Stochastic Processes

February 9, 2016

Contents

1 Basic Principles

Definition 1.0.1. Let $T \subset \mathbb{R}$, and (Ω, \mathcal{F}, P) a probability space. We call a family $\mathcal{X} = (X_t)_{t \in T}$ of S-valued random variables a stochastic process. $\pi_t(\mathcal{X}) = X_t$ is the projection on the t-th coordinate.

 \mathcal{X} is a random variable on (S^T, \mathcal{S}^T) .

Lemma 1.0.1. \mathcal{X} is $\mathcal{F} - \mathcal{S}^T$ -measurable iff for all $t \in T$: X_t is $\mathcal{F} - \mathcal{S}$ -measurable.

Definition 1.0.2. The law of the stochastic process \mathcal{X} is the law of \mathcal{X} on (S^T, \mathcal{S}^T) .

For a finite vector $t = (t_1, ..., t_n) \in T^n$ let $\pi^t = (\pi_{t_1}, ..., \pi_{t_n})$. This induces a probability measure $P^t = P \circ (\pi^t)^{-1}$ on (S^n, \mathcal{S}^n) . We call $\{P^t : t \in T^n, n \in \mathbb{N}\}$ the set of finite dimensional distributions (fdds) associated with P.

Questions:

- 1. Do the fdds uniquely determine P?
- 2. Given a family of fdds, $(P^t)_t$, is there a measure P on (S^T, \mathcal{S}^T) such that $(P^t)_t$ is associated with P?

Answers:

- 1. Yes: Let $\mathfrak{a} = \bigcup_{f \subset_{\text{fin}} T} (\pi^t)^{-1} (S^{|t|})$. It's an \cap -stable algebra of *cylinder events*. If two measures agree on a \cap -stable generator \mathfrak{a} then they agree on $\sigma(\mathfrak{a})$. Hence the fdds uniquely determine P, since S^T is in fact generated by \mathfrak{a} .
- 2. One necessary condition is *compatibility* of $(P^t)_{|t|<\infty}$: $\forall t_1 \subset t_2 \subset T$, $A \in \mathcal{S}^{|t_1|}$: $P^{|t_2|}(A \times S^{|t_2 \setminus t_1|}) = P^{|t_1|}(A)$. For reasonable spaces, this is already sufficient.

Theorem 1.0.2 (Kolmogorov's Extension Theorem). If S is a Polish space, then for any compatible family of fdds there exists a measure P on (S^T, S^T) associated with the fdds.

Proof. Durrett, Theorems 2.1.14 and 2.1.15

See also: Dudley, *Real analysis and probability*, Theorem 12.1.2

1.1 Preview

Brownian Motion: A stochastic process $(X_t)_{t \in [0,\infty)}$ such that

1. $\forall t_1 < t_2$: $X_{t_2} - X_{t_1} \sim \mathcal{N}(0, t_2 - t_1),$

2. $\forall t_1 < t_2 < ... < t_n$: $X_{t_n} - X_{t_{n-1}}, ..., X_{t_2} - X_{t_1}$ are independent,

3. the map $t \mapsto X_t$ is continuous almost surely,

is called Brownian Motion

We will show Donsker's invariance principle: Let $(\xi_n)_n$ be iid with $E(\xi_1) = 0$, $\operatorname{Var}(\xi_n) = 1$ and $S_n = \sum_{k=1}^n \xi_i$. Then $\frac{S_{\lfloor nt \rfloor}}{\sqrt{n}} \stackrel{d}{\to} (X_t)_{t \in [0,1]}$ where X_t is Brownian motion.

Markov Chains: A family $(X_t)_t$ such that for s < t, $E(X_t | \mathcal{F}_s) = E(X_t | X_s)$ is called *Markov Chain*, where $\mathcal{F}_s = \sigma(X_u : u \leq s)$

1.2 Continuous modifications of stochastic processes

So far we have found a probability measure P on (S^T, S^T) . However, the event $\{\sup_{t \in T} X_t < c\}$ is not an element of S^T . Neither is, in general, $\{\omega : t \mapsto X_t(\omega) \text{ is continuous}\}$.

Definition 1.2.1. Stochastic processes X, Y are stochastic equivalent if $\forall t \in T : P(X_t = Y_t) = 1$. We then call Y a modification of X.

Remark. If X, Y are stochastic equivalent then they have the same fdds.

Example 1.1. Let S = [0, 1], T = [0, 1], $\omega \sim \mathcal{U}([0, 1])$ and $X_t(\omega) = \mathbb{1}_{\{\omega=t\}}$, $Y_t(\omega) = 0$. X, Y are stochastic equivalent, but $\sup_t X_t = 1 > 0 = \sup_t Y_t$ and $P(X_t \in \mathcal{C}(T)) = 0 \neq 1 = P(Y_t \in \mathcal{C}(T))$.

Suppose for some continuous time process X we have a continuous modification Y, (i.e. Y has almost surely continuous paths). Then Y lives on a bigger probability space $(S^T, \tilde{S}^T, \tilde{P})$ where $\mathcal{C}(T) \in \tilde{S}^T$ and $\tilde{P}(Y \in \mathcal{C}(T)) = 1$. \tilde{P} is not very handy, so we would rather work on $(\mathcal{C}(T), \mathcal{F}_c)$ where $\mathcal{F}_c = \sigma(\text{cylinder sets of } \mathcal{C}(T))$ and $\tilde{P}(A) := \tilde{P}(A \cap \mathcal{C}(T))$ for $A \in \mathcal{F}_c$. If T is a bounded interval, then $\rho(x, y) := \sup_{t \in T} |x(t) - y(t)|$ is a metric on $\mathcal{C}(T)$ and it turns out that $\mathcal{B}(\mathcal{C}(T)) = \mathcal{F}_c$.

Question: For which processes is there a continuous modification?

Theorem 1.2.1 (Kolmogorov's continuity theorem). Let X be a stochastic process on $(\mathbb{R}^{[0,1]}, \mathcal{B}^{[0,1]})$. If

$$\exists a, b > 0 \; \exists c < \infty \; \forall t, t + h \in [0, 1] : E(|X_{t+h} - X_t|^a) \le c |h|^{1+\alpha}$$

then there exists a continuous modification Y of X.

Proof. Exercise.

Theorem 1.2.2. Let $\epsilon(h), q(h)$ be increasing such that $\sum_{n=1}^{\infty} \epsilon(2^{-n}) < \infty > \sum_{n=1}^{\infty} 2^n q(2^{-n})$. If $\forall t, t+h \in [0,1]$: $P(|X_{t+h} - X_t| > \epsilon(h)) \leq q(h)$ then a continuous modification exists.

Proof. Define $t_{n,r} = \frac{r}{2^n}$ for $r = 0...2^n$, $n \ge 1$ and $X_t^n = X_{t_{n,r}} + (t - t_{n,r})(X_{t_{n,r+1}} - X_{t_{n,r}})$ for $t \in [t_{n,r}, t_{n,r+1}]$. Now

$$Z_{n,r} := \max_{t \in [t_{n,r}, t_{n,r+1}]} \left| X_t^{n+1} - X_t^n \right| = \left| X_{t_{n+1,2r+1}} - \frac{1}{2} (X_{t_{n+1,2r}} - X_{t_{n+1,2r+2}}) \right|$$

$$\leq \frac{1}{2} \left| X_{t_{n+1,2r+1}} - X_{t_{n+1,2r}} \right| + \frac{1}{2} \left| X_{t_{n+1,2r+2}} - X_{t_{n+1,2r+1}} \right|$$

Thus $P(Z_{n,r} > \epsilon(2^{-n})) \le P\left(\frac{1}{2} \left| X_{t_{n+1,2r+1}} - X_{t_{n+1,2r}} \right| > \epsilon(2^{-n}) \right) + P\left(\frac{1}{2} \left| X_{t_{n+1,2r+2}} - X_{t_{n+1,2r+1}} \right| > \epsilon(2^{-n}) \right) \le 2q(2^{-n}).$ Now

$$P\left(\sup_{t\in[0,1]} \left|X_t^{n+1} - X_t^n\right| > \epsilon(2^{-n})\right) = P\left(\bigcup_{r=0}^{2^n} \left\{Z_{n,r} > \epsilon(2^{-n})\right\}\right) \le 2^{n+1}q(2^{-n})$$

Since $\sum_{n} 2^{n} q(2^{-n}) < \infty$ Borel-Cantelli implies that there is an A such that P(A) = 1 and $\forall \omega \in A \exists n_0(\omega) \forall n \ge n_0(\omega) : \rho(X^n, X^{n+1}) < \epsilon(2^{-n})$. In particular for $m > n \ge n_0 : \rho(X^n, X^m) \le \sum_{k=n}^{\infty} \epsilon(2^{-k}) \to 0$.

Thus for $\omega \in A$, $X^n(\omega)$ is a Cauchy sequence and a limiting function $Y(\omega) = \lim_{n \to \infty} X^n(\omega)$ exists.

It remains to show that Y is a modification of X. If $t = t_{n,r}$ we are done. If $t \neq t_{n,r}$ for all n, r then there exists a sequence r_n such that $t_{n,r_n} \to t$ and $0 < t - t_{n,r_n} < 2^{-n}$. Then $P\left(|X_{t_{n,r_n}} - X_t| > \epsilon(t - t_{n,r_n})\right) \leq q(t - t_{n,r_n}) \leq q(2^{-n})$. Borel-Cantelli tells us that $X_{t_{n,r_n}} \to X_t$ almost surely, and by continuity $Y_{t_{n,r_n}} \to Y_t$ almost surely. Therefore, since $X_{t_{n,r_n}} = Y_{t_{n,r_n}}$, the limiting points are the same: $P(X_t = Y_t) = 1$.

Example 1.2. Let
$$\omega \sim \mathcal{U}([0,1])$$
 and $X_t = 1_{\{t \ge \omega\}}$. Then $E(|X_{t+h} - X_t|^a) = P(|X_{t+h} - X_t| > 0) = h$.

There are other criteria with (weaker) conditions which give weaker regularity properties

Definition 1.2.2. A process X is called *stochastic continuous* if $\forall t \in T : X_{t+h} \xrightarrow{h \to 0} X_t$ in probability. It is L^p -*continuous* if $\forall t \in T : X_{t+h} \xrightarrow{h \to 0} X_t$ in L^p .

1.3 Processes with stationary independent increments

Definition 1.3.1. A process $(X_t)_{t \in T}$ has stationary independent increments if $\mathcal{L}(X_t - X_s)$ depends only on t - s and $\forall 0 = t_0 < t_1 < ... < t_n : (X_{t_i} - X_{t_{i-1}})_{i=1,...,n}$ are independent.

Example 1.3 (Poisson process on $[0, \infty)$). There are three different constructions:

- $N_t(\omega)$ as an increasing right-continuous step functions with jumps of size 1. Then $N_t N_s \sim \text{Poi}(\lambda(t-s))$ and $N_0 = 0$.
- $(\tau_i)_{i \in \mathbb{N}} \sim \text{Exp}(\lambda)$ iid and $N_t = |\{k \ge 1 : \tau_1 + \dots + \tau_k \le t\}|$. The stationarity follows from the Markov property of the exponential distribution.
- On any interval [i, i+1] place $Poi(\lambda)$ number of jump points uniformly distributed over the interval.

2 Brownian Motion

2.1 Multivariate Gaussian distributions

Definition 2.1.1. A vector $X = (X_1, ..., X_n)$ of \mathbb{R} -valued random variables has a multivariate Gaussian distribution if $a \cdot X$ is a univariate Gaussian for any $a \in \mathbb{R}^n$.

Remark. • If $X_1, ..., X_n$ are independent Gaussians then $(X_1, ..., X_n)$ is a multivariate Gaussian.

- $(X_1, ..., X_n)$ being Gaussian is much stronger than all X_j being Gaussian.
- It does not require a density, e.g. (Z, Z) is a multivariate Gaussian, but it lives on $\Delta \mathbb{R} \subset \mathbb{R}^2$ which is a nullset.
- If X is Gaussian then so is XA for any $A \in \mathbb{R}^{n \times m}$
- If X is Gaussian then its distribution is characterized by its mean and covariance matrix E(X), $\Sigma = (Cov(X_i, X_j))_{i,j}$. This follows from the representation of its characteristic function.

Lemma 2.1.1. If X is Gaussian then $X_1, ..., X_n$ are independent iff they are uncorrelated.

Proof. If $Cov(X_i, X_j) = \sigma_i \delta_{ij}$ then we can take $Y = (Y_1, ..., Y_n)$ independent Gaussians where $\mathcal{L}(Y) = \mathcal{L}(X)$. Now use the last point in the remark.

Definition 2.1.2. A Gaussian process is a process such that all fdds are multivariate Gaussian.

2.2 Definition of Brownian Motion

Proposition 2.2.1. For (X_t) the following are equivalent:

- 1. (X_t) has stationary independent increments such that $X_t \sim \mathcal{N}(0, t)$
- 2. (X_t) is a Gaussian process and $E(X_t) = 0$, $Cov(X_s, X_t) = s \wedge t$.

Proof. 1. \Rightarrow 2.: $\sum a_k X_{t_k} = \sum b_k (X_{t_k} - X_{t_{k-1}})$ for suitable b_k .

2. \Rightarrow 1.: For $s < t : X_t - X_s$ is Gaussian with zero mean and $\operatorname{Var}(X_s, X_t) = EX_t^2 - 2EX_sX_t - EX_s^2 = t - s$. Furthermore for $u < v \le s < t$: $\operatorname{Cov}(X_v - X_u, X_t - X_s) = v - u - v + u = 0$

Definition 2.2.1. *Standard Brownian motion* is a stochastic process satisfying the conditions of the Proposition with almost surely continuous paths.

