Exercises for Stochastic Processes

Tutorial exercises:

- T1. Let X be an irreducible and recurrent Markov chain. Show that every non-negative harmonic function for X is constant.
- T2. Let X be a Feller process on S, $n \in \mathbb{N}$, $f_1, \ldots, f_n \in C_0(S)$ and $t_1, \ldots, t_n > 0$. Show that

$$x \mapsto \mathbb{E}^x \prod_{k=1}^n f_k(X_{t_k})$$

is continuous.

- T3. Let B be a one-dimensional Brownian motion.
 - (a) Show that $T_t f(x) := \mathbb{E}^x f(B_t)$ for $f \in C_0(\mathbb{R})$ defines a probability semigroup.
 - (b) What would go wrong if C₀(ℝ) were replaced by C_b(ℝ)?
 (The set C_b(ℝ) denotes the set of all continuous and bounded functions on ℝ)
- T4. Show that $\mathcal{L}f := f'$ defined on $\mathcal{D}(\mathcal{L}) := \{f \in C_0(\mathbb{R}) \mid f' \in C_0(\mathbb{R})\}$ is a probability generator. What is the corresponding probability semigroup and Feller process? (Hint for property (G1): consider the Stone-Weierstrass theorem.)

Homework exercises:

- H1. Consider a Markov chain on a state space $S \subset \mathbb{Z}$ with transition function p. Let $T_t f(x) := \sum_{y \in S} p_t(x, y) f(y)$ be the associated semigroup.
 - (a) Show that, if S is finite, then $\{T_t\}$ is a probability semigroup on $C_0(S)$.
 - (b) Show that, if S is infinite, then $\{T_t\}$ is a probability semigroup on $C_0(S)$ if and only if

$$\lim_{|x|\to\infty} p_t(x,y) = 0 \text{ for all } y \in S, t > 0.$$

H2. Show that, for a Q-matrix Q on a finite state space S,

$$\mathcal{L}f(x) := \sum_{y} q(x, y) f(y)$$

defines a probability generator on $C_0(S)$.

H3. Consider the Q-matrix on $S = \mathbb{N}_0$ for a "pure death process" given by

$$q(0,1) = 1, q(0,0) = -1,$$

 $q(k,k-1) = \delta_k, q(k,k) = -\delta_k \text{ for } k \in \mathbb{N},$

with $\delta_k > 0$. Define

$$\mathcal{L}f(x) := \sum_{y} q(x, y) f(y),$$

on the domain $C_0(S)$. Show that this operator satisfies conditions (G1), (G2) and (G4) of the definition of a probability generator. For what values of the sequence (δ_k) is condition (G3) satisfied?

H4. Show that

$$\mathcal{L}f := f'''$$

defined on

$$\mathcal{D} := \{ f \in C_0(\mathbb{R}) \mid f', f'', f''' \in C_0(\mathbb{R}) \}$$

is no probability generator.

(Hint: Consider $f(x) = (-1 + x^2 - x^3) \exp(-\frac{x^2}{2})$.)

Deadline: Thursday, 14.12.17