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to show that this process can be iterated until some matrix ay with v € [
has bottom row (0, +). Show that in fact the bottom row is (0, +1), and since

[4 46]2 — —I it can be taken to be (0,1). Show that therefore ary € I" and so
e € I'. Thus I" is all of SLy(Z).

1.1.2. (a) Show that Im(v(7)} = Im(r)/ler + d|? for all v = [2 4] € SLa(Z).
(b) Show that (¥ )(7) = v(+/(7)) for all v, & SLy(Z) and 7 € H.
(c) Show that dy(7)/dr = 1/(cr + d)? for v = [2 ] € SLa{Z).

1.1.3. (a) Show that the set Mg (SLo{Z)) of modular forms of weight %k forms
a vector space over C.

(b} If f is a modular form of weight % and g is a modular form of weight [,
show that fg is a modular form of weight & + L.

(c) Show that Si{SLo(Z)) is a vector subspace of M (SL2(Z)) and that
S(SLy(Z)) is an ideal in M(SLy(Z)).

1.1.4. Let k > 3 be an integer and let L/ = Z% — {(0,0)}.

(a) Show that the series 3, per(sup{lel, |d[}) ~% converges by considering
the partial sums over expanding squares,

(b) Fix positive numbers A and B and let

2 ={reH:|Re(r)| < A Im(r) > B}.

Prove that there is a constant C' > 0 such that |7 + 6} > C'sup{1, ||} for all
7 € {2 and é € R. (Hints for this exercise are at the end of the book.)

(¢) Use parts (a) and (b) to prove that the series defining G(7} converges
absolutely and uniformly for r € §2. Conclude that G is holomorphic on H.

(d) Show that for v € SLa(Z), right multiplication by -y defines a bijection
from L' to L'

(e) Use the calculation from (c¢) to show that G, is bounded on £2. From the
text and part (d)}, Gy, is weakly modular so in particular G (v + 1) = Gi(7).
Show that therefore Gp{r) is bounded as Im(v} — oc.

1.1.5. Establish the two formulas for = cot w7 in (1.1). (A hint for this exercise
is at the end of the book.)

1.1.6. This exercise obtains formula (1.2} without using the cotangent. Let
F(r) = Y 4eg 1/ (T + d)¥ for k = 2 and 7 € H. Since f is holomorphic (by
the method of Exercise 1.1.4) and Z-periodic and since limyyr)e0 f(7) = 0,
there is a Fourier expansion f(r) = 3> .°_, amg™ = g{g) as in the section,
where g = 2™ and
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is a path integral once counterclockwise over a circle about 0 in the punctured
disk D',
(a) Show that
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(b) Let g (7) = 7 %e72™™7, 4 meromorphic function on C with its only
singularity at the origin. Show that
. —2mi)e

—2miRe8r 0 gm{T) = "((k——l))!mk !
" (c) Establish (1.2) by integrating g, (7} clockwise about a large rectangular
path and applying the Residue Theorem. Argue that the integral along the
top side goes to a, and the integrals along the other three sides go to 0.

(d) Let h : R — C be a function such that the integral [* |h{z)!dz
is finite and the sum }°, . h(z + d) converges absolutely and uniformly on
compact subsets and is infinitely differentiable. Then the Poisson summation

formule says that
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where, h is the Fourier transform of h,
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We will not prove this, but the idea is that the left side sum symmetrizes A to
i, function of period 1 and the right side sum is the Fourler series of the left
side since the mth Fourier coefficient is f; Y,y h(t +d)e ™2 midt = h(m).
Letting h(z) = 1/7% where 7 = z + iy with y > 0, show that h meets the
conditions for Poisson summation. Show that i(m) = e™2™™a,, with a.,
from above for m > 0, and that h(m) = 0 for m < 0. Establish formula (1.2)
again, this time as a special case of Poisson summation. Wé will see more
Poisson summation and Fourier analysis in connection with Eisenstein series
n Chapter 4. (A hint for this exercise is at the end of the book.)
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1.1.7. The Bernoulli numbers By, are defined by the formal power series ex-