Theorem 2.2.2. Standard Brownian motion exists on $(\mathcal{C}(T), \mathcal{B}^T)$ and is unique.

Proof. There exists a Gaussian process with $Cov(B_s, B_t) = s \wedge t$ because multivariate Gaussians form a compatible family of fdds and they determine the process uniquely by Kolmogorov's consistency theorem. Now

$$E((X_{t+h} - X_t)^{2k}) = h^k E(Z^{2k}) \le ch^k$$

For k = 2 we satisfy Kolmogorov's continuity theorem with a = 4, b = 1.

Lemma 2.2.3. If $(B_t)_t$ is standard Brownian motion then so are

- 1. $B_{t+s} B_s$
- 2. cB_{t/c^2}

3.
$$X_t = tB_{1/t}$$

Proof. $\operatorname{Cov}(X_t, X_s) = st(1/s \wedge 1/t) = s \wedge t$ with continuous paths on $(0, \infty)$. To check continuity in 0, write $\{\omega : \lim_{t \downarrow 0} X_t = 0\} = \bigcap_{m \ge 1} \bigcup_{n \ge 1} \{\omega : |B_t| \le 1/m \ \forall t \in \mathbb{Q} \cap (0, 1/n)\}$. Now the right-hand side has the same probability as for B_t , and thus so does the left-hand side.

Some further properties of Brownian motion

- Almost surely the paths are nowhere differentiable
- Quadratic variation: Letting (π_n) be a sequence of partitions of [0,t] with $|\pi_n| \to 0$, we can let $\langle B_t \rangle := \lim_{n \to \infty} \sum_{(s,u) \in \pi_n} (B_u B_s)^2$ which exists in L^p (and a.s. if $\sum_n |\pi_n| < \infty$) and $\langle B_t \rangle = t$ a.s.
- Almost surely the paths are monotone in no interval.
- The set of local maxima is dense and countable.
- Every local maximum is strict.

2.3 The Markov property

Let *B* be standard Brownian motion defined on $(\mathcal{C}([0,\infty)), \mathcal{B}^{[0,\infty)})$ where $\mathcal{B}^{[0,\infty)}$ is the smallest σ -algebra such that the projections $\omega \mapsto \omega(t)$ are measurable. Consider the family of measures $\{P^x\}_{x\in\mathbb{R}}$ where P^x is the measure of x+B. Write $(X_t)_t$ for Brownian motion starting in x. In particular $P^x(X_0 = x) = 1$.

Proposition 2.3.1. If Y is a bounded random variable then $x \mapsto E^x Y$ is measurable.

Proposition 2.3.2 (Monotone class theorem). Let $\Omega \in \mathcal{P}$ be a π -system and \mathcal{H} a linear space with

- 1. $A \in \mathcal{P} \Rightarrow 1_A \in \mathcal{H}$
- 2. $X_n \in \mathcal{H}$ bounded, $X_n \uparrow X$, then $X \in \mathcal{H}$
- Then $\{X : X \text{ is bounded and } \sigma(P)\text{-measurable}\} \subset \mathcal{H}.$

Proof of 2.3.2. From \mathcal{H} linear and 2. it follows that $\mathcal{G} = \{A : 1_A \in \mathcal{H}\} \supset \mathcal{P}$ is a Dynkin system. Since \mathcal{H} contains all simple functions we win.

Lemma 2.3.3. Let f(x,y) be a bounded measurable function, $X \mathcal{G}$ -measurable and $Y \amalg \mathcal{G}$. Then $E(f(X,Y) \mid \mathcal{G}) = g(X)$ almost surely where g(x) = Ef(x,Y).

Proof of 2.3.3. Exercise.

Proof of 2.3.1. Call Y special if $Y(\omega) = \prod_{m=1}^{n} f_m(\omega(t_m))$ for $0 < t_1 < ... < t_n$ and $f_m \in \mathcal{C}_0(\mathbb{R})$. Let $p_t(x, y)$ the density of a $\mathcal{N}(x,t)$ random variable. If Y is special then $E^x Y = E^x \prod_{m=1}^{n} f_m(X_{t_m}) = E^x \prod_{m=1}^{n} f_m(x + B_{t_m})$. We show continuity in x by induction on n. For n = 1:

$$Ef_1(x+B_{t_1}) = \int f_1(x+y)p_{t_1}(0,y)dy = \int f_1(z)p_{t_1}(x,z)dz$$

which is continuous in x. For $n \ge 2$, using Lemma 2.3.3 and independent increments yields

$$E\left(E\left(\prod_{m=1}^{n} f_m(x+B_{t_m}) \mid B_{t_i} : 1 \le i \le n-1\right)\right) = E\left(\prod_{m=1}^{n-1} f_m(x+B_{t_m})h(x+B_{t_{n-1}})\right)$$

where $h(u) = Ef_n(u + B_{t_n - t_{n-1}})$. Now extend to $Y \in \mathcal{C}_0(\mathbb{R})$ using the monotone class theorem.

Definition 2.3.1. $(\mathcal{F}_t)_{t\in T}$ is called a *filtration* if \mathcal{F}_t is a σ -field such that $\mathcal{F}_s \subset \mathcal{F}_t$ for any $s \leq t$. It is called *right-continuous* if $\mathcal{F}_t = \bigcap_{s>t} \mathcal{F}_s$.

For Brownian motion a natural candidate for a filtration is

 $\mathcal{F}_t^0 = \{ \text{smallest } \sigma - \text{algebra such that } \omega \mapsto \omega(s) \text{ are measurable for } s \in [0, t] \}.$ However, this is not right-continuous. Therefore, define $\mathcal{F}_t = \bigcap_{s>t} \mathcal{F}_s^0$.

Now let $(\theta_s)_{s \in [0,\infty)}$ be the time shift defined by $\theta_s \omega(t) = \omega(s+t)$. Note that $X_t(\omega_s) = X_{t+s}(\omega)$.

Theorem 2.3.4 (Markov property for Brownian motion). Let Y be a bounded random variable. Then for all $x \in \mathbb{R}$, $s \ge 0$:

$$E^{x}(Y \circ \theta_{s} \mid \mathcal{F}_{s}) = E^{X_{s}}Y := E^{y}Y|_{y=X_{s}}$$

Proof. It suffices to show that $E(Y \circ \theta_s 1_A) = E^x(E^{X_s}Y 1_A)$ for $s \ge 0$, Y bounded and $A \in \mathcal{F}_s$.

- 1. Choose first Y special and A finite dimensional. Let $0 < r_1 < ... < r_k < s + h < s + t_1 < s + t_2 < ... < s + t_n$. Let $\phi(y,h) := E^y f_1(X_{t_1-h}) \cdots f_n(X_{t_n-h})$.
- 2. ϕ is jointly continuous in $(y,h) \in \mathbb{R} \times [0,t_1)$ and $E^x(Y \circ \theta_s 1_A) = E^x(\phi(X_{s+h},h)1_A)$. For k = n = 1 we have $\phi(y,h) = \int_{\mathbb{R}} dz p_{t_1-h}(y,z) f_1(z)$ and

$$E^{x}(Y \circ \theta_{s} 1_{A}) = E^{x}(f_{1}(\omega(t+s))1_{\{\omega(r_{1})\in A_{1}\}}) = \int_{A_{1}} du p_{r_{1}}(x,u) \int_{\mathbb{R}} dv p_{s+h-r_{1}}(u,v) \int_{\mathbb{R}} dz f_{1}(z) p_{t_{1}-h}(v,z) = E^{x}(\phi(X_{s+h},h)1_{A})$$

which is what we wanted to show for n = k = 1. Now do induction on k, n.

- 3. Apply the Dynkin lemma to $\mathcal{P} = \left\{ \text{finite dimensional subsets of } \mathcal{F}^{0}_{s+h/2} \right\} \text{ and } \mathcal{L} = \left\{ A \in \mathcal{F}^{0}_{s+h/2} : 2. \text{ holds} \right\}$
- 4. Letting $h \downarrow 0$ in 2. we use the following properties
 - The paths of X are right-continuous

- ϕ is jointly continuous
- $\phi(y,0) = E^x Y$

to get 1. for the special Y's.

5. To go from special Y to general bounded Y we apply the monotone class theorem to $\mathcal{P} = \{\text{finite dimensional sets}\}, \mathcal{H} = \{\text{bounded random variables for which 1. holds}\}.$

Remark.

- We have used only the *right*-continuity of the paths.
- $p_{t+s}(x,y) = \int dz p_t(x,z) p_s(z,y)$, which is known as the semi-group property.

Proposition 2.3.5. If Y is a bounded random variable and $x \in \mathbb{R}$ then $E^x(Y \mid \mathcal{F}_s) = E^x(Y \mid \mathcal{F}_s^0)$.

Proof. First let Y be special. Write $Y(\omega) = Y_1(\omega)(Y_2 \circ \theta_s)(\omega)$ with $Y_1(\omega) = \prod_{m:t_m \leq s} f_m(\omega(t_m))$ and $Y_2(\omega) = \prod_{m:t_m > s} f(\omega(t_m - s))$. Then using Markov property:

$$E^{x}(Y \mid \mathcal{F}_{s}) = Y_{1}E^{x}(Y_{2} \circ \theta_{s} \mid \mathcal{F}_{s}) = Y_{1}E^{X_{s}}Y_{2}$$

So $E^{x}(Y \mid \mathcal{F}_{s})$ is \mathcal{F}_{s}^{0} -measurable. Dynkin lemma and Monotone class theorem to win.

Corollary 2.3.6 (Blumenthal 0-1 law). If $A \in \mathcal{F}_0$ then $P^x(A) \in \{0, 1\}$ for each $x \in \mathbb{R}$.

Proof. Let $A \in \mathcal{F}_0$. Then $1_A = E^x(1_A \mid \mathcal{F}_0) = E^x(1_A \mid \mathcal{F}_0)$ is constant almost surely.

Let $\tau_{>0} := \inf \{t : X_t > 0\}$ and $\tau_0 = \inf \{t > 0 : X_t = 0\}$. Then $P^0(\tau_{>0} = 0) = P^0(\tau_0 = 0) = 1$. We know that $P^0(\tau_{>0} \le t) \ge P^0(X_t > 0) = 1/2$. Now use the Blumenthal 0-1 law.

Furthermore we also get $\tau_{<0} = 0$ P^0 -almost surely. Now use continuous paths to conclude that $P^0(\tau_0 = 0) = 1$.

2.4 The Strong Markov Property

Let (Ω, \mathcal{F}) be a measurable space and let $(\mathcal{F}_t)_t$ be a right-continuous filtration.

Definition 2.4.1. A random variable $\tau : \Omega \to [0, \infty]$ is called a stopping time with respect to \mathcal{F}_t if $\{\tau \leq t\} \in \mathcal{F}_t$ for all $t < \infty$.

Lemma 2.4.1. τ is a stopping time iff $\{\tau < t\} \in \mathcal{F}_t$ for all $t \ge 0$. Note that right-continuity is necessary for this.

Proposition 2.4.2. Let G be an open set. Then $\tau_G = \inf \{t : X_t \in G\}$ is a stopping time.

Proof. $\{\tau < t\} = \bigcup_{\mathbb{D} \ni s < t} \{X_s \in G\} \in \mathcal{F}_t.$

Lemma 2.4.3. If $(\tau_n)_n$ is a sequence of stopping times, then so are $\inf \tau_n$, $\sup \tau_n$, $\liminf \tau_n$, $\limsup \tau_n$.

Proposition 2.4.4. If G is a closed set then τ_G is also a stopping time for Brownian motion.

Proof. For every n let $G_n = \{x : d(x,G) < 1/n\}$ and $\tau_n = \tau_{G_n}$. Clearly $\sup \tau_n \leq \tau_G$. The converse remains as a maybe-not-so-easy exercise.

Definition 2.4.2. Let τ be a stopping time. Define $\mathcal{F}_{\tau} := \{A : \forall t : A \cap \{\tau \leq t\} \in \mathcal{F}_t\}$.

- \mathcal{F}_{τ} is a σ -algebra.
- τ is \mathcal{F}_t -measurable
- If $\tau_n \downarrow \tau$ then $\mathcal{F}_{\tau} = \bigcap_n \mathcal{F}_{\tau_n}$.
- If $\tau_1 \leq \tau_2$ then $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$.

Proposition 2.4.5. If (Z_t) is adapted to (\mathcal{F}_t) and Z_t has right-continuous paths then $Z_{\tau} \mathbb{1}_{\tau < \infty}$ is \mathcal{F}_{τ} -measurable.

- Proof. First assume that τ takes on only countably many values t_1, t_2, \dots Since Z is adapted $\{Z_{\tau} \leq a\} \cap \{\tau < t\} = \bigcup_{k:t_k < t} \{\tau = t_k, Z_{t_k} \leq a\} \in \mathcal{F}_t$
 - Now assume $\tau < \infty$. Now we can approximate τ by $\tau_n := \frac{k+1}{2^n}$ if $\frac{k}{2^n} \le \tau < \frac{k+1}{2^n}$. Now $\{\tau_n \le t\} = \{\tau < k/2^n\} \in \mathcal{F}_t$ for $\frac{k}{2^n} \le t < \frac{k+1}{2^n}$. Moreover, $\tau_n \downarrow \tau$. Every Z_{τ_n} is \mathcal{F}_{τ_n} -measurable and therefore Z_{τ} is \mathcal{F}_{τ_n} -measurable and therefore also \mathcal{F}_{τ} -measurable because both $Z, (\mathcal{F}_t)_t$ are right-continuous.

• For arbitrary τ , $Z_{\tau \wedge n}$ is $\mathcal{F}_{\tau \wedge n}$ -measurable so that $Z_{\tau \wedge n} \mathbf{1}_{\{\tau < \infty\}}$ and $Z_{\tau} \mathbf{1}_{\{\tau < \infty\}}$ are \mathcal{F}_{τ} -measurable too.

