

MATHEMATISCHES INSTITUT

Wintersemester 2022/23

Algebraische Zahlentheorie Übungsblatt 2

Aufgabe 1

Sei A ganz abgeschlossen in $K = \operatorname{Quot}(A)$. Sei L/K eine Körpererweiterung ($[L:K] = \infty$ ist erlaubt) und sei \bar{K} der algebraische Abschluss von K in L. Sei B der ganze Abschluss von A in L. Zeige:

- (a) $\bar{K} = \operatorname{Quot}(B)$.
- (b) B ist ganz abgeschlossen in L.

Aufgabe 2

Sei A ganz abgeschlossen in $K = \operatorname{Quot}(A)$. Sei L/K eine Körpererweiterung ($[L:K] = \infty$ ist erlaubt). Sei B der ganze Abschluss von A in L. Sei $S \subseteq A$ eine multiplikative Menge. Zeige: $S^{-1}B$ ist der ganze Abschluss von $S^{-1}A$ in L.

Aufgabe 3

Sei p eine Primzahl und $L = \mathbb{Q}(\zeta_p)$. Wir werden später zeigen, dass $\mathcal{O}_L = \mathbb{Z}[\zeta_p]$ gilt. Zeige, dass es in L/\mathbb{Q} genau ein Primidel \mathfrak{P} über $p\mathbb{Z}$ gibt, nämlich $\mathfrak{P} = (1 - \zeta_p)\mathcal{O}_L$.

Aufgabe 4

Bestimmen Sie die Ganzheitsbasis für $K = \mathbb{Q}(\sqrt[3]{2})$.