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On the Application of a Result about Lattices to Algebraic Number Theory

In the following we consider Zn ⊆ Rn for some n ∈ N with the canonical basis

e1, ..., en.

De�nition 1. We say x ∈ Rn has dimensionality d if it has exactly d non-zero coe�-

cients in the canonical basis.

For convenience we introduce the following notion.

De�nition 2. For a lattice Λ ⊆ Qn and x ∈ Λ we say x 6= 0 is reduced if it is of the

form

x =
n∑

j=1

aj
bj
ej

with 0 ≤ aj < bj and (aj, bj) = 1 for all j = 1, ..., n.

Note that if Zn ⊆ Λ ⊆ Qn every element x therin is of the form x = x′ + y for

x′ ∈ Λ − Zn reduced and y ∈ Zn. Further we observe that elements in Zn are not

reduced by de�nition.

Lemma 1. Consider a lattice Zn ⊆ Λ ⊆ Qn. Assume there is some d ∈ Z and a map

σ : Λ→ Λ,

ej 7→ ej+1 for j = 1, ..., n− 1,

en 7→ de1.

Assume Λ has no reduced elements of dimensionalities n−m, ..., n−1, then the reduced

elements of dimensionality n are of the form

x =
1

b

n∑
j=1

ajej

and for all i = 1, ..., n− 1, at least m of the expressions

aia1 − ai+1and

b
or

aiaj − ai+1aj−1
b

for j = 2, ..., n,

are integral.

Proof. Assume Λ has a reduced element x of dimensinality n:

x =
d∑

j=1

aj
bj
ej

with the coe�cients being reduced fractions, at least two are di�erent, and all non-zero.
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First we may assume that there is some bi ≤ bj for all i 6= j but strictly for at least

one j. Then
ajbi
bj
∈ Q− Z, hence

bix− aiei =
d∑

j=1,i 6=j

ajbi
bj

ej ∈ Λ− Zn

is reduced and of dimensionality d− 1, which violates the assumption.

Hence x is of the form

x =
1

b

n∑
j=1

ajej.

Consider for i 6= n the element

(ai id−ai+1σ)x =
1

b

(
(aia1 − ai+1and)e1 +

n∑
j=2

(aiaj − ai+1aj−1)ej

)

=
1

b

(
(aia1 − ai+1and)e1 +

n∑
j=2,j 6=i+1

(aiaj − ai+1aj−1)ej

)
∈ Λ.

By assumption the reduction of this element has dimensionality at most n − m − 1,
hence at least m coe�cient lie in Z.

Remark. Note that diagonal elements, i.e., elements where all nominators are equal,

satisfy this condition, but other reduced elements could exist. There is a restriction

nevertheless, in some cases there are either diagonal elements or non-diagonal elements.

If we have both, we could reduce the dimensionality, but not necessarily to dimension

one less but more, where the assumption does not hold anyway.

We lastly state another theorem which simpli�es some cases.

Lemma 2. Let Zn ⊆ Λ ⊆ Qn be a lattice and x ∈ Λ be reduced and of the form

x =
1

b

d∑
j=1

ajej.

Then there is some reduced x̃ with ai = 1 for at least one i = 1, ..., n.

Proof. Since x is reduced at least one ai is non-zero and (ai, b) = 1. Let 1 =
∑d

j=1 ej,
then y = 1− x can be reduced to y′ since Zn ⊆ Λ. Now

y′ =
1

b

d∑
j=1

cjej

and ci = b−ai. We can now apply the Euclidean Algorithm, since (ai, b) = (b−ai, b) = 1,
to construct some element z ∈ Λ which has ith coe�cient 1

b
. We set x̃ = z′ the reduction

of z.

Remark. This also applies to diagonal elements, i.e., if all numerators are the same,

we can choose it to be 1.
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Application. We can apply the results above to compute rings of integers for some

small radical extensions. For a number �eld K = Q( n
√
d) of degree n, d 6= ±1 free of

an nth power, we have the canonical order Z[ n
√
d] ⊆ OK and the powers of

n
√
d serve as

canonical basis elements.

In OK a symmetry as in Lemma 1 holds: Multiplication with
n
√
d almost only

cyclically permutes the basis, but in addition it also changes the coe�cient of 1, hence
in the canonical basis multiplication with

n
√
d is the same as the map σ : Λ → Λ from

above.

Note that w.l.o.g., we can assume that the coe�cient of 1 of a non-zero element is

always non-zero since multiplication with
n
√
d cyclically permutes the coe�cients.