Theorem 2.4.6 (Strong Markov property for Brownian motion). Suppose $Y_s(\omega)$ is bounded and jointly measurable on $[0, \infty) \times \Omega$ and that τ is a stopping time. Then for all $x \in \mathbb{R}$:

$$E^{x}(Y_{\tau} \circ \theta_{\tau} \mid \mathcal{F}_{\tau}) = E^{X_{\tau}}Y_{\tau} = E^{y}Y_{t}|_{t=\tau, y=X}$$

 P^x -almost surely on $\{\tau < \infty\}$. In particular

$$E^x(Y_\tau \circ \theta_\tau 1_{\tau < \infty}) = E^x(E^{X_\tau}(Y_\tau) 1_{\tau < \infty})$$

Proof idea. • If τ takes on countably many values t_1, t_2, \dots we condition on $\tau = t_k$ and apply the Markov property.

- General τ we can approximate with a sequence $\tau_n \downarrow \tau$ where each τ_n takes on countably many values.
- Use special Y's and generalize via the monotone class theorem.

For a first application we can look at the zeros of Brownian motion: $Z(\omega) = \{t : \omega(t) = 0\}$. Then

$$E^x \lambda(Z) = E^x \int_0^\infty 1_Z dt = \int_0^\infty P^x (t \in Z) dt = 0$$

Hence $\lambda(Z) = 0 P^x$ -almost surely.

Proposition 2.4.7. Z is almost surely perfect, hence uncountable.

Proof. We show that any point is an accumulation point. Let $a \ge 0, \tau_a = \inf \{t \ge a : X_t = 0\}$. Let $Y = 1_A$ for $A = \{\omega : \omega(t_n) = 0 \text{ for some sequence } t_n \downarrow 0\}$. Then $Y \circ \theta_{\tau_a} = 1_{A_a}$ for $A_a = \{\omega : \omega(t_n) = 0 \text{ for some sequence } t_n \downarrow \tau_a\}$. Then

$$E^{x}(Y \circ \theta_{\tau_{a}} \mid \mathcal{F}_{\tau_{a}}) = E^{X_{\tau_{\alpha}}}Y = E^{0}Y = 1$$

Hence $P^x(A_a) = E^x(E^x(Y \circ \theta_{\tau_a} | \mathcal{F}_{\tau_a})) = 1$. Hence for all a, τ_a is a limit point in Z from the right. All other elements of Z are accumulation points from the left.

As another application we can look at

Theorem 2.4.8 (Reflection principle). Let $M_t := \max_{s \le t} X_s$, 0 < b < a. Then $P^0(M_t > a, X_t < b) = P^0(X_t > 2a-b)$ for all $t \ge 0$.

Proof. Let $\tau := \inf \{t : X_t = a\}$. Let $Y_s = 1_{\omega(t-s)>2a-b} - 1_{\omega(t-s)<b}$. We get $E^x Y_s = P^x(X_{t-s} > 2a-b) - P^x(X_{t-s} < b)$. In particular $E^a Y_s = 0$. On $\{\tau < t\}, 0 = E^{X_\tau} Y_\tau$ and

$$0 = E^{a}Y_{s} = E^{0}\left(E^{X_{\tau}}Y_{\tau}1_{\tau < t}\right) = E^{0}\left(Y_{\tau} \circ \theta_{\tau}1_{\tau < t}\right) = P^{0}(X_{t} > 2a - b, \tau < t) - P^{0}(X_{t} < b, \tau < t)$$
$$= P^{0}(X_{t} > 2a - b) - P^{0}(X_{t} < b, M_{t} > a)$$

Corollary 2.4.9. Under P^0 , M_t and $|X_t|$ have the same distribution.

Proof. Using the reflection principle, we get

$$P^{0}(M_{t} > a) = P^{0}(M_{t} > a, X_{t} > a) + P^{0}(M_{t} > a, X_{t} < a) = P^{0}(X_{t} > a) + P^{0}(X_{t} > a) = P^{0}(|X_{t}| > a).$$

Corollary 2.4.10. Let $\tau_0 = \inf \{t : X_t = 0\}$. Then $P^x(\tau_0 < t) = \int_0^t \frac{|x|}{\sqrt{2\pi z^3}} e^{-x^2/2z} dz$

Proof.

$$P^{x}(\tau_{0} < t) = P^{|x|}(\tau_{0} < t) = P^{|x|}(X_{s} < 0 \text{ for some } s < t) = P^{0}(X_{s} > |x| \text{ for some } s < t)$$
$$= P^{0}(M_{t} > |x|) = 2P^{0}(X_{t} > |x|) = 2\int_{|x|}^{\infty} p_{t}(0, y)dy$$

Substituting $y = |x| \sqrt{t/z}$ gives the desired result.

2.5 The Skorohod Embedding

Definition 2.5.1. $M = (M_t)_t$ is called *submartingale* if for each t:

- M_t is \mathcal{F}_t -measurable,
- $M_t \in L^1$ and
- $E(M_t \mid \mathcal{F}_s) \leq M_s$ for all s < t

We call M supermartingale if -M is a submartingale and martingale if it is a super- as well as a submartingale.

Theorem 2.5.1 (Martingale convergence). If M is a right-continuous submartingale bounded in L^1 then $M_{\infty} := \lim_t M_t$ exists and is finite a.s. If M is uniformly integrable, that is $\sup_t E(|M_t|, |M_t| > N) \xrightarrow{N \to \infty} 0$, then convergence is also in L^1 .

Remark. If M is bounded in L^2 then M is uniformly integrable.

Theorem 2.5.2 (Stopping time theorem). Let M be a right-continuous martingale, $\sigma \leq \tau$ a stopping time. If either τ is bounded or M is uniformly integrable then $E(M_{\tau} | \mathcal{F}_{\sigma}) = M_{\sigma}$.

Example 2.1. Brownian motion B as well as $B_t^2 - t$ are martingales.

Proposition 2.5.3. Let τ be a stopping time such that $E\tau < \infty$. Then $EB_{\tau} = 0$, $EB_{\tau}^2 = E\tau$

Proof. • $B^2_{\tau \wedge n} - (\tau \wedge n)$ is a martingale in n by the stopping time theorem.

- $EB_{\tau \wedge n}^2 = E(\tau \wedge n) \leq E\tau < \infty$. Hence $E(B_{\tau}^2) \leq E\tau < \infty$ by Fatou.
- $B_{\tau \wedge n}$ is also a martingale in n and is uniformly integrable because it's bounded in L^2 by the above. Hence $E(B_{\tau \wedge n}) = 0 = E(B_{\tau})$ by stopping time theorem and L^1 convergence from martingale convergence theorem.

• $E(\tau \wedge n) = E(B_{\tau \wedge n}^2) = E\left(E(B_{\tau} \mid \mathcal{F}_{\tau \wedge n})^2\right) \leq EB_{\tau}^2$ by Jensen's inequality. Now use monotone convergence.

Let Y be an \mathbb{R} -valued random variable. We can ask if there is a stopping time τ such that $E\tau < \infty$ and $\mathcal{L}(B_{\tau}) = \mathcal{L}(Y)$. By the proposition we know that EY = 0, $EY^2 < \infty$ are necessary conditions. It turns out that they are already sufficient.

Example 2.2. Let Y take only two values a, b. Then the obvious choice is $\tau = \tau_{\{a,b\}}$. Since $EB_{\tau} = 0$ and there is only one distribution on $\{a, b\}$ with mean 0 it does the job. This is the only such stopping time with finite mean. If σ is another one then $\sigma \geq \tau$ but $E\sigma = E\tau = EY^2$.

Theorem 2.5.4 (Skorohod embedding). Let B be standard Brownian motion, Y a random variable with $EY = 0, EY^2 < \infty$. Then there exists a stopping time τ with $E\tau < \infty$ such that $\mathcal{L}(B_{\tau}) = \mathcal{L}(Y)$.

Note that given $v \leq u \leq w$ there is a unique distribution on $\{v, w\}$ with mean u.

 $\begin{array}{l} Proof \ (Dubin). \ \text{Consider a sequence of finite subsets of } \mathbb{R}: \ S_0 = \emptyset, \ S_1 = \{0\} = \{E(Y)\}, \ S_2 = \{E(Y \mid Y < 0), E(Y \mid Y > 0)\} =: \\ \{a, b\}, \ S_3 = \{E(Y \mid Y < a), E(Y \mid a \leq Y < 0), E(Y \mid 0 \leq Y < b), E(Y \mid b \leq Y)\}, \ \text{and so on.} \\ \text{More formally: Given } S_1, ..., S_n \ \text{we let } \mathcal{F}_n = \sigma\left(\left\{x \leq Y \leq y, \ \text{for } x, y \ \text{consecutive points of } T_n := \bigcup_{k \leq n} S_k \cup \{\pm \infty\}\right\}\right) \\ \text{and } S_{n+1} = \operatorname{supp}(E(Y \mid \mathcal{F}_n)) \ \text{Without loss of generality assume } Y \ \text{takes values in } F = \operatorname{supp}(Y). \ \text{Let } \tau_0 = 0 \ \text{and} \\ \tau_n = \min\{t > \tau_{n-1} : B_t \in S_{n+1}\}. \end{array}$

(1) $\lim_{n\to\infty} E(Y \mid \mathcal{F}_n) = Y$ a.s.

The martingale convergence theorem applied to $M_n := E(Y \mid \mathcal{F}_n)$ gives us an a.s. limit $E(Y \mid \sigma(\bigcup_n \mathcal{F}_n))$. Thus we need to show that Y is measurable with respect to $\sigma(\bigcup_n \mathcal{F}_n)$. It suffices to show that $F \subset \overline{\bigcup_k S_k}$. Suppose $u \in F \setminus \overline{\bigcup_k S_k}$. Choose sequences $(x_n), (y_n)$ of consecutive points in $\bigcup_{k \le n} S_k \cup \{\pm \infty\}$ such that $x_n \le u \le y_n$ for all n. Then $x_n \downarrow, y_n \uparrow$ and $\lim x_n = x < u < y = \lim y_n$. But $S_{n+1} \ni E(Y \mid x_n < Y \le y_n) \to E(Y \mid x < Y \le y)$. Hence we have P(x < Y < y) = 0, otherwise there would be $S_m \in (x, y)$ for some m sufficiently large. But we assumed P(x < Y < y) > 0 as we took $u \in F$.

- (2) $E\tau_n < \infty$ for all *n* by induction on *n*.
 - $E(\tau_0) = 0$
 - $E\tau_{n-1} < \infty$ and $\sigma := \inf \{t \mid B_t \in S_{n+1}\}$. By the strong Markov property $E(\tau_n \tau_{n-1} \mid \mathcal{F}_{\tau_{n-1}}) = E^{B_{\tau_{n-1}}}\sigma$. Hence $E(\tau_n - \tau_{n-1}) = E(E^{B_{\tau_{n-1}}}\sigma)$. Now $\forall u \in S_n \exists v, w \in S_{n+1}$ consecutive : $v \le u \le w$ hence the hitting time of this subset is finite.
- (3) B_{τ_n} and $E(Y \mid \mathcal{F}_n)$ have the same distribution, once more by induction on n.

- $B_{\tau_0} = 0 = E(Y) = E(Y \mid \mathcal{F}_0)$
- $(B_{\tau_n} \mid B_{\tau_{n-1}} = u) \stackrel{\mathcal{L}}{=} (E(Y \mid \mathcal{F}_n) \mid E(Y \mid \mathcal{F}_n) = u)$. Let $v = \sup \{s \in S_{n+1} : s < u\}, w = \inf \{s \in S_{n+1} : s > u\}$. On both sides it is the unique distribution concentrated on $\{v, w\}$.
- (4) Let's put everything together. Using (2), (3) and Jensen, we get $E\tau_n = EB_{\tau_n}^2 = E\left(E(Y \mid \mathcal{F}_n)^2\right) \leq EY^2 < \infty$. So the monotone limit $\tau := \lim_n \tau_n$ exists and is finite a.s. with $E\tau < \infty$. Taking the limit $n \to \infty$ in (3) and combining it with (1) we win.

Corollary 2.5.5. Let $(Y_i)_i$ be iid, $E(Y_i) = 0$, $E(Y_i^2) = 1$. Let $S_n = \sum_{i=1}^n Y_i$. Then there exist iid stopping times $(\tau_i)_i$ such that $E\tau_i = 1$ and $(S_1, S_2, ...) \stackrel{\mathcal{L}}{=} (B_{\tau_1}, B_{\tau_1 + \tau_2}, ...)$.

Proof. Construct sequences $(B_t^i), (\tau_i)$ such that $B_t^1 = B_t, \tau_1$ such that $B_{\tau_1}^1 \stackrel{\mathcal{L}}{=} Y_i$. Then $B_t^2 = B_{\tau_1+t}^1 - B_{\tau_1}$ is Brownian motion and is independent of \mathcal{F}_{τ_1} . Choose τ_2 such that $B_{\tau_2}^2 \stackrel{\mathcal{L}}{=} Y_2$. If the same construction is used then $\tau_1 \stackrel{\mathcal{L}}{=} \tau_2$. Now τ_1, B_{τ_1} are \mathcal{F}_{τ_1} -measurable, hence $(\tau_1, B_{\tau_1}^1)$ and $(\tau_2, B_{\tau_2}^2)$ are independent so that τ_1, τ_2 are iid and $(B_{\tau_1}^1, B_{\tau_2}^2) \stackrel{\mathcal{L}}{=} (Y_1, Y_2)$. Then $(S_1, S_2) \stackrel{\mathcal{L}}{=} (B_{\tau_1}, B_{\tau_1+\tau_2})$. Iterate.

