Übungen zur Analysis 1

7.1 Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Beweisen Sie, dass sie genau dann in \mathbb{R} konvergiert, wenn

$$\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n \in \mathbb{R}$$

gilt, und dass in diesem Fall gilt:

$$\lim_{n \to \infty} a_n = \limsup_{n \to \infty} a_n$$

7.2 Eine Folge $(a_n)_{n\in\mathbb{N}_0}$ in $\mathbb{R}\cup\{\pm\infty\}$ heißt konvergent gegen $x\in\mathbb{R}\cup\{\pm\infty\}$, in Zeichen $\lim_{n\to\infty}a_n=x$, wenn für jede offene Umgebung U von x für alle genügend großen $n\in\mathbb{N}_0$ gilt: $a_n\in U$. Beweisen Sie: Jede monoton steigende Folge $(a_n)_{n\in\mathbb{N}_0}$ in $\mathbb{R}\cup\{\pm\infty\}$ konvergiert in $\mathbb{R}\cup\{\pm\infty\}$, und es gilt:

$$\lim_{n \to \infty} a_n = \sup\{a_n | n \in \mathbb{N}_0\}.$$

7.3 Leibniz-Kriterium. Es sei $(a_n)_{n\in\mathbb{N}_0}$ eine monoton fallende Folge in \mathbb{R}^+ mit $\inf_{n\in\mathbb{N}_0} a_n = 0$. Zeigen Sie, dass die Reihe $\sum_{n=0}^{\infty} (-1)^n a_n$ in \mathbb{R} konvergiert, und dass für alle $k \in \mathbb{N}_0$ gilt:

$$\sum_{n=0}^{2k+1} (-1)^n a_n \le \sum_{n=0}^{\infty} (-1)^n a_n \le \sum_{n=0}^{2k} (-1)^n a_n.$$

Zum Beispiel konvergiert $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ in \mathbb{R} .

7.4 Beweisen Sie, dass für alle $x \in \mathbb{C}$ mit |x| < 1 und alle $a \in \mathbb{R}$ die Reihe

$$\sum_{n=0}^{\infty} \binom{a}{n} x^n$$

konvergiert.

Bemerkung: Diese Reihe wird Binomialreihe genannt. Erst später beweisen wir, dass sie im Fall -1 < x < 1 gleich $(1+x)^a$ ist.

7.5 Es seien $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius r_1 und $g(x) = \sum_{n=0}^{\infty} b_n x^n$ eine Potenzreihe mit Konvergenzradius r_2 . Zeigen Sie, dass die Potenzreihe

$$h(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n$$

mindestens den Konvergenzradius $\min\{r_1, r_2\}$ hat und dass für $|x| < \min\{r_1, r_2\}$ gilt: $h(x) = f(x) \cdot g(x)$.

7.6 Zeigen Sie, dass der Grenzwert

$$\lim_{k \to \infty} \sum_{n=0}^{\infty} \exp\left(-n + i\frac{n^2}{k}\right)$$

existiert, und berechnen Sie ihn.

 $\bf Abgabe: \ Bis spätestens Montag, den 3.12.2012, 11:00 Uhr, durch Einwurf in den entsprechenden Übungskasten.$