

Wintersemester 2019/20

Algebraische Zahlentheorie Übungsblatt 10

Aufgabe 1

Sei K ein bezüglich des nicht-archimedischen Betrags | vollständiger Körper. Sei K^c ein algebraischer Abschluss von K. Zu $\alpha \in K^c$ wähle man eine endliche Erweiterung L mit $\alpha \in L$ und setze $|\alpha| := \frac{[L:K]}{|N_{L/K}(\alpha)|}$. Zeige, dass diese Definition wohldefiniert ist.

Aufgabe 2

Sei $| \ |_p$ der p-adische Betrag auf \mathbb{Q}_p und \mathbb{Q}_p^c ein algebraischer Abschluss. Wir bezeichnen mit $| \ |_p$ ebenfalls seine eindeutig bestimmte Fortsetzung auf \mathbb{Q}_p^c (siehe vorige Aufgabe). Berechne $| \sqrt[m]{p} |_p, |\zeta_{p^n}|_p$ sowie $|1 - \zeta_{p^n}|_p$ für alle $m, n \in \mathbb{N}$ und eine primitive p^n -te Einheitswurzel ζ_{p^n} .

Aufgabe 3

Sei L eine endliche Körpererweiterung von \mathbb{Q}_p vom Grad n. Sei $| \cdot |_L$ die eindeutig bestimmte Fortsetzung von $| \cdot |_p$ auf L und v_L die zugehörige Bewertung.

- a) Zeige, dass $\mathcal{O} := \{ \alpha \in L \mid v_L(\alpha) \geq 0 \}$ der ganze Abschluss von \mathbb{Z}_p in L ist.
- b) Bestimme $v_L(L^{\times})$ in Abhängigkeit vom Zerlegungsverhalten von $p\mathbb{Z}_p$ in \mathcal{O} .

Aufgabe 4

Sei $K = \mathbb{Q}(\sqrt{2})$ und $\mathfrak{p} = 3\mathcal{O}_K$. Zeigen Sie, dass $\mu_8 \subset \mathcal{O}_{K_{\mathfrak{p}}}$ und geben Sie eine Formel zur Berechnung der \mathfrak{p} -adischen Entwicklung der Elemente von μ_8 an.