As a consequence $\frac{S_n}{\sqrt{n}} \stackrel{\mathcal{L}}{=} \frac{B_{\tau_1 + \dots + \tau_n}}{\sqrt{n}}$. If we had $S_n/\sqrt{n} \stackrel{\mathcal{L}}{=} B_{\frac{1}{n}(\tau_1 + \dots + \tau_n)}$ then we would get the Central Limit Theorem.

Theorem 2.5.6. Let (Y_i) as above. There exists a triangular array $\{\tau_{i,n} : 1 \leq i \leq n\}$ of stopping times such that:

- 1. $E\tau_{i,n} = 1$
- 2. $\forall n: \tau_{1,n}, ..., \tau_{n,n}$ are independent

3.
$$\forall n : \left(\frac{S_k}{\sqrt{n}} : 1 \le k \le n\right) \stackrel{\mathcal{L}}{=} \left(B_{\frac{\tau_{1,n} + \dots + \tau_{k,n}}{n}} : 1 \le k \le n\right)$$

Proof. • $B_t^n := \sqrt{n}B_{t/n}$ is Brownian motion.

- Apply Corollary 5.5 to B^n to get $\tau_{1,n}, ..., \tau_{n,n}$
- Using Corollary 5.5 once more we get

$$\left(\frac{S_k}{\sqrt{n}}: 1 \le k \le n\right) \stackrel{\mathcal{L}}{=} \left(B^n_{\tau_{1,n}+\ldots+\tau_{k,n}}/\sqrt{n}: 1 \le k \le n\right) \stackrel{\mathcal{L}}{=} \left(B_{\frac{\tau_{1,n}+\ldots+\tau_{k,n}}{n}}: 1 \le k \le n\right).$$

This implies the CLT: $S_n/n \stackrel{\mathcal{L}}{=} B_{\tau_{1,n}+\ldots+\tau_{n,n}}/n$. By the LLN: $\frac{1}{n}(\tau_{1,n}+\ldots+\tau_{n,n}) \stackrel{P}{\longrightarrow} 1$ so using continuity of the paths it follows that $\frac{S_n}{\sqrt{n}} \to B_1 \sim \mathcal{N}(0,1)$.

Given a discrete time process (Y_k) there are two ways to construct a continuous time process (Y_t) :

- 1. Linear interpolation $(Y_t)_{t \in [0,1]}$ is a random function in $(\mathcal{C}[0,1],\rho)$ where ρ is the sup-metric.
- 2. We could also work on $\mathcal{D}[0,1] := \{f : [0,1] \to \mathbb{R} \mid f \text{ is right-continuous with limits from the left} \}$ with the supmetric ρ .

We use the second option.

Theorem 2.5.7 (Donsker's invariance principle). Let (Y_i) be iid, $EY_i = 0, EY_i^2 = 1, S_n := \sum_{k=1}^n Y_i$ and $Z_t^n := S_{\lfloor nt \rfloor}/\sqrt{n}, t \in [0,1]$. Then $Z^n \xrightarrow{d} B$ in $(\mathcal{D}[0,1], \rho)$

Proof. Take $\{\tau_{k,n}\}_{1\leq k\leq n}$ from the previous theorem and let $T_t^n := \frac{\tau_{1,n} + \dots + \tau_{\lfloor tn \rfloor,n}}{n}$ and $V_t^n := B_{T_t^n}$ for $t \in [0,1]$. Then $(V_t^n)_t \stackrel{\mathcal{L}}{=} (Z_t^n)_t$ for all n. We now show that $V_t^n \stackrel{P}{\longrightarrow} B_t$. For $\epsilon, \delta > 0$:

$$P(\rho(V^n, B) > \epsilon) \le P\left(\sup_t (T_t^n - t) \ge \delta\right) + P\left(\sup_{|s-t| \le \delta} |B_s - B_t| > \epsilon\right)$$

As $\delta \downarrow 0$ the second term converges to 0. Now let τ_1, τ_2, \dots be iid with the same distribution as the $\tau_{i,j}$. Then

$$\sup_{t} |T_{t}^{n} - t| \leq \frac{1}{n} + \sup_{0 \leq k \leq n} \left| \frac{\tau_{1,n} + \dots + \tau_{k,n} - k}{n} \right| \stackrel{\mathcal{L}}{=} \frac{1}{n} + \sup_{0 \leq k \leq n} \frac{k}{n} \left| \frac{\tau_{1} + \dots + \tau_{k}}{k} - 1 \right|$$
$$\leq \frac{1}{n} + \epsilon \sup_{k} \left| \frac{\tau_{1} + \dots + \tau_{k}}{k} - 1 \right| + \sup_{k \geq \epsilon n} \left| \frac{\tau_{1} + \dots + \tau_{k}}{k} - 1 \right|$$

where the second term is a.s. bounded and the last term converges to 0 a.s. It follows that $\sup_{t \in [0,1]} |T_t^n - t| \xrightarrow{P} 0$. \Box

Corollary 2.5.8. Suppose $\phi : \mathcal{D}[0,1] \to \mathbb{R}$, $P(B \in A) = 1$ for $A \subset \mathcal{D}[0,1]$ and ϕ is continuous on A. Then $\phi(Z^n) \xrightarrow{d} \phi(B)$.

Example 2.3.

- $\phi(f) = f(1)$ gives us the CLT.
- $\phi(f) = \max_{0 \le t \le 1} f(t)$. Then $\frac{\max_{0 \le k \le n} S_k}{\sqrt{n}} \xrightarrow{d} \max_{0 \le t \le 1} B_t \stackrel{\mathcal{L}}{=} |B_1|$
- etc.

3 Markov Chains

3.1 Markov Chains with finite state space in discrete time

A homogeneous Markov chain $(X_n)_{n \in \mathbb{N}}$ on a finite state space S is given by an initial distribution μ on S and a stochastic matrix P, i.e. P has dimension $|S| \times |S|$ with entries ≥ 0 and rows summing to 1, if $P(X_0 = x) = \mu(x), P(X_{n+1} = y \mid X_n = x, X_{n-1} = x_{n-1}, ..., X_0 = x_0) = P(X_{n+1} = y \mid X_n = x) = P_{x,y}$. In particular

$$P(X_n = x) = \sum_{x_0, \dots, x_{n-1}} \mu(x_0) P(X_1 = x_1, \dots, X_{n-1} = x_{n-1}, X_n = x) = \sum_{x_0} \mu(x_0) p^n(x_0, x) = \mu \mathbb{P}^n_{\cdot, x}$$

where we write $p^{r}(x, y)$ for the *r*-step transition probabilities. Furthermore, by definition, (X_n) has the Markov property.

Example 3.1. • $P = \begin{pmatrix} 1-\alpha & \alpha \\ \beta & 1-\beta \end{pmatrix}$ for $\alpha, \beta \ge 0$

• $P = (a_{ij})$ where $a_{ij} = \frac{1}{2} \mathbb{1}_{\{|i-j|=1 \mod n\}}$

```
• etc.
```

Definition 3.1.1. • A Markov chain X is called irreducible if for all $x, y \in S$ there is an r such that $p^r(x, y) > 0$.

- For $x \in S$ we write $period(x) := gcd \{ n \in \mathbb{N} : p^n(x, x) > 0 \}.$
- A chain is *aperiodic* if $\forall x \in S$: period(x) = 1.

If X is an irreducible chain then all $x \in S$ have the same period. Furthermore, if a chain is irreducible and aperiodic then $\exists r \in \mathbb{N} \ \forall x, y \in S : p^r(x, y) > 0$.

Definition 3.1.2. A distribution π on S is called *stationary* for P if $\pi P = \pi$.

Let $\tau_x = \inf \{ n \ge 0 \mid X_n = x \}$ and $\tau_x^+ = \inf \{ n \ge 1 \mid X_n = x \}.$

Lemma 3.1.1. If X is irreducible then $E\tau_x^+ < \infty$.

Proof. For all x, y there exists r such that $p^r(x, y) \ge \epsilon > 0$. Then we can find $k \in \mathbb{N}, \epsilon > 0$ such that $\forall x, y \in S \exists r \le k : p^r(x, y) \ge \epsilon > 0$. Now $P^x(\tau_y^+ > lk) \le (1 - \epsilon)P^x(\tau_y^+ > (l - 1)k) \le (1 - \epsilon)^l$. Then $E\tau_x^+ = \sum_{n=0}^{\infty} P^x(\tau_y^+ > n) \le \sum_{l=1}^{\infty} kP^x(\tau_y^+ > (l - 1)k) < \infty$.

Lemma 3.1.2. Let X be irreducible. Then $\pi(x) = 1/E^x(\tau_x^+)$ is a stationary distribution.

Proof. Let $\tilde{\pi}(y) := \sum_{n=0}^{\infty} P^z(X_n = y, \tau_z^+ > n)$ be the expected number of visits to y before returning to z. Now

$$\widetilde{\pi}P(y) = \sum_{x \in S} \sum_{n \ge 0} P^z (X_n = x, \tau_z^+ > n) P_{x,y} = \sum_{x \in S} \sum_{n \ge 0} Z^z (X_n = x, X_{n+1} = y, \tau_z^+ > n)$$
$$= \sum_{n \ge 1} P^z (X_n = y, \tau \ge n) = \widetilde{\pi} - P^z (X_0 = y, \tau_z^+ \ge n+1) + \sum_{n=1}^{\infty} P^z (X_n = y, \tau_z^+ = n) = \widetilde{\pi}(y).$$

Hence $\pi(x) = \frac{\tilde{\pi}(x)}{\sum_{y \in S} \tilde{\pi}(y)} = \frac{\tilde{\pi}(x)}{E^z \tau_z^+}$ is stationary. $\pi(z) = \frac{1}{E^z \tau_z^+}$ will follow from the uniqueness we prove below.

We call an $h: S \to \mathbb{R}$ harmonic if for all $x \in S$, $h(x) = \sum_{y} P_{x,y}h(y)$. We write h as a column vector and express this as h = Ph.

Lemma 3.1.3. If X is irreducible and h is harmonic then h is already constant.

Proof. Take $x_0 := \operatorname{argmax}_{x \in S} h(x)$ and $M = h(x_0)$. Now $h(x_0) = \sum_{y \in S} P_{x,y} h(y)$. If $h(y) < h(x_0)$ for any y for which $P_{x,y} \neq 0$ this is a contradiction. Otherwise iterate.

Corollary 3.1.4. If X is irreducible then the stationary distribution π is unique.

Proof. dim $(\ker (P - I)) = 1$ by the previous lemma.

Definition 3.1.3. Let μ, ν be probability measures on S. Define $\|\mu - \nu\| := \max_{A \subseteq S} |\mu(A) - \nu(A)|$

Lemma 3.1.5. $\|\mu - \nu\| = \frac{1}{2} \sum_{x \in S} |\mu(x) - \nu(x)|.$

Proof. Let $B := \{x \in S : \mu(x) \ge \nu(x)\}$. Then $\mu(A) - \nu(A) \le \mu(A \cap B) - \nu(A \cap B)$. It follows that $\|\mu - \nu\| = \frac{1}{2}(\mu(B) - \nu(B) + \nu(B^c) - \mu(B^c)) = \frac{1}{2}\sum_{x \in S} |\mu(x) - \nu(x)|$.

We can also write it as $\|\mu - \nu\| = \sum_{\mu(x) > \nu(x)} (\mu(x) - \nu(x))$

Theorem 3.1.6 (Convergence theorem). Let X be irreducible and aperiodic, $\pi P = \pi$. Then there exist $\alpha \in (0, 1), c > 0$ such that for all $n \ge 0$:

$$\max \|p_n(x,\cdot) - \pi(\cdot)\| \le c\alpha^n$$

Proof. From irreducibility and aperiodicity we know there exists r > 0: $P_{x,y}^r > 0$ for all x, y and even a $\beta \in (0,1)$ such that $\forall y \in S : P_{x,y}^r \ge (1 - \beta)\pi(y)$. Define Q by $P^r = (1 - \beta)\Pi + \beta Q$ where Π has rows given by π . If M is a stochastic matrix then $M\Pi = \Pi = \Pi M$. We see by induction on k that

$$\mathbf{P}^{r(k+1)} = \mathbf{P}^{rk}\mathbf{P}^{r} = (1-\beta^{k})\mathbf{\Pi}\mathbf{P}^{r} + (1-\beta)\beta^{k}Q^{k}\mathbf{\Pi} + \beta^{k+1}Q^{k+1} = (1-\beta^{k+1})\mathbf{\Pi} + \beta^{k+1}Q^{k+1}.$$

Hence for j < r we have $P^{rk+j} - \Pi = \beta^k (Q^k P^j - \Pi)$. Take the *x*-row on both sides and sum the absolute values of the entries

$$\|p_{rk+j}(x,\cdot) - \pi(\cdot)\| = \sum_{y \in S} |p_{rk+j}(x,y) - \pi(y)| \le \beta^k$$

Theorem 3.1.7 (Ergodic theorem for finite state Markov chains). If X is an irreducible Markov chain, μ a probability measure on S and $f: S \to \mathbb{R}$ then

$$\frac{1}{n}\sum_{k=1}^{n}f(X_k) \xrightarrow{a.s.} \sum_{x\in S}\pi(x)f(x) =: E_{\pi}f.$$

Example 3.2. Taking $f(y) = \delta_x(y)$ the Ergodic theorem tells us that $\frac{1}{n} \sum_{k=1}^n \delta_x(X_k) \xrightarrow{\text{a.s.}} \pi(x)$.