The assumption of dimensionality for an element allowed to write it with only non-

zero coe�cients, we now have to consider zero coe�cients. The multiplication with

powers of
n
√
d cyclically permutes the zero coe�cients but does not allow to change

their distribution. For example multiplication with powers of
4
√
d cannot change an

element of the form a+b 4
√
d to an element of the form c+d

4
√
d2. So we have to consider

all possible combinations for all dimensionalities up to cyclic permutations.

The strategy is now the following:

1. We apply Lemma 2 and check in any dimensionality, in all possible combinations

of basis elements, that do not admit a symmetry as in Lemma 1, whether reduced

elements are integral, by computing the characteristic polynomial. This might

not su�ce, but here further investigations can be made.

2. In the cases that admit a symmetry as in Lemma 1, we check diagonal elements.

3. If there are no diagonal elements and no reduced elements of fewer dimensionality,

we have to apply Lemma 1 and check for elements with the restrictions on the

coe�cients.

4. At the end we collect as many di�erent linearly independent elements as we �nd

and check for linearly independence to get an integral basis.
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Example 1. We compute the ring of integers of K = Q(
√
d), for d square-free. We

follow the path from before and start by elements of dimensionality 1: Since Z is

integrally closed and d is square-free there canot be reduced elements of dimensionality

1.

We check for reduced elements of dimensionality 2.

1

b

(
1 + a2

√
d
)
 

1

b

(
1 a2d
a2 1

)
 λ2 − 2

b
λ+

1− a22d
b2

.

Thus only b = 2 is possible. Hence there are no reduced non-diagonal elements because

0 < a2 < 2 forces a2 = 1.
This now gives

λ2 − 2

b
λ+

1− d
b2

for the characteristic polynomial. Hence for d ≡ 1(mod 4) we conclude that ω = 1+
√
d

2

is integral.

Since the degree of the number �eld is 2 and there are no other diagonal elements

we conclude that OK = Z[ω].
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Example 2. We compute the ring of integers of K = Q( 3
√
d) for d 6= ±1 cubic-free. We

follow the path from the application and start by elements of dimensionality 1: Since Z
is integrally closed and d is cube-free, there canot be reduced elements of dimensionality

1.

We check for reduced elements of dimensionality 2:

1

b
(1 + a2

3
√
d) 

1

b

 1 0 a2d
a2 1 0
0 a2 1

 λ3 − 3

b
λ2 +

3

b2
λ− 1 + a32d

b3
.

Thus b = 1 since 3 is square-free from the third coe�cient and there are no reduced

elements of dimensionality 2.

We consider reduced elements of dimensionality 3:

1

b
(1 + a2

3
√
d+ a3

3
√
d2) 

1

b

 1 a3d a2d
a2 1 a3d
a3 a2 1



 λ3 − 3

b
λ2 +

3(1− a2a3d)

b2
λ− 1− 3a2a3d+ a32d+ a33d

2

b3
.

Thus only b = 3 is allowed because of the second coe�cient.

The diagonal case reduces the characteristic polynomial to

λ3 − 3

b
λ2 +

3(1− d)

b2
λ− (1− d)2

b3
.

But then the third coe�cient demands 3|1−d and with the fourth we conclude d ≡ 1(mod 9)

has to be satis�ed for diagonal elements. Hence in this case ω = 1+
3√
d+

3√
d2

3
is integral.

Since there are no elements of dimensionality 1 and 2 and no diagonal elements if

d 6≡ 1(mod 9), reduced elements could exist. Reducedness implies 0 < a2, a3 < 3. The
third coe�cient in the non-diagonal case now requires 3|1 − a2a3d. If 3|d this cannot

hold and there are no reduced integral elements.

We now apply Lemma 1 for i = 1 and need all expressions therin to be integral. For

j = 2 the expression vanishes by construction. For j = 3 we get 3|a3− a22 which means,

since non-zero squares mod 3 are 1, that a3 = 1. Since we are in the non-diagonal case

a2 = 2. The coe�cients of the characteristic polynomial now give the conditions 3|1+d,
and 27|1 + 2d+ d2 = (1 + d)2, i.e., 9|(1 + d). We conclude that

OK = Z[
3
√
d] for d 6≡ ±1 mod 9

and

OK = Z[
3
√
d, ω] for ω =

{
1+

3√
d+

3√
d2

3
, d ≡ 1 mod 9,

1+2
3√
d+

3√
d2

3
, d ≡ 8 mod 9.
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