© pansion
" o0
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=0

* Thus they are calculable in succession by matching coefficients in the power
series identity ‘

t - tk * {3 in "
t=(e _I)ZB’“E:Z Z(k)Bk o
k=0 n=1 \k=0 ’

(i.e., the nth parenthesized sum is 1 if n = 1 and 0 otherwise) and they are
rational. Since the expression
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is even, it follows that By = —1/2 and By = 0 for all other odd k. The
Bernoulli numbers will be motivated, discussed, and generalized in Chapter 4.
(a) Show that By, = 1/6, By = —1/30, and Bs = 1/42.
(b) Use the expressions for m cot #7 from the section to show
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Use these to show that for k& > 2 even, the Riemann zeta function satisfies

a¢) = - 2r

so in particular ¢(2) = x2/6, ((4) = #*/90, and {(6) = «®/945. Also, this
shows that the normalized Fisenstein series of weight %

B(r) = C;é(( = ZO’L 1(n)g"

has rational coeflicients with a common denominator.

{c) Equate coefficients in the relation Eg(7) = E4(7)? to establish for-
mula (1.3).

(d) Show that ap = 0 and a; = (2%)'? in the Fourier expansion of the
discriminant function A from the text.

Bk>

1.1.8. Recall that ;3 denotes the complex cube root of unity e?*%/3, Show that
[976] (us) = pa + 1 s0 that by periodicity ga([{ 73] (18)) = ga(ua). Show
that by modularity also ga([ ~§] (1)) = pdga(ps) and therefore ga(pz) = 0.
Conclude that gz(p3) # 0 and j(ps) = 0. Argue similarly to show that g3(i) =
0, g2{é) # 0, and j{i) = 1728.

1.1.9. This exercise shows that the modular invariant § : H — C is a sur-
jection. Suppose that ¢ € C and j(7) # clor all 7 € H. Consider the integral

1 j 3(r)dr
2mi f., jlr) —c
where v is the contour shown in Figure 1.1 containing an arc of the unit
circle from (—1 + 4v/3)/2 to (1 + 4/3)/2, two vertical segments up to any
height greater than 1, and a horizontal segment. By the Argument Principle
the integral is 0. Use the fact that j is invariant under [} 1] to show that
the integrals over the two vertical segments cancel. Use the fact that j is
invariant under [} 7] to show that the integrals over the two halves of the
circular arc cancel. For the integral over the remaining piece of v make the
change of coordinates ¢ = ¢?™", remembering that j'(7} denotes derivative
with respect to v and that j(v) = 1/¢+ - -, and compute that it equals 1.
This contradiction shows that §(7) = ¢ for some 7 € H and j surjects.

. then [ is weakly modular, i.e,
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Figure 1.1. A contour

- 1.2 Congruence subgroups

¢ Section 1.1 stated that if a meromorphic function f : H — C satisfies

Fr(r)) = (er + ) f(r) fory = [3 1: md = [2 "ﬂ

FOy(r) = (er + dF f(r) for all y = | © b] € SLu(Z).

" Replacing the modular group SLs(Z) in this last condition by a subgroup I
. generalizes the notion of weak modularity, allowing more examples of weakly
: modular functions. '

For example, a subgroup arises from the four squares problem in number

- theory, to find the number of ways (if any) that a given nonnegative integer n
. can be expressed as the sum of four integer squares. To address this, define
- more generally for nonnegative integers n and k the representation number

of n by k squares,
rin k) =#{v c Z¥ :n=vf +.- +0l}.

Note that if 4 + j = k then 7(n, k) = >, ,,_, 7(l,i)r{m, j), summing over
nonnegative values of | and m that add to n (Exercise 1.2.1). This looks like
the rule ¢, = >, m=n @b relating the coefficients in the formal product of
two power series,

n=0

So consider the generating function of the representation numbers, meaning
the power series with nth coefficient r(n, k),

B(r, k) = Z(nk . g=eT 1 e,