Let $d(n) = \max_x \|p_n(x, \cdot) - \pi(\cdot)\|$ and $\overline{d}(n) = \max_{x,y} \|p_n(x, \cdot) - p_n(y, \cdot)\|$. Then $d(n) \leq \overline{d}(n) \leq 2d(n)$. The second inequality is trivial. For the first,

$$\begin{aligned} \|p_n(x,\cdot) - \pi(\cdot)\| &= \max_A \left| \sum_y \pi(y) \left(p_n(x,A) - p_n(y,A) \right) \right| \le \sum_y \pi(y) \max_A |p_n(x,A) - p_n(y,A)| \\ &\le \max_y \max_A |p_n(x,A) - p_n(y,A)| = \max_y \|p_n(x,\cdot) - p_n(y,\cdot)\|. \end{aligned}$$

Now take the max over x.

Lemma 3.1.8. $\overline{d}(n+m) \leq \overline{d}(n)\overline{d}(m)$.

Definition 3.1.4 (Mixing time). We define $t_{mix}(\epsilon) := \min\{n : d(n) < \epsilon\}$ and $t_{mix} := t_{mix}(1/4)$

Why do we use 1/4? Consider

$$d(lt_{\min}) \le \overline{d}(lt_{\min}) \le \overline{d}(t_{\min})^l \le (2d(t_{\min}))^l \le 2^{-l}.$$

Furthermore $t_{\min}(\epsilon) \leq t_{\min} \lceil \log_2(1/\epsilon) \rceil$.

Lemma 3.1.9. Let P be a stochastic matrix. Then

- If λ is ein eigenvalue for P then $|\lambda| \leq 1$.
- If P is irreducible then 1 has a unique eigenfunction.
- If P is irreducible and aperiodic then -1 is not an eigenvalue.

Let P be reversible with respect to π , i.e. $\pi(x)p(x,y) = \pi(y)p(y,x)$. We define $\langle f,g \rangle_{\pi} := \sum_{x \in S} f(x)g(x)\pi(x)$.

Lemma 3.1.10. 1. $(\mathbb{R}^S, \langle \cdot, \cdot \rangle_{\pi})$ is an inner product space with an orthonormal basis consisting of eigenfunctions f_i corresponding to the real eigenvalues λ_i of P.

2. $P_{x,y}^n = \sum_j f_j(x) f_j(y) \pi(y) \lambda_j^n$, hence $P^n g = \sum_j \langle g, f_j \rangle_{\pi} f_j \lambda_j^n$

Proof. Let $A_{x,y} := \sqrt{\frac{\pi(x)}{\pi(y)}} P_{x,y}$. Then A is symmetric, hence has an ONB $\{\phi_j\}$ of eigenfunctions with real eigenvalues λ_j . $\lambda_1 = 1$ has eigenfunction $\phi_1 = \sqrt{\pi}$. Then $A = D_{\pi}^{1/2} P D_{\pi}^{-1/2}$ where $D_{\pi} = \text{diag}(\pi)$. The $f_j := D_{\pi}^{-1/2} \phi_j$ are the eigenfunctions of P with eigenvalues λ_j . Indeed, $Pf_j = P D_{\pi}^{-1/2} \phi_j = D_{\pi}^{-1/2} A \phi_j = D_{\pi}^{-1/2} \lambda_j \phi_j = \lambda_j f_j$. Furthermore $\langle f_i, f_j \rangle_{\pi} = \left\langle D_{\pi}^{1/2} f_i, D_{\pi}^{1/2} f_j \right\rangle = \langle \phi_i, \phi_j \rangle = \delta_{ij}$. Hence $\delta_y = \sum_j \left\langle \delta_y, f_j \right\rangle_{\pi} f_j = \sum_j f_j(y) \pi(y) f_j$, whence $P_{x,y}^{n} = (P^{n}\delta_{y})(x) = \sum_{j} f_{j}(y)\pi(y)f_{j}(x)\lambda_{j}^{n}$

Now let's look at the spectrum of P: $1 \ge \lambda_1 \ge \dots \ge \lambda_{|S|} \ge -1$ and let $\lambda_* := \max\{|\lambda| : \lambda \neq 1 \text{ is an eigenvalue}\}$. We call $1 - \lambda_*$ the absolute spectral gap and $t_{\rm rel} := \frac{1}{1 - \lambda_*}$ the relaxation time.

Remark. For the lazy chain $\frac{1}{2}(I + P)$ all eigenvalues are ≥ 0 .

Note that for any f we get that $P^n f(x) \to E_{\pi} f$ from the convergence theorem.

Lemma 3.1.11. $Var_{\pi}(P^n f) \leq \lambda_*^{2n} Var_{\pi}(f).$

For reversible, irreducible, aperiodic chains one can show that $(t_{\rm rel} - 1)\log(\frac{1}{2\epsilon}) \le t_{\rm rel}\log(\frac{1}{\epsilon \min_y \pi(y)})$.

Definition 3.1.5. A coupling of probability measures μ, ν on S is a pair of random variables (X, Y) on $S \times S$ and joint distribution with correct margins: $P(X = x) = \mu(x), P(Y = y) = \nu(y).$

Lemma 3.1.12. $\|\mu - \nu\| = \min \{P(X \neq Y) : (X, Y) \text{ is a coupling of } \mu, \nu\}$

• "<" $\mu(A) - \nu(A) = P(X \in A) - P(Y \in A) < P(X \in A, Y \notin A) < P(X \neq Y).$ Proof.

• " \geq " We construct an optimal coupling: Let $q(x,x) := \mu(x) \wedge \nu(x)$ and q(x,y) = 0 if either $q(x,x) = \mu(x)$ or $q(y,y) = \nu(y)$ and $q(x,y) = \frac{(\mu(x) - \nu(x))(\nu(y) - \mu(y))}{1 - \sum_{z} q(z,z)}$ otherwise. Then

$$\min \{ P(X \neq Y) : (X, Y) \text{ is a coupling of } \mu, \nu \} \le P(X \neq Y)$$
$$= \sum_{x} \mu(x) - \left(\sum_{x:\mu(x) > \nu(x)} \nu(x) + \sum_{x:\mu(x) < \nu(x)} \mu(x) \right) = \sum_{x:\mu(x) > \nu(x)} (\mu(x) - \nu(x)) = \|\mu - \nu\|$$

Proof of Lemma 3.1.8. We know that $\max_{x,y} \|p_n(x,\cdot) - p_n(y,\cdot)\| = P(X_n \neq Y_n)$ for an optimal coupling (X_n, Y_n) with respect to p_n and $X_0 = x, Y_0 = y$. Now $p_{n+m}(x, w) = \sum_z p_n(x, z)p_m(z, w) = E(p_m(X_n, z))$ and similarly $p_{n+m}(y, w) = E(p_m(Y_n, w))$. Then $\frac{1}{2} \sum_w |p_{n+m}(x, w) - p_{n+m}(y, w)| = \frac{1}{2} \sum_w |E(p_m(X_n, w) - p_m(Y_n, w))|$. Hence

$$\|p_{n+m}(x,\cdot) - p_{n+m}(y,\cdot)\| \le E\left(\frac{1}{2}\sum_{w}|p_m(X_n,w) - p_m(Y_n,w)|\right) \le \overline{d}(m)E(1_{\{X_n \neq Y_n\}}) \le \overline{d}(m)\overline{d}(n)$$

$$(X_n,Y_n) \text{ was the optimal coupling.}$$

because (X_n, Y_n) was the optimal coupling.

Theorem 3.1.13. $t_{mix}(lazy \ n-cycle) \leq n^2$, where the transition matrix for the n-cycle is given by $P = (a_{ij})$ where $a_{ij} = \frac{1}{2} \mathbb{1}_{\{|i-j|=1 \mod n\}}$ and the transition matrix for the lazy n-cycle is $\frac{1}{2}(I+P)$.

Proof. Use X_n, Y_n coupled lazy walks on the n-cube. Before $\tau = \min\{n : X_n = Y_n\}$ let $P(X_{n+1} \neq X_n, Y_{n+1} = X_n, Y_n)$ Y_n = $P(X_{n+1} = X_n, Y_{n+1} \neq Y_n) = 1/2$ with equal probabilities to go left and right. Now $D_n := X_n - Y_n$ is a simple symmetric random walk on $\{0, ..., n\}$. Then $\tau = \min\{t : D_t \in \{0, n\}\}$. After τ move X_n, Y_n together. Then $k = E^k(D_0) = E^k(D_\tau) = nP^k(D_\tau = n)$. Since $(D_n^2 - n)_n$ is also a martingale we get $k^2 = E^k(D_0^2 - 0) = E^k(D_\tau^2 - \tau) = E^k(D_\tau^2 - \tau)$. $n^2 P^k(D_{\tau} = n) - E^k(\tau)$. Hence $E^k(\tau) = k(n-k) \le \frac{n^2}{4}$ for all k. Furthermore $d(t) \le \overline{d}(t) \le \max_{x,y} P^{x,y}(X_t \ne Y_t) = k(n-k) \le \frac{n^2}{4}$ $\max_k P^k(D_\tau > t) \leq \max_k E^k(\tau)/t \leq \frac{n^2}{4t}$. If $t = n^2$ then $d(n^2) \leq 1/4$, whence the claim follows. \square

3.1.1 The symmetric group and card shufflings

Let $S = \mathfrak{S}_N$ be the symmetric group of $[N] = \{1, .., n\}$. Shuffling cards is then the process of achieving a uniform distribution on S. The idea now is to choose a random transposition and shuffle in that way. However, this is 2-periodic thanks to the parity of permutations.

Instead, for τ a transposition, let

$$\mu(id) = \frac{1}{N}, \quad \mu(\tau) = \frac{2}{N^2},$$

We now choose two positions L_n, R_n uniformly from [N] and swap at these positions: If $X_n \in S$ then $P(X_{n+1} =$ $\sigma \circ \sigma' \mid X_n = \sigma') = \mu(\sigma)$ and $P(X_0 = \mathrm{id}) = 1$.

Proposition 3.1.14. For the chain above, $t_{mix} \leq \frac{2}{3}\pi^2 N^2$

Proof. Strategy: Choose a card $X_n \in [N]$ and position $Y_n \in [N]$ independently and uniformly and swap cards at position Y_n and card X_n . Note that this gives us the same chain as above.

Start with two decks. Use the same $(X_n), (Y_n)$ for both decks. Let a_n be the number of cards at the same location in both decks. There are three possibilities for the *n*-th step:

- If position of card X_n and the card at position Y_n agree in both decks then $a_n = a_{n-1}$.
- If one is different and the other not then $a_n = a_{n-1}$ as well.
- If both card X_n at different position and card at position Y_n are different then $a_n a_{n-1} \in \{1, 2, 3\}$.

Using the lemma below we get that $d(n) \le P(X_n \ne Y_n) = P(\tau > n) \le \frac{1}{n}E(\tau) \le \frac{\pi^2 N^2}{6n}$. Now set $n = \frac{2}{3}\pi^2 N^2$.

Lemma 3.1.15. Let $\tau = \min\{n : a_n = N\}$. Then $E(\tau) \leq \frac{\pi^2}{6}N^2$

Proof. Decompose $\tau = \tau_1 + \tau_2 + \ldots + \tau_N$ where τ_i is the first time that $\{a_n = i\}$ after $\{a_n = i-1\}$, that is $\tau_i = \inf\{m : a_{n+m} \ge i, \tau_{i-1} = n\}$. Then $\tau_0 = 0$ and jumps can occur. Given $\{a_n = i\}$ then N - i cards are not aligned. Hence $\tau_{i+1} \mid a_n = i \sim \text{Geo}\left(\left(\frac{N-i}{N}\right)^2\right)$. Then $E(\tau_{i+1} \mid a_n = i) = \left(\frac{N}{N-i}\right)^2$, whence $E(\tau) \le \sum_{i=0}^{N-1} \frac{N^2}{(N-i)^2} \le \frac{\pi^2}{6}N^2$ \Box

3.1.2 Markov Chain Monte Carlo (MCMC)

Suppose you want to sample from a finite yet very complicated distribution.

Idea: Construct a Markov chain with its stationary distribution equal to the distribution we want to sample from.

Example 3.3 (Ising model on a finite graph). Let G = (V, E) be a finite graph and $S = \{-1, 1\}^V$. Let $\sigma \in S$ be a configuration and $\sigma(v)$ the spin at $v \in V$. Let $H(\sigma) = -\sum_{\{v,w\} \in E} \sigma(v)\sigma(w)$. Define the Boltzmann distribution by $\mu(\sigma) = \frac{1}{Z(\beta)} \exp(-\beta H(\sigma))$ where $Z(\beta) = \sum_{\sigma \in S} \exp(-\beta H(\sigma))$. Since S can be large already for small graphs G, it's very hard to compute $Z(\beta)$.

We use Glauber dynamics:

- Choose sites uniformly iid
- Update state there subject to everything else staying fixed

Set

$$\mu(\sigma(w) = 1 \mid \sigma(v), v \neq w) = \frac{\exp(-\beta \sum_{u:\{u,w\} \in E} \sigma(u))}{\exp(-\beta \sum_{u:\{u',w\} \in E} \sigma(u)) + \exp(-\beta \sum_{u:\{u,w\} \in E} - \sigma(u))}$$

The Glauber chain is given by

$$P_{\sigma,\sigma'} = \frac{1}{V} \sum_{w \in V} \frac{\exp(-\beta \sigma'(w) \sum_{u:\{u,w\} \in E} \sigma'(u))}{\exp(-\beta \sum_{u':\{u',w\} \in E} \sigma'(u')) + \exp(\beta \sum_{u:\{u,w\} \in E} \sigma'(u))} 1_{\{\sigma(v) = \sigma'(v) \text{ for } w \neq v\}}.$$

3.2 Markov chains on countable state spaces

Example 3.4 (Random walk on the lattice \mathbb{Z}^d). Let $S = \mathbb{Z}^d$ and $P(X_0 = 0) = 1$. Let $P(X_{n+1} = y \mid X_n = x) = \frac{1}{2d} \mathbb{1}_{\{|x-y|=1\}}$. Then $(X_n)_{n\geq 0}$ is a Markov chain. Let $\tau^+ = \inf \{n \geq 1 \mid X_n = 0\}$

Definition 3.2.1. A random walk is called *recurrent* if $P(\tau^+ < \infty) = 1$, otherwise it is called *transient*.

