7. Übungsblatt zur Algebraischen Zahlentheorie

Aufgabe 1

Berechnen Sie die Primidealzerlegung von p in $\mathbb{Q}(\sqrt[3]{2})$ für p=7,11,13,31.

Aufgabe 2

Sei $L = \mathbb{Q}(\theta)$ mit $\theta \in \mathcal{O}_L$ ein Zahlkörper vom Grad n. Sei \mathfrak{f} der Führer von $\mathcal{O} := \mathbb{Z}[\theta]$ in \mathcal{O}_L . Sei $d = d(\theta) = d(1, \theta, \dots, \theta^{n-1})$ die Diskriminante von θ . Zeigen Sie: $\mathfrak{f} \mid d$.

Aufgabe 3

Sei L/K eine Erweiterung von Zahlkörpern und \mathfrak{p} ein Primideal von K. Es sei $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}^e\mathfrak{b}$ mit $\mathfrak{b} \triangleleft \mathcal{O}_L, (\mathfrak{b}, \mathfrak{P}) = 1$. Zeige:

$$\mathfrak{P}^s \cap \mathcal{O}_K = \mathfrak{p}^m \text{ mit } m = \left\lceil \frac{s}{e} \right\rceil \qquad \left(\frac{s}{e} \text{ aufgerundet} \right).$$

Aufgabe 4

Sei L/K eine Erweiterung von Zahlkörpern, \mathfrak{p} ein Primideal von K und \mathfrak{f} ein ganzes Ideal in \mathcal{O}_L . Sei $\mathfrak{p}\mathcal{O}_L=\prod_{i=1}^r\mathfrak{P}_i^{e_i}$ mit paarweise verschiedenen Primidealen \mathfrak{P}_i von \mathcal{O}_L . Zeigen Sie:

$$\mathfrak{P}_i + \mathfrak{f} = \mathcal{O}_L, \forall i \iff \mathfrak{p}\mathcal{O}_L + \mathfrak{f} = \mathcal{O}_L \iff \mathfrak{p} + (\mathfrak{f} \cap \mathcal{O}_K) = \mathcal{O}_K.$$

Aufgabe 5

Sei $L=\mathbb{Q}(\sqrt{d})$ ein quadratischer Zahlkörper mit $d\in\mathbb{Z}\setminus\{0,1\}$ quadratfrei. b) Sei $p\neq 2$ eine Primzahl. Zeige:

$$p\mathcal{O}_L = \begin{cases} \mathfrak{p}\overline{\mathfrak{p}}, & \text{falls } \left(\frac{d}{p}\right) = 1, \\ \mathfrak{p}, & \text{falls } \left(\frac{d}{p}\right) = -1, \\ \mathfrak{p}^2 & \text{falls } \left(\frac{d}{p}\right) = 0. \end{cases}$$

c) Zeige: Falls $d\equiv 2,3\pmod 4$, so ist die 2 in $L/\mathbb Q$ verzweigt. Falls $d\equiv 1\pmod 4$, so gilt:

$$2\mathcal{O}_L = \begin{cases} \mathfrak{p}\overline{\mathfrak{p}}, & \text{ falls } d \equiv 1 \pmod{8}, \\ \mathfrak{p}, & \text{ falls } d \equiv 5 \pmod{8}, \end{cases}$$

Besprechung der Aufgaben am 05.12.2023 in der Übung