Exercises for Stochastic Processes

Tutorial exercises:

T1. (Mecke Formula) Complete the proof of Theorem 6.3 in the general setting, where $m \ge 1$ and λ is not necessarily finite.

Homework exercises:

H1. (Laplace Functional) Let $N = \{N_B\}$ be a point process with locally finite intensity measure λ . Denote by $L_N(u)$ the Laplace functional of $\{N_B\}$. Show that $\{N_B\}$ is a Poisson point process with intensity measure λ if and only if

$$L_N(u) = \exp\left(-\int \left(1 - e^{-u(x)}\right)\lambda(\mathrm{d}x)\right).$$

- H2. Give an example of two Poisson point processes $\{N_B\}$ and $\{N'_B\}$ with $N_B \leq N'_B$ for every bounded Borel set $B \subset \mathbb{R}^d$, and for which $\{N'_B N_B\}$ is not a Poisson point process.
- H3. (Matérn II process) Let $\{(X_n, U_n)\}_{n \ge 1}$ be a Poisson point process in $\mathbb{R}^d \times [0, 1]$ with Lebesgue intensity measure. Define

$$Y = \left\{ X_n : U_n \le \min_{m : |X_n - X_m| < 1} U_m \right\}$$

as the thinning consisting of all points X_n whose mark U_n is smaller than the mark of all other points in a 1-environment. Compute the intensity measure of Y and show that Y is not a Poisson point process.

H4. (Displacement Theorem) Let λ be a locally finite Borel measure on \mathbb{R}^d and μ be a probability measure on \mathbb{R}^d . The convolution $\lambda * \mu$ is the measure on \mathbb{R}^d defined by

$$(\lambda * \mu)(B) = \iint \mathbb{1}_B(x+y)\lambda(\mathrm{d}x)\mu(\mathrm{d}y)$$

Let $X = \{X_n\}_{n \ge 1}$ be a Poisson point process with intensity measure λ and let $\{Y_n\}_{n \ge 1}$ be a sequence of random variables with distribution μ , independent of X.

- (a) Show that $\lambda * \mu$ is a locally finite Borel measure.
- (b) Show that $\{X_n + Y_n\}_{n \ge 1}$ is a Poisson point process with intensity measure $\lambda * \mu$.

Deadline: Tuesday, 30.01.18