Theorem 3.2.1 (Pólya). The random walk on \mathbb{Z}^d is recurrent iff $d \leq 2$.

Define Green's function $G(x) = \sum_{n=0}^{\infty} P(X_n = x)$, which is the expected number of visits to x.

Theorem 3.2.2. $(X_n)_n$ is recurrent iff $G(0) = \infty$.

Proof. Using the Markov property,

$$P(X_n = 0) = \sum_{i=1}^{n} P(\tau^+ = i) P(X_{n-i} = 0).$$

Consider the generating functions $G_Z := \sum_{n=0}^{\infty} Z^n P(X_n = 0), \ F_Z := \sum_{n=0}^{\infty} Z^n P(\tau^+ = n)$ for $Z \in [0, 1)$:

$$G_Z = 1 + \sum_{n=1}^{\infty} \sum_{i=1}^{n} Z^{i+(n-i)} P(\tau^+ = i) P(X_{n-i} = 0) = 1 + G_Z F_Z,$$

so that $F_Z = 1 - \frac{1}{G_Z}$, whence

$$P(\tau^+ < \infty) = F_1 = \lim_{Z \uparrow 1} F_Z = 1 - \frac{1}{\lim_{Z \uparrow 1} G_Z} = 1 - \frac{1}{G(0)}.$$

Pólya. For d = 1:

$$G(0) = \sum_{n} P(X_n = 0) = \sum_{n} {\binom{2n}{n}} \left(\frac{1}{2}\right)^{2n} = \sum_{n} \frac{(2n)!}{(n!)^2 2^{2n}} \sim \sum_{n} \frac{(2n)^{2n} e^{2n} \sqrt{2\pi 2n}}{e^{2n} n^{2n} 2^{2n} 2\pi n} \sim \sum_{n} \frac{1}{\sqrt{\pi n}}$$

For d = 2: Consider $Y_n = (U_n, V_n) := (A_n + B_n, A_n - B_n)$. The coordinates of Y are independent so that we get

$$P(X_{2n} = 0) = P(Y_{2n} = 0) = P(U_{2n} = 0)P(V_{2n} = 0) \sim \frac{1}{\pi n}.$$

For $d \geq 3$: Let's look at the characteristic function $\phi(k) = E(e^{ik \cdot X})$. This is $(2\pi)^d$ -periodic, so we may consider $k \in [-\pi, \pi)^d$. Then

$$\phi(k) = \sum_{x \in \mathbb{Z}^d} e^{ik \cdot x} P(X_1 = x) = \frac{1}{2d} (e^{ik_1} + e^{-ik_1} + \dots + e^{ik_d} + e^{-ik_d}) = \frac{1}{d} \sum_{j=1}^d \cos(k_j)$$

Now use the inversion formula: $P(X_n = x) = \int_{[-\pi,\pi)^d} \frac{1}{(2\pi)^d} e^{-ik \cdot x} \phi(k)^n dk$. For $z \in [0,1)$:

$$G_Z(0) := \sum_{n=0}^{\infty} Z^n P(X_n = 0) = \sum_n \frac{1}{(2\pi)^d} \int Z^n \phi(k)^n dk = \frac{1}{(2\pi)^d} \int \frac{1}{1 - z\phi(k)} dk.$$

Taking $Z \uparrow 1$ we get $G_1(0) < \infty$ iff $\int_{[-\pi,\pi)^d} \frac{1}{1-\phi(k)} dk < \infty$. Use $\frac{2}{\pi^2 d} \leq \sum_{j=1}^d k_j^2 \leq 1-\phi(k) \leq \frac{1}{2d} \sum_{j=1}^d k_j^2$. Now the integral is finite iff $\int_{[-\pi,\pi)^d} \|k\|_2^{-2} dk < \infty$

Let $\alpha := E^1(\tau_0^+) = 1 + E^0(\tau_0^+)$. Then $\alpha = \frac{1}{2} + \frac{1}{2}(E^2(\tau_0^+) + 1)$, whence $\alpha = 1 + \alpha$, i.e. $\alpha = \infty$.

Definition 3.2.2. A state $x \in S$ is null recurrent if $P^x(\tau_x^+ < \infty) = 1$ but $E^x(\tau_x^+) = \infty$. It is positive recurrent if $E^x(\tau_x^+) < \infty$.

3.3 Markov chains in continuous time

Let S be a countable state space.

Definition 3.3.1 (Continuous Markov chain). Let Ω be the set of *S*-valued cádlág functions on $[0, \infty)$ and $X_t(\omega) = \omega(t)$ for $t \ge 0$, $\theta_s(\omega)(t) = \omega(s+t)$ for $s, t \ge 0$ and \mathcal{F} the smallest σ -field such that $\omega \mapsto \omega(t)$ is measurable for all $t \ge 0$. Then a continuous time Markov chain is given by

- $\{P^x : x \in S\}$ a family of probability measures on (Ω, \mathcal{F})
- A right-continuous filtration $(\mathcal{F}_t)_{t\geq 0}$ such that $\mathcal{F}_t \subset \mathcal{F}$, X_t is adapted to \mathcal{F}_t

such that $P^x(X_0 = x) = 1$ and $E^x(g \circ \theta_s \mid \mathcal{F}_s) = E^{X_s}g P^x$ -a.s. for all bounded measurable g.

Definition 3.3.2 (Transition function). $\{p_t(x, y) : t \ge 0, x, y \in S\}$ such that $p_t(x, y) \ge 0$ and $\sum_y p_t(x, y) = 1$ as well as $\lim_{t \ge 0} p_t(x, x) = p_0(x, x) = 1$ for all x, y and for which the Chapman-Kolmogoroff equation $p_{s+t}(x, y) = \sum_{z \in S} p_s(x, z)p_t(z, y)$ holds, is called *transition function*.

Given a transition function, we can construct a consistent family of probability measures by

$$P^{x}(X_{t_{1}} = x_{1}, ..., X_{t_{n}} = x_{n}) = p_{t_{1}}(x, x_{1})p_{t_{2}-t_{1}}(x_{1}, x_{2})\cdots p_{t_{n}-t_{n-1}}(x_{n-1}, x_{n}).$$

Note that the Chapman-Kolmogoroff equations are necessary for this family to be consistent. We aim to get an infinitesimal description of p_t :

$$q(x,y) = \frac{dp_t}{dt}(x,y)|_{t=0}$$

Definition 3.3.3 (Q-matrix). $\{q(x,y): x, y \in S\}$ with $q(x,y) \ge 0$ if $x \ne y$ and $\sum_{y \in S} q(x,y) = 0$ for all $x \in S$. Further, set $c(x) := -q(x,x) \ge 0$

Example 3.5 (Poisson process). Let $S = \mathbb{Z}$. After an exponentially distributed waiting time jump up by 1. The Q-matrix is given by $Q = (q_{xy} := -\lambda \delta_{xx} + \lambda \delta_{x,x+1})$

Example 3.6. Take a discrete time Markov chain given by a stochastic matrix P. Define X_t as follows: Take a sequence of iid Exp(1)-distributed random variables, wait at x for one of these, then jump according to P. The Markov property holds for $\mathcal{F}_t := \sigma(X_u : u \leq t)$ because the exponential distribution is memoryless. Let T_1, T_2, \dots be iid Exp(1). Let $N_t := \max \{k : \sum_{i=1}^k T_i < t\}$.

Let
$$T_1, T_2, ...$$
 be iid Exp(1). Let $N_t := \max \left\{ k : \sum_{i=1}^{k} T_i \le t \right\}.$

$$p_t(x,y) := P^x(X_t = y) = \sum_{k=0}^{\infty} P^x(X_t = y, N_t = k) = \sum_{k=0}^{\infty} P^x(X_t = y \mid N_t = k) P^x(N_t = k) = \sum_{k=0}^{\infty} p_k(x,y) e^{-t} \frac{t^k}{k!} P^x(X_t = y \mid N_t = k) = \sum_{k=0}^{\infty} P^x(X$$

hence $P_t = \sum e^{-t} \frac{t^k}{k!} P^k$ and $P_0 = I$. Claim: Q = P - I.

$$\frac{d}{dt}p_t(x,y)|_{t=0} = \frac{d}{dt}e^{-t}P_{x,y}^0 + \frac{d}{dt}e^{-t}\sum_{k=1}^{\infty}\frac{t^k}{k!}p_k(x,y)|_{t=0} = \dots = I_{x,y} + P_{x,y}$$

Lemma 3.3.1. Let S be finite and Q a Q-matrix. Then the transition function $p_t(x, y)$ is given by $P_t = e^{tQ}$.

Proof. 1. P_t is well-defined due to submultiplicativity of the operator norm.

- 2. P_t is a stochastic matrix.
- 3. $P_{s+t} = P_s \cdot P_t$ whence the Chapman-Kolmogoroff equation follows.

Example 3.7 (Birth- and death chain). (X_t) a Markov chain on $S = \mathbb{N}_0$. $q(k, k-1) = \rho_k, q(k, k-1) = \lambda_k, q(k, k) = -\rho_k - \lambda_k$, e.g. for $\rho_k = k\rho, \lambda_k = k\lambda$. In particular, c(k) need not be bounded.

Theorem 3.3.2. Let (X_t) be a Markov chain and $p_t(x,y) := P^x(X_t = y)$. Then

- 1. $\{p_t(x,y): x, y \in S, t \ge 0\}$ is a transition function
- 2. It determines the measures $\{P^x : x \in S\}$ uniquely
- *Proof.* 1. We first show $\lim_{t\downarrow 0} p_t(x,x) = 1$. Let $T := \inf \{t > 0 : X_t \neq X_0\} > 0$ *P*-a.s. for all $x \in S$ because the paths are right-continuous. Since $p_t(x,x) \geq P^x(T > t)$ for all t > 0, we get $\lim_{t\downarrow 0} p_t(x,x) = 1$. For Chapman-Kolmogoroff, use the Markov property with $g = 1_{\{X_t = y\}}$:

$$E^{x}(P^{x}(X_{s+t} = y \mid \mathcal{F}_{s})) = E^{x}(P^{X_{s}}(X_{t} = y)) = E^{x}(p_{t}(X_{s}, y)),$$

so that $p_{s+t}(x,y) = \sum_{z} p_s(x,z) p_t(z,y)$

2. By the Markov property:

$$P^{x}(X_{t_{1}} = x_{1}, X_{t_{2}} = x_{2}, \dots, X_{t_{n}} = x_{n}) = p_{t_{1}}(x, x_{1})p_{t_{2}-t_{1}}(x_{1}, x_{2})\cdots p_{t_{n}-t_{n-1}}(x_{n-1}, x_{n})$$

This determines the finite dimensional marginals completely, hence also the process.

Definition 3.3.4. A state $x \in S$ is absorbing if $p_t(x, x) = 1$ for all t and instantaneous if $c(x) = \infty$.

Heuristically, we have the Kolmogoroff backward equation $\frac{d}{ds}p_{s+t}(x,y) = \sum_{z \in S} \frac{d}{ds}p_s(x,z)|_{s=0} p_t(z,y)$ as well as the Kolmogoroff forward equation $\frac{d}{dt}p_{s+t}(x,y) = \sum_{z \in S} p_s(x,z) \frac{d}{dt}p_t(z,y)|_{t=0}$.

Lemma 3.3.3. *1.* $\forall t \ge 0 \ \forall x \in S : p_t(x, x) > 0$

2. $\exists t > 0 : p_t(x, x) = 1 \Rightarrow \forall t > 0 : p_t(x, x) = 1$

3. $t \mapsto p_t(x,y)$ is uniformly continuous. In particular $|p_t(x,y) - p_s(x,y)| \le 1 - p_{|t-s|}(x,x)$

Proof. 1. $\lim_{t\downarrow 0} p_t(x, x) = 1$ so the claim is clear for small t. Now use Chapman-Kolmogoroff.

- 2. $p_{s+t}(x,x) \le p_s(x,x)p_t(x,x) + (1-p_s(x,x)) = 1 p_s(x,x)(1-p_t(x,x))$ so that $p_{s+t}(x,x) = 1 \Rightarrow p_t(x,x) = 1$, whence $\{t : p_t(x,x) = 1\} \supset [0,\epsilon)$. Use Chapman-Kolmogoroff again.
- 3. Now write $p_{s+t}(x, y) p_t(x, y) = p_t(x, y)(p_s(x, x) 1) + \sum_{z \neq x} p_s(x, z)p_t(z, y) =: T_1 + T_2.$ $|T_1| \le 1 p_s(x, x), |T_2| \le 1 p_s(x, x)$. Since $T_1 \le 0, T_2 \ge 0$, the claim follows.

Theorem 3.3.4. Let $(p_t(x,y))_{x,y\in S,t>0}$ be a transition function. Then

1.
$$c(x) = -q(x, x) = -\frac{d}{dt} p_t(x, x) |_{t=0} \in [0, \infty]$$
 exists and $p_t(x, x) \ge e^{-c(x)t}$
2. $c(x) < \infty \Rightarrow \forall y \ne x : q(x, y) = \frac{d}{dt} p_t(x, y) |_{t=0} \in [0, \infty)$ exists and $\sum_y q(x, y) \le 0$

3. $c(x) < \infty$ and $\sum_{y} q(x,y) = 0$ then $\forall y : t \mapsto p_t(x,y) \in \mathcal{C}^1[0,\infty)$ and $\frac{d}{dt}p_t(x,y) = \sum_{z} q(x,z)p_t(z,y)$

Proof. $f(t) = -\log p_t(x, x)$ is continuous and subadditive.

