2. Übungsblatt zur Algebraischen Zahlentheorie

Aufgabe 1 Sei $\alpha^3=2$. Zeigen Sie, dass $1,\alpha,\alpha^2$ eine Ganzheitsbasis von $K=\mathbb{Q}(\sqrt[3]{2})$ ist.

Aufgabe 2 Sei $A=\mathbb{Q}[X,Y]$ der Polynomring in X und Y. Betrachten Sie das Hauptideal $\mathfrak{p}=(X^2-Y^3)$. Zeigen Sie, dass \mathfrak{p} ein Primideal ist. Zeigen Sie ferner, dass A/\mathfrak{p} nicht ganz abgeschlossen (in seinem Quotientenkörper) ist.

Aufgabe 3 Sei K ein algebraischer Zahlkörper mit Ganzheitsring \mathcal{O}_K . Sei $\alpha_1, \ldots, \alpha_n$ eine \mathbb{Z} -Basis von \mathcal{O}_K . Zeigen Sie Stickelbergers Diskrimnantenkriterium:

$$d(\alpha_1, \ldots, \alpha_n) \equiv 0 \pmod{4}$$
 oder $d(\alpha_1, \ldots, \alpha_n) \equiv 1 \pmod{4}$.

(Hinweis: Beachten Sie den Hinweis zu den Aufgaben zu I.2 in Neukirchs Buch.)

Aufgabe 4 Sei $p \neq 2, 3$ eine Primzahl. Zeigen Sie:

$$\exists x, y \in \mathbb{Z} \text{ mit } x^2 - 3y^2 = p \iff p \equiv 1 \pmod{12}.$$

Besprechung der Aufgaben am 31.10.2023 in der Übung