

Wintersemester 2022/23

Algebraische Zahlentheorie Übungsblatt 4

Aufgabe 1

Sei \mathcal{O} ein Dedekindring und $(0) \neq \mathfrak{a}, \mathfrak{b} \triangleleft \mathcal{O}$. Sei

$$\begin{array}{lll} \mathfrak{a} & = & \prod \mathfrak{p}^{\nu_{\mathfrak{p}}}, & \nu_{\mathfrak{p}} \in \mathbb{N}_{0}, \text{ fast alle } \nu_{\mathfrak{p}} = 0, \\ \mathfrak{b} & = & \prod \mathfrak{p}^{\mu_{\mathfrak{p}}}, & \mu_{\mathfrak{p}} \in \mathbb{N}_{0}, \text{ fast alle } \mu_{\mathfrak{p}} = 0. \end{array}$$

Hierbei erstreckt sich das Produkt jeweils über alle Primideale \neq (0) von \mathcal{O} .

Zeigen Sie:

a)
$$\mathfrak{b} \subseteq \mathfrak{a} \iff \mathfrak{a} \mid \mathfrak{b} \iff \nu_{\mathfrak{p}} \leq \mu_{\mathfrak{p}}$$
 für alle \mathfrak{p} ,

b)
$$\mathfrak{a} + \mathfrak{b} = \prod \mathfrak{p}^{\min(\nu_{\mathfrak{p}}, \mu_{\mathfrak{p}})}$$
,

c)
$$\mathfrak{a} \cap \mathfrak{b} = \prod \mathfrak{p}^{\max(\nu_{\mathfrak{p}}, \mu_{\mathfrak{p}})}$$

Aufgabe 2

Sei \mathcal{O} ein Dedekindring mit Quotientenkörper K. Für ein Primideal $\mathfrak{p} \neq 0$ und $\alpha \in K^{\times}$ defineren wir

$$v_{\mathfrak{p}}(\alpha) := v_{\mathfrak{p}}(\alpha \mathcal{O}).$$

Zeige:

a)
$$v_{\mathfrak{p}}(\alpha\beta) = v_{\mathfrak{p}}(\alpha) + v_{\mathfrak{p}}(\beta)$$
.

b)
$$v_{\mathfrak{p}}(\alpha + \beta) \ge \min(v_{\mathfrak{p}}(\alpha), v_{\mathfrak{p}}(\beta))$$
, mit Gleichheit, falls $v_{\mathfrak{p}}(\alpha) \ne v_{\mathfrak{p}}(\beta)$.

Aufgabe 3

Sei $K=\mathbb{Q}(\zeta_m)$. Benutze ohne Beweis $\mathcal{O}_K=\mathbb{Z}[\zeta_m]$ und zeige:

a) Falls $m = p^r$ eine Primzahlpotenz ist, so ist $\mathfrak{p} := (1 - \zeta_m) \mathcal{O}_K$ ein Primideal und es gilt:

$$\mathfrak{p}^{p^{r-1}(p-1)}=p\mathcal{O}_K.$$

- b) Falls m zusammengesetzt ist, so ist $1 \zeta_m$ eine Einheit in \mathcal{O}_K .
- c) Für alle m und alle $1 \le a \le m$ mit (m,a) = 1 ist $\frac{1-\zeta_m^a}{1-\zeta_m}$ eine Einheit in \mathcal{O}_K .

Aufgabe 4

Sei \mathcal{O} ein Dedekindring und $\mathfrak{a},\mathfrak{b}\in I_{\mathcal{O}}$ gebrochene Ideale. Sei S eine multiplikative Menge in \mathcal{O} . Zeige:

a)
$$S^{-1}(\mathfrak{ab}) = (S^{-1}\mathfrak{a})(S^{-1}\mathfrak{b}).$$

b)
$$S^{-1}(\mathcal{O} : \mathfrak{a}) = (S^{-1}\mathcal{O}, S^{-1}\mathfrak{a}).$$

c) Sei nun $S = \mathcal{O} \setminus \mathfrak{p}$ für ein Primideal $\mathfrak{p} \neq 0$. Zeige für alle $i \geq 0$ und $\alpha \in \mathfrak{p}^i \setminus \mathfrak{p}^{i+1}$ die Gleichheit $S^{-1}\mathfrak{p}^i = \alpha S^{-1}\mathcal{O}$. ($S^{-1}\mathcal{O}$ ist also ein diskreter Bewertungsring.)