1. In particular, using Fekete's lemma, $c(x) = \lim_{t \downarrow 0} \frac{f(t)}{t} = \inf_t \frac{f(t)}{t}$ exists and satisfies $f(t) \le c(x)t$

2. $1 - p_t(x, x) \leq 1 - e^{-c(x)t} \leq c(x)t \text{ so that } \sum_{y:y \neq x} p_t(x, y)/t \leq c(x) \text{ so that } q(x, y) := \limsup_{t \downarrow 0} p_t(x, y)/t \leq c(x) < \infty.$ We get $\forall \delta > 0 \ \forall n \in \mathbb{N} : p_{n\delta}(x, y) \geq \sum_{k=0}^{n-1} p_{\delta}^k(x, x) p_{\delta}(x, y) p_{(n-k-1)\delta}(y, y).$ Using $p_t(x, x) \geq e^{-c(x)t}$ we get:

$$\frac{p_{n\delta}(x,y)}{n\delta} \ge e^{-c(x)n\delta} \frac{p_{\delta}(x,y)}{\delta} \inf_{0 \le s \le n\delta} p_s(y,y)$$

Choose $n \to \infty, \delta \to 0$ so that $n\delta \to t$: Then

$$p_t(x,y)/t \ge q(x,y)e^{-c(x)t} \inf_{0 \le s \le t} p_s(y,y)$$

so that $\liminf_{t\downarrow 0} p_t(x, y)/t \ge q(x, y)$.

3. We have

$$\frac{1}{s}\left(p_{t+s}(x,y) - p_t(x,y)\right) - \sum_{z} q(x,z)p_t(z,y) = \sum_{z} \left(\frac{1}{s}(p_s(x,z) - p_0(x,z)) - q(x,z)\right)p_t(z,y)$$

For any $T \subset S, |T| < \infty$ and $x \in T$ we get

$$\sum_{z \notin T} \left| \frac{p_s(x,z)}{s} - q(x,z) \right| p_t(z,y) \le \sum_{z \notin T} \frac{p_s(x,z)}{s} + \sum_{z \notin T} q(x,z) = \frac{1}{s} \left(1 - \sum_{z \in T} p_s(x,z) \right) - \sum_{z \in T} q(x,z) \xrightarrow{s \downarrow 0} -2 \sum_{z \in T} q(x,z) \xrightarrow{s \to 0} -2 \sum_{z \in T} q(x,z) \xrightarrow{s \to$$

The right-hand side $\rightarrow 0$ as $T \uparrow S$ because $c(x) < \infty$ and $\sum_{y} q(x, y) = 0$, hence the right-derivative is continuous and has the required form. Furthermore any continuous function with continuous right derivative is already differentiable.

Let Q be a Q-matrix. Define the transition probability for a discrete time chain; if c(x) = 0, take $p(x, y) := 1_{\{x=y\}}$, if c(x) > 0, take $p(x, y) := \frac{q(x, y)}{c(x)} 1_{x \neq y}$. Note that indeed $p(x, y) \ge 0$ and $\sum_{y} p(x, y) = 1$. Consider the discrete time Markov chain $(Z_n)_n$ on S with this transition probability. Call it the *embedded discrete time chain*. Let τ_0, τ_1, \ldots be random variables whose conditional distribution (given Z_0, Z_1, \ldots) is $\tau_k \sim \text{Exp}(c(Z_k))$ and $\tau_k = 0$ if $c(Z_k) = \infty$. The finite dimensional marginals are

$$P^{x}(Z_{0} = x, Z_{1} = x_{1}, \dots, Z_{m} = x_{m}, \tau_{0} > t_{0}, \dots, \tau_{m} > t_{m}) = p(x, x_{1})p(x_{1}, x_{2}) \cdots p(x_{m-1}, x_{m})e^{-c(x_{0})t_{0}} \cdots e^{-c(x_{m})t_{m}}.$$

Let $N(t) = \min \{m : \tau_0 + ... + \tau_m > t\}$. Hence N(t) = 0 for an interval of length τ_0 , then N(t) = 1. Finally $\tilde{X}_t := Z_{N_t}$ on $\{N(t) < \infty\}$. \tilde{X} has right-continuous paths, waits at x an $\exp(c(x))$ -distributed time, then jumps to y with probability p(x, y). The only trouble is jumping infinitely many times in a finite time.

Theorem 3.3.5. The following are equivalent:

- 1. The Kolmogorov Backward equation has a unique solution which is a transition function.
- 2. $P(N(t) < \infty) = 1$ for all $t \ge 0$.
- 3. $\sum_n \tau_n = \infty P$ -a.s.

4. $\sum_{n = \frac{1}{c(Z_n)}} = \infty P \text{-} a.s.$

Corollary 3.3.6. If either

- 1. $\sup_{x \in S} c(x) < \infty$, or
- 2. the embedded discrete-time chain is irreducible and recurrent,

then condition 4. holds in the above theorem.

Proof note. 1. $\exists \epsilon > 0 \forall x \in S : c(x) < \frac{1}{\epsilon} \Rightarrow \frac{1}{c(x)} > \epsilon \Rightarrow \sum_{n \in Z_n} \frac{1}{c(Z_n)} = \infty.$

2. Recurrence $\Rightarrow \exists x : \{Z_n = x\}$ infinitely often, so that $\frac{1}{c(x)}$ occurs infinitely often in the sum.

4 Feller Processes

Let S be a compact or locally compact space. Let $C_0(S) := \{f \in C(S) : f \text{ vanishes at } \infty\}$. Note that if S is compact then $C_0(S) = C(S)$. Endowing $C_0(S)$ with $||f|| := \sup_{x \in S} |f(x)|$ makes $C_0(S)$ a separable Banach space. Let $\Omega = D[0, \infty) = \{f : [0, \infty) \to S \text{ cádlág}\}$. Let $X_t(\omega) = \omega(t), (\theta_s(\omega))(t) = \omega(s + t), \mathcal{F}$ the σ -field that makes all $t \mapsto \omega(t)$ measurable.

Definition 4.0.1 (Feller process). A Feller process $(X_t)_{t\geq 0}$ is given by

- $\{P^x : x \in S\}$ probability measures on (Ω, \mathcal{F})
- A right-continuous filtration $(\mathcal{F}_t)_{t>0}$ to which X is adapted

such that $P^x(X_0 = x) = 1$ and $\forall f \in C_0(S), t \ge 0 : x \mapsto E^x f(X_t) \in C_0(S)$ as well as $\forall g : \Omega \to \mathbb{R}$ bounded and measurable, $x \in S$: $E^x(g \circ \theta_s \mid \mathcal{F}_s) = E^{X_s}g P^x$ -a.s.

Theorem 4.0.1 (Strong Markov Property). Let (X_t) be a Feller process and $Y : [0, \infty) \times \Omega \to \mathbb{R}$ be a bounded and jointly measurable. Let τ be a stopping time with respect to (\mathcal{F}_t) . Then $\forall x \in S$:

$$E^{x}\left(Y_{\tau}\circ\theta_{\tau}\mid\mathcal{F}_{\tau}\right)=E^{X_{\tau}}\left(Y_{\tau}\right)\quad P^{x}\text{-a.s. on }\left\{\tau<\infty\right\}$$

Remark. There are only three ingredients needed:

- The Markov property
- Right-continuous paths
- $y \mapsto E^y Y$ is continuous for special Y.

Definition 4.0.2 (Transition semigroup). A probability semigroup is a family of continuous linear operators $(T_t)_{t\geq 0}$ on $C_0(S)$ such that

- **1**) $T_0 = id$
- 2) $\lim_{t\downarrow 0} T_t f = f$, which we call strong continuity
- **3)** $T_{s+t} = T_s T_t$, the semigroup property; in particular $T_t T_s = T_s T_t$
- **4)** $T_t f \ge 0$ if $f \ge 0$
- 5) $T_t 1 = 1$ if S is compact, and otherwise $\exists (f_n)_n \in C_0(S)^{\mathbb{N}}$ such that $\sup_n ||f_n|| < \infty$ and $T_t f_n \to 1$ pointwise for all $t \ge 0$.

Claim $||T_t f|| \le ||f||$ for all $f \in C_0(S)$

Proof for S compact. Let $g := ||f|| - f \ge 0$ and $g \in C_0(S)$. Then $T_t g = ||f|| - T_t f \ge 0$ so that $T_t f \le ||f||$ pointwise. \Box

Claim $t \mapsto T_t f$ is continuous on $[0, \infty)$.

Proof. Let $t_n \downarrow t$. Then

$$|T_{t_n}f - T_tf|| \le ||(T_{t_n-t} - I)f||$$

Example 4.1. • Let X be a Brownian motion, $S = \mathbb{R}$. Then $T_t f(x) := E^x (f(X_t))$ defines a transition semigroup.

• For S countable, $p_t(x, y)$ a transition function, $T_t f(x) := \sum_{y \in S} p_t(x, y) f(y)$. If S is finite, then $(T_t)_t$ is a transition semigroup iff $\lim_{|x|\to\infty} p_t(x, y) = 0$ for all t > 0 and $y \in \mathbb{Z}$.

Definition 4.0.3 (Resolvent). We write $U_{\alpha}f := \int_0^{\infty} e^{-\alpha t} T_t f dt$ for $\alpha > 0, f \in C_0(S)$ and call it the *resolvent* associated with the transition semigroup.

Clearly $U_{\alpha}f$ is a well-defined, linear operator with operator norm $\frac{1}{\alpha}$ and $\lim_{\alpha\to\infty} \alpha U_{\alpha}f = f$.

Claim $U_{\alpha} - U_{\beta} = (\beta - \alpha)U_{\alpha}U_{\beta}$ for $\alpha, \beta > 0$, known as the *resolvent equation*.

Proof.

$$U_{\alpha}U_{\beta} = \int_{0}^{\infty} e^{-\alpha t} T_{t}U_{\beta}fdt = \int_{0}^{\infty} e^{-\alpha t} \int_{0}^{\infty} e^{-\beta s} T_{t+s}fdsdt = \int_{0}^{\infty} T_{r}f \int_{0}^{r} e^{-\alpha t - \beta(r-t)}dtdr = \int_{0}^{\infty} T_{r}f \frac{e^{-\alpha r} - e^{-\beta r}}{\beta - \alpha}dr$$

For S countable let $\mathcal{L}f(x) := \sum_{y} q(x,y)f(y) = \sum_{y} q(x,y)(f(y) - f(x))$. Write $D(\mathcal{L})$ for the domain of \mathcal{L} and $R(\mathcal{L})$ for its range.

Definition 4.0.4. A probability generator \mathcal{L} is a linear operator on $C_0(S)$ such that

- **1)** $D(\mathcal{L})$ is dense in $C_0(S)$
- **2)** $f \in D(\mathcal{L}), \lambda \ge 0$ then for $g = f \lambda \mathcal{L}f$ we have $\inf_S f \ge \inf_S g$
- **3)** For λ small enough we have $R(I \lambda \mathcal{L}) = C_0(S)$
- 4) For S compact we have $1 \in D(\mathcal{L})$ and $\mathcal{L}1 = 0$. If S is locally compact then for λ sufficiently small there exist $f_n \in D(\mathcal{L}), g_n := f_n \lambda \mathcal{L}f_n$ such that $\sup_n ||g_n|| < \infty$ and both $f_n, g_n \xrightarrow{n \to \infty} 1$ pointwise.

Claim For $f \in D(\mathcal{L}), \lambda \ge 0, g = f - \lambda \mathcal{L}f$ we have $||f|| \le ||g||$.

Proof. We have $\inf_S g \leq \inf_S f \leq \sup_S f \leq \sup_S g$ by property 2.

Hence $(I - \lambda \mathcal{L})^{-1}$ exists and is a contraction for λ sufficiently small.

Example 4.2. • $S = \mathbb{R}$ and $D(\mathcal{L}) = \{f \in C_0(S), f \in C^1\}, \mathcal{L}f = f' \text{ is a generator.}$

• For S finite and q(x,y) a Q-matrix, $\mathcal{L}f(x) = \sum_{y} q(x,y)f(y)$ is a probability generator.

Remark. Often \mathcal{L} is second order differential operator. Consider the PDE $\frac{\partial}{\partial t}u(t,x) = \mathcal{L}u(t,x)$ where \mathcal{L} acts only on x with initial condition u(0,x) = f(x). Under some mild conditions, the solution is given by $u(t,x) = T_t f(x)$.

Theorem 4.0.2. For any Feller process on S, $T_t f(x) := E^x f(X_t)$ defines a probability semigroup on $C_0(S)$.

Proof. 1), 4), 5) follow from construction. 3) uses the Markov property:

$$T_{t+s}f = E^{x}f(X_{s+t}) = E^{x}\left(E^{x}\left(f(X_{s+t}) \mid \mathcal{F}_{s}\right)\right) = E^{x}\left(E^{X_{s}}f(X_{t})\right) = E^{x}\left(T_{t}f(X_{s})\right) = T_{s}T_{t}f(X_{s})$$

For 2) note first that the pointwise convergence $T_t f(x) \xrightarrow{t\downarrow 0} f(x)$ follows from right-continuity of the paths and the continuity of f. Now for the uniform continuity:

First, we obtain the pointwise resolvent equation from the pointwise continuity.

