1. Übungsblatt Quantencomputing

Aufgabe 1 Studieren Sie im Protokoll zur Kryptographie die Abschnitte 1 - 3 bevor Sie die folgenden Aufgaben lösen.

Aufgabe 2 a) Die Gruppe $(\mathbb{Z}/19\mathbb{Z})^{\times}$ ist zyklisch. Bestimme ihre sämtlichen Erzeuger. b) Berechne alle modulo 19 verschiedenen Lösungen $(x,y), x,y \in \mathbb{Z}$ des Kongruenzsystems

$$x^2 \equiv 11 \pmod{19},$$

$$xy \equiv -1 \pmod{19}.$$

(Anleitung: Sei w ein erzeugendes Element von $(\mathbb{Z}/19\mathbb{Z})^{\times}$. Setze an: $x=w^k, y=w^l$ mit $1\leq k,l\leq 1$ 18 und leite für k, l Kongruenzen modulo 18 her.)

Aufgabe 3

Die folgende Nachricht

68094034 128468343 143911297 122013244

wurde mit dem RSA-Verfahren mit den Parametern N=289648273 und e=17 verschlüsselt. Dabei wurde wie folgt vorgegangen: der alphanumerische Klartext wurde zu Gruppen von je 3 Buchstaben zusammengefasst. Jeder solchen Dreiergruppe $xyz, x, y, z \in \{A, B, \dots, Z\}$ wurde die Zahl $W(xyz) := w(x) \cdot 26^2 + w(y) \cdot 26 + w(z) \text{mod } N$ zugeordnet, wobei

$$w: \{A, B, \dots, Z\} \longrightarrow \{0, 1, \dots, 25\}$$

jedem Buchstaben einen Wert anhand der Tabelle

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
				1 -		19						

zuordnet. $W(xyz) \in \mathbb{Z}/N\mathbb{Z}$ wurde dann mit RSA verschlüsselt. Wie lautet die Nachricht?

Zu bearbeiten bis: Mi 25.10.2023