Exercises for Stochastic Processes

Tutorial exercises:

- T1. Show that a stochastic process \mathbb{X} on (Ω, \mathfrak{F}) with values in S^T is $\mathfrak{F} \mathfrak{S}^T$ -measurable iff all projections X_t are $\mathfrak{F} \mathfrak{S}$ -measurable! (\mathfrak{S} denotes a σ -algebra on S.)
- T2. Let $(X_t)_{t\in\mathbb{R}}$ be a real-valued $\mathfrak{F}-\mathfrak{B}^{\mathbb{R}}$ -measurable stochastic process with continuous paths. Show that $\sup_{t\in\mathbb{R}} X_t$ is measurable!
- T3. Let τ_1, τ_2, \ldots be independent and exponentially distributed with parameter $\lambda > 0$. Define

$$N_t := |\{k \ge 1 \mid \tau_1 + \dots + \tau_k \le t\}|$$
.

Show that, if 0 < s < t, then N_s and $N_t - N_s$ are independently Poisson distributed with parameters λs and $\lambda (t - s)!$

T4. Let M and N be independent Poisson processes with intensities λ and μ . Show that M+N is a Poisson process with intensity $\lambda + \mu$!

Homework exercises:

H1. (a) Let (S,\mathfrak{S}) be a measurable space. Show that, for uncountable $T\subset\mathbb{R}$,

$$\mathfrak{S}^T = \left\{ \{ f \in S^T \mid (f(t_1), f(t_2), \dots) \in A \} \mid t_1, t_2, \dots \in T, A \in \mathfrak{S}^{\{t_1, t_2, \dots\}} \right\}!$$

("all sets in the product σ -algebra are countably determined")

- (b) Conclude that the set of all continuous functions on $T \subset \mathbb{R}$ is no (product-)measurable subset of \mathbb{R}^T !
- H2. Deduce Kolmogorov's continuity criterion (Theorem 1.3 in the lecture) from Proposition 1.4!
- H3. Under which (necessary and sufficient) condition does an i.i.d. family $(X_t)_{t\in\mathbb{R}}$ have a continuous modification?
- H4. Let N, X_1, X_2, \ldots be independent random variables, N Poisson distributed and X_k uniformly distributed on [0, 1]. Show that

$$N_t := \sum_{k=1}^{N} 1_{[0,t]}(X_k) \qquad (t \in [0,1])$$

is a Poisson process (restricted to $t \in [0, 1]$) in the sense of the "alternative 1" definition from the lecture! How can it be extended to all $t \ge 0$?

Deadline: Monday, 31.10.16