lim(s—1 s)=2"2m)"? ——=.
e T e G ]
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5.4 Idealreduktion

Definition 5.4.1 a) Sei a € I(K) ein gebrochenes Ideal und « € a, « # 0. Dann nennt man « ein
Minimum von a, falls fiir alle g € a gilt:

lo:(B)] < |oi(a)] firi=1,....,n = B =0.

b) a heifit reduziert, falls £(a) ein Minimum von a ist. Hierbei ist £(a)Z = aN Q.

Definition 5.4.2 Sei « € K und v = (V1, ..., Up , Upy 41y -« - s Uppbrgy Upy b1y« - 5 Urp 41y ) € R™. Dann
heif3t
llefo ==
v-Norm von a.
Sei aq, ..., qa, eine Z-Basis von a. Sei

n
qij = Zevkak(ai)ak(aj).

k=1
Dann definiert @ = (qi;), <ij<n ©ine positiv-definite symmetrische Bilinearform auf R™ und fiir
a=3" ra; €aund z = (z1,...,2,)" € Z" gilt:

#'Qu = [[al 2
Satz 5.4.3 Falls o € a ein Element kiirzester Léinge in a bez. der v-Norm ist, so ist a~'a reduziert.
Mit dem LLL-Algorithmus kann man nun kurze Elemente in 3 € a berechnen. Dann ist b := 3~ 'a
7fast” reduziert und man hofft, dass b dann ausschlielich kleine Primidealteiler hat.
5.5 Berechnung einer Relationenmatrix

Sei P = {p1,...,px} eine Menge von Primidealen, deren Klassen [p;] die Klassengruppe cl(K)
erzeugen. Dann ist der Gruppenhomomorphismus

k
m: ZF — (K), (z1,...,75) — alfll
i=1

surjektiv und wir wollen Ay := ker(w) bestimmen. Dazu berechne man zuféllige Produkte I =

Hle p;" und mittels LLL einen kurzes Element « beziiglich der v-Norm. Falls dann J := a I
iiber P faktorisiert, d.h.
k
J=1]»f
i=1

so gilt a0k = Hle pfi_d" und (e; —dy, ..., e, — di)t liefert eine Spalte in der Relationenmatrix.
Zusétzlich zu dieser ”nicht-archimedischen” Information speichern wir den Vektor

t
PRI 210g |UT1+T2 (Oé)|)

L(a) = (IOg |01(a)‘7 ..., log |UT1 (Oé)l, 2log |Ur1+1(a)

ab. Wir generieren auf diese Weise ky > k Relationen und eine Matrix A der Form
Ay

A= e

Aoo
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5.6 Berechnung eines ganzzahligen Vielfachen des Regulators und un-
abhingiger Einheiten (Grobform)

Berechne den ganzzahligen Kern W von Ay. Sei V' € Z*2*# eine Matrix, deren Spalten eine Z-Basis

von W sind. Sei v;, ¢ = 1,...,s, eine Spalte von V. Dann ist
ko
R Vij
j=1

eine Einheit und die i-te Spalte in AoV ist gegeben durch L(e;).

Falls s > r, gilt, so kann man beliebige r,, X r,-Minoren von A,V betrachten und erhélt entweder
0 oder im giinstigen Fall ein ganzzahliges Vielfaches R des Regulators R(K). Aus verschiedenen
Werten R kann man durch Berechnung eines reellen ggT kleinere ganzzahlige Vielfache von Ry
berechnen. Im folgenden Abschnitt stellen wir die benotigten Grundlagen dar und skizzieren einen
einfachen Algorithmus.

5.7 Unabhingige Einheitensysteme
Lemma 5.7.1 a) Seien n1,...,n,, Einheiten. Dann gilt:

[UK) = (1, - osme,)] <00 <= R(ms- oo, ) # 0.
Es gilt dann: [U(K) : {(n1,...,n:,)] = %'
b) Seien allgemeiner ny,...,7n,, und €,..., €,
(My.ooyne,) € (€1,..., €, ). Dann gilt:

unabhéngige FEinheitensysteme und es gelte

u

R(nla R 777?”74,)
ferreera) ()] = e,
Lemma 5.7.2 Seien n1,72,...,m, und ny,n2,...,n,, zwei unabhingige Einheitensysteme mit

Regulatoren R und R'. Seid = uR+vR' der reelle ggT. Dann ist n{'n{’, na, . .. ,ny, ein unabhédngiges
Einheitensystem mit Regulator d.

Aufbauend auf diesem Lemma kann man z.B. folgendermaflen vorgehen. Wir haben bereits Einhei-

ten ey, ..., €, mit s > ry, berechnet. Aus der Matrix C := A -V berechnen wir Ry := R(e1,...,€.,)

und Ry := R(ea, ..., €, +1). Falls Ry Ry # 0, so berechne man den reellen ggT d = uR; +vR2. Dann
Tuly, .. .

hat ea, ..., €, eg_l) €r,+1 den Regulator d. Entsprechend ersetzen wir in C die (r,,+1)-te Spal-

te durch (—1)"»~'L(€;) + vL(€,,+1). Im niichsten Schritt nehmen wir auf diese Weise die Einheit
€r,+2 dazu und erhalten letztendlich hoffentlich Einheiten #,...7n,, mit R = R(m,...7n,,) # 0.
Dieses R ist dann ein ganzzahliges Vielfaches von R .

5.8 Der vollstindige Algorithmus

1. Berechne eine Ganzheitsbasis wy,...,w, von Ok sowie die Diskriminante dg.

2. Berechne eine Menge von Primidealen P = {p;y,...,pr}, so dass die Klassen der p; die
Idealklassengruppe erzeugen. Zum Beispiel kann man die Menge aller Primideal p mit Norm
< Mk nehmen, wobei Mg die Minkowsischranke bezeichnet.

3. Setze ky :=k +r, + 10.
4. Finde ko Relationen, z.B. so wie in Abschnitt 5.5 beschrieben.

5. Berechne die HNF von A;. Falls Ay nicht vollen Rang hat, gehe zu Schritt 4 und nimm 10
weitere Relationen dazu.
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10.

11.

(A hat nun vollen Rang.) Berechne den ganzzahligen Kern von Ay und mit dem Verfahren
aus Abschnitt 5.7 Einheiten #,...,n,,, so dass R = R(n1,...,n,) # 0 gilt. Falls dies nicht
gelingt, gehe zu Schritt 4 und nimm 10 weitere Relationen dazu.

Sei h = det(H), wobei H die HNF von Ay bezeichnet. Dann ist AR ein ganzzahliges Vielfaches
von h(K)R(K).

Berechne p(K).

Berechne Z := Hp % und
plip

RSN
’ 2m(2m)r2
wobei p die Primzahlen unterhalb einer geeigneten Schranke durchlauft. Dann gilt z ~ hx Ry .

Falls hR > Z\/Z so gehe zu Schritt 4 und nimm 10 weitere Relationen dazu. Andernfalls gilt
hR = h(K)R(K).

Berechne die SNF von H. Dies liefert die Gruppenstruktur von cl(X) sowie deren Erzeuger.
Aus Schritt 6 haben wir Fundamentaleinheiten 7, ...,7,,.
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