12. und letztes Übungsblatt Elliptische Kurven

28. Jan. 22

Aufgabe 1)

8.5. Let $\xi \in H^1(G_{\bar{K}/K}, M)$ be unramified at v. Prove that the cohomology class of ξ contains a 1-cocycle $c: G_{\bar{K}/K} \to M$ satisfying $c_{\sigma} = 0$ for all $\sigma \in I_v$. (*Hint*. Use the inflation-restriction sequence (B.2.4) for $I_v \subset G_{\bar{K}/K}$.)

Extantumy: ξ ist unvozereigt, falls ξ im K-an der Restrictionsabbild-g res: $H^1(C_K, H) \to H^1(I_V, H)$

Aufgabed)

8.6. Prove *Kronecker's theorem*: Let $x \in \overline{\mathbb{Q}}^*$. Then H(x) = 1 if and only if x is a root of unity. (This is the multiplicative group version of (VIII.9.3d).)

Aufgabe 3)

8.10. Let F be the rational map

$$F: \mathbb{P}^2 \longrightarrow \mathbb{P}^2, \qquad [x, y, z] \longmapsto [x^2, xy, z^2],$$

from (I.3.6). Note that F is a morphism at every point except at [0, 1, 0], where it is not defined. Prove that there are infinitely many points $P \in \mathbb{P}^2(\mathbb{Q})$ such that

$$H(F(P)) = H(P).$$

In particular, (VIII.5.6) is false if the map F is merely required to be a rational map.