Second, let $U_{\alpha}: C_0(S) \to C_0(S)$. Now let $R = R(U_{\alpha})$. This is independent of α : Let $f \in R$ so that $f = U_{\alpha}g$ for some g. Then $U_{\beta}f = U_{\beta}U_{\alpha}g = \frac{1}{\alpha-\beta}(U_{\beta}g - U_{\alpha}g)$, hence $f = (\alpha - \beta)U_{\beta}(U_{\alpha}g - g)$. Now let $f = U_{\alpha}g$. Then

$$T_t f = \int_0^\infty e^{-\alpha s} T_{s+t} g ds = \int_t^\infty e^{-\alpha (r-t)} T_r g dr \xrightarrow{t\downarrow 0} U_\alpha g = f \text{ uniformly}$$

Fourth, the contraction property implies $\lim_{t\downarrow 0} |T_t f - f| = 0$ for all $f \in \overline{R}$. Finally, as for any linear subspace of a Banach space the strong closure equals the weak closure and $\alpha U_{\alpha} f \to f$ pointwise it follows that $R = C_0(S)$.

Theorem 4.0.3. Let $(T_t)_{t\geq 0}$ be a probability semigroup. Then $\mathcal{L}f = \lim_{t\downarrow 0} \frac{T_t f - f}{t}$ having the domain $D(\mathcal{L}) = \{f \in C_0(S) : \mathcal{L}f \text{ is (strongly) convergent}\}$ is a probability generator. Moreover,

1. For all $g \in C_0(S), \alpha > 0$

$$f = \alpha U_{\alpha}g \text{ iff } \left(f \in \mathcal{D}(\mathcal{L}) \text{ and } f - \frac{1}{\alpha}\mathcal{L}f = g\right)$$

2. If $f \in \mathcal{D}(\mathcal{L})$ then $T_t f \in \mathcal{D}(\mathcal{L})$, $t \mapsto T_t f$ is C^1 and

$$\frac{d}{dt}T_tf = T_t\mathcal{L}f = \mathcal{L}T_tj$$

Proof. Suppose that $f = \alpha U_{\alpha}g$ for $g \in C_0(S)$. Then

$$\frac{1}{t}(T_tf - f) = \frac{\alpha}{t}T_t \int_0^\infty e^{-\alpha r}T_rgdr - \frac{\alpha}{t}\int_0^\infty e^{-\alpha s}T_sgds = \frac{\alpha}{t}\int_t^\infty e^{-\alpha(s-t)}T_sgds - \frac{\alpha}{t}\int_0^\infty e^{-\alpha s}T_sgds$$
$$= \frac{\alpha}{t}\left(e^{\alpha t} - 1\right)\int_t^\infty e^{-\alpha s}T_sgds - \frac{\alpha}{t}\int_0^t e^{-\alpha s}T_sgds \xrightarrow{t\downarrow 0} \alpha^2 U_\alpha g - \alpha g = \alpha(f - g) \text{ uniformly}$$

This proves " \Rightarrow " in 1. as well as 3) in the definition of the probability generator. If $\alpha U_{\alpha}g \in \mathcal{D}(\mathcal{L})$ then $\alpha U_{\alpha}g \xrightarrow{\alpha \to \infty} g$, hence $\mathcal{D}(\mathcal{L})$ is dense in $C_0(S)$, whence 1) in the definition follows. Now for t > 0, $f \in \mathcal{D}(\mathcal{L})$ and $g_t := (1 + \frac{\lambda}{t}) f - \frac{\lambda}{t} T_t f = f - \lambda \frac{T_t f - f}{t}$ we get $\lim_{t \downarrow 0} g_t = f - \lambda \mathcal{L}f$ and $(1 + \frac{\lambda}{t}) \inf_x f(x) \ge \frac{\lambda}{t} \inf_x T_t f(x) + \inf_x g_t(x) \ge \frac{\lambda}{t} \inf_x f(x) + \inf_x g_t(x)$. Hence we get 2) in the definition.

Now for " \Leftarrow " in 1. suppose that $\left(I - \frac{1}{\alpha}\mathcal{L}\right)f = g$ with $f \in \mathcal{D}(\mathcal{L})$. By " \Rightarrow " in 1. we get $h := \alpha U_{\alpha}g \Rightarrow h - \frac{1}{\alpha}\mathcal{L}h = g$. Now since $f - h \in \mathcal{D}(\mathcal{L})$ we get $||f - h|| \leq ||g - g|| = 0$ whence f = h. 4) of the definition is clear if S is compact. Otherwise suppose that $(g_n)_n$ is a sequence in $C_0(S)$ and $\sup_n ||g_n|| < \infty$ as well as $g_n \to 1, T_t g_n \to 1$ pointwise. Define $f_n \in \mathcal{D}(\mathcal{L})$ by $g_n = (I - \lambda \mathcal{L}) f_n$, i.e. $f_n = \alpha U_{\alpha} g_n$ by 1. Since $T_t g_n \to 1$ pointwise, then $f_n \to 1$ pointwise. For 2.:

$$\frac{d}{dt}T_tf = \lim_{s \downarrow 0} \frac{T_{s+t}f - T_tf}{s} = \lim_{s \downarrow 0} \frac{T_s\left(T_tf\right) - T_tf}{s}$$

provided that any of the limits exist. The middle one does and equals $T_t \mathcal{L} f$, which is continuous in t. Then the right one exists as well and equals $\mathcal{L} T_t f$.

Lemma 4.0.4. For $f \in C_0(S)$, t > 0, $\mathcal{L}f = \lim_{t \downarrow 0} \frac{T_t f - f}{t}$ we have $\lim_{n \to \infty} \left(I + \frac{t}{n}\mathcal{L}\right)^{-n} f = T_t f$.

Proof. We know $\left(I - \frac{1}{\alpha}\mathcal{L}\right)^{-n} f = \alpha^n U_{\alpha}^n f = \int_0^\infty \frac{\alpha^n s^{n-1}}{(n-1)!} e^{-\alpha s} T_s f ds$. Hence $\left(I - \frac{t}{n}\mathcal{L}\right)^{-n} f = E\left(T_{\frac{\xi_1 + \dots + \xi_n}{n}t}f\right)$ where ξ_1, \dots, ξ_n are iid Exp(1)-distributed. Now if $f \in D(\mathcal{L})$ then $\|T_t f - T_s f\| \le \|\mathcal{L}f\| \|t - s\|$. Therefore

$$\left\| \left(I - \frac{t}{n} \mathcal{L} \right)^{-n} f - T_t f \right\| \le t \left\| \mathcal{L}f \right\| E \left| \frac{\xi_1 + \dots + \xi_n}{n} - 1 \right| \xrightarrow{n \to \infty} 0$$

Now both operators on the left-hand side are contractions, so that we can approximate all $f \in C_0(S)$.

For $\epsilon > 0$ define $\mathcal{L}_{\epsilon} := \mathcal{L} (I - \epsilon \mathcal{L})^{-1}$, which is well defined since $R(I - \epsilon \mathcal{L}) = C_0(S)$ for $\epsilon > 0$ sufficiently small. Further $f - \epsilon \mathcal{L}f = g$ iff $f = (I - \epsilon \mathcal{L})^{-1}g$ which implies $\|\mathcal{L}_{\epsilon}g\| = \|\mathcal{L}f\| \le \frac{\|f\| + \|g\|}{\epsilon} \le \frac{2}{\epsilon} \|g\|$, so that \mathcal{L}_{ϵ} is also bounded. Write $T_{\epsilon,t} := e^{t\mathcal{L}_{\epsilon}} := \sum_k \frac{t^k \mathcal{L}_{\epsilon}^k}{k!}$, which exists as strong limit.

Lemma 4.0.5. If \mathcal{L} is a bounded operator then $R(I - \lambda \mathcal{L}) = C_0(S)$ for λ small enough.

Proof. For g find f with $f - \lambda \mathcal{L}f = g$ by $f = \sum_k \lambda^n \mathcal{L}^n g$ which converges if $\lambda \|\mathcal{L}\| < 1$.

Lemma 4.0.6. 1. For $f \in C_0(S)$ we have $(I - \epsilon \mathcal{L})^{-1} f - \epsilon \mathcal{L}_{\epsilon} f = f$

2. \mathcal{L}_{ϵ} is a probability generator; the associated semigroup $(T_{\epsilon,t})_t$ has \mathcal{L}_{ϵ} as its corresponding generator.

Proof. 1. $(I - \epsilon \mathcal{L})^{-1} f - \epsilon \mathcal{L} (I - \epsilon \mathcal{L})^{-1} f = (I - \epsilon \mathcal{L}) (I - \epsilon \mathcal{L})^{-1} f = f.$

2. Indeed

- $D(\mathcal{L}_{\epsilon}) = C_0(S)$
- $f = \lambda \mathcal{L}_{\epsilon} f = g$ implies that $\inf f \geq \inf g$ so that $f \lambda \left(\frac{1}{\epsilon} \left(I \epsilon \mathcal{L}\right)^{-1} f \frac{1}{\epsilon} f\right) = g$, i.e. $\left(1 + \frac{\lambda}{\epsilon}\right) f \frac{\lambda}{\epsilon} \left(I \epsilon \mathcal{L}\right)^{-1} f = g$, or $\frac{\epsilon}{\epsilon + \lambda} \left(I \epsilon \mathcal{L}\right)^{-1} f(x) + \frac{\epsilon}{\epsilon + \lambda} g(x) = f(x)$. It follows $\frac{\lambda}{\epsilon + \lambda} \inf_{x} f(x) + \frac{\epsilon}{\epsilon + \lambda} \inf_{x} g(x) \leq \frac{\lambda}{\lambda + \epsilon} \inf_{x} \left(I \epsilon \mathcal{L}\right)^{-1} f(x) + \frac{\epsilon}{\epsilon + \lambda} \inf_{x} g(x) \leq \inf_{x} f(x)$
- $R(I \lambda \mathcal{L}_{\epsilon}) = C_0(S)$ for $\lambda > 0$ small.
- If S is compact then $\mathcal{L}_{\epsilon} 1 = \mathcal{L} (I \epsilon \mathcal{L})^{-1} 1$ but $(I \epsilon \mathcal{L})^{-1} 1 = 1$ because $f \epsilon \mathcal{L} f = 1$ is solved by f = 1 and $\mathcal{L}_{\epsilon} 1 = \mathcal{L} 1 = 0$.

Theorem 4.0.7. For $f \in C_0(S)$, $T_t f := \lim_{\epsilon \downarrow 0} T_{\epsilon,t} f$ exists in the uniform sense on bounded t-intervals. It defines a semigroup whose generator is \mathcal{L} .

Proof. Step 1: \mathcal{L}_{ϵ} and \mathcal{L}_{δ} commute: We know $(I - \epsilon \mathcal{L})^{-1} (I - \delta \mathcal{L})^{-1} f = g$ iff $f = g - (\epsilon + \delta)\mathcal{L}g + \epsilon \delta \mathcal{L}^2 g$ which is symmetric in ϵ, δ .

Step 2: We have $(T_{\epsilon,t} - T_{\delta,t})f = \int_0^t \frac{d}{ds} T_{\epsilon,s} T_{\delta,t-s} f ds = \int_0^t T_{\epsilon,s} T_{\delta,t-s} \left(\mathcal{L}_{\epsilon} - \delta \mathcal{L}\right) f ds$, so that $\|(T_{\epsilon,t} - T_{\delta,t})f\| \le t \|T_{\epsilon,s} T_{\delta,t-s} \left(\mathcal{L}_{\epsilon} - \mathcal{L}_{\delta}\right) f\| \le t \|(\mathcal{L}_{\epsilon} - \mathcal{L}_{\delta}) f\|$

Step 3: Let $f \in D(\mathcal{L})$. Then $(I - \epsilon \mathcal{L})^{-1} f - f = \epsilon (I - \epsilon \mathcal{L})^{-1} \mathcal{L} f$

$$\left\| \left(I - \epsilon \mathcal{L} \right)^{-1} f - f \right\| \le \epsilon \left\| \mathcal{L} f \right\|$$

In particular $\lim_{\epsilon \downarrow 0} (I - \epsilon \mathcal{L})^{-1} f = f$ in the strong sense, so that $\lim_{\epsilon \downarrow 0} \mathcal{L}_{\epsilon} f = \mathcal{L} f$.

Step 4: From Step 2, 3 we obtain that $\lim_{\epsilon \downarrow 0} T_{\epsilon,t}$ exists in the strong sense on bounded *t*-intervals, using that $C_0(S)$ is complete. The semigroup properties of $T_{\epsilon,t}$ carry over to T_t :

$$||T_0f - f|| \le ||(T_0 - T_{\epsilon,0})f|| + ||T_{\epsilon,0}f - f|| \xrightarrow{\epsilon \downarrow 0} 0$$

and similarly for the other properties.

Step 5: Check that T_t has \mathcal{L} as its generator: Let $f \in D(\mathcal{L})$ Then

$$T_t f - f \xleftarrow{\epsilon \downarrow 0}{\leftarrow} T_{\epsilon,t} f - f = \int_0^t \frac{d}{ds} T_{\epsilon,s} f ds = \int_0^t T_{\epsilon,s} \mathcal{L}_{\epsilon} f ds \xrightarrow{\epsilon \downarrow 0}{\rightarrow} \int_0^t T_s \mathcal{L}_{\epsilon} f ds,$$

whence $\lim_{t\downarrow 0} \frac{T_t f - f}{t} = \mathcal{L}f$ so that \mathcal{L} is an extension of the generator according to Theorem 4.0.3.

Corollary 4.0.8. $\lim_{\epsilon \downarrow 0} \sum_{n=0}^{\infty} \frac{t^n}{n!} \left(\mathcal{L} \left(I - \epsilon \mathcal{L} \right)^{-1} \right)^n = \lim_{n \to \infty} \left(I - \frac{t}{n} \mathcal{L} \right)^n$

Theorem 4.0.9. If $(T_t)_{t\geq 0}$ is a probability semigroup on $C_0(S)$, then there exists a Feller process (X_t) such that $E^x f(X_t) = T_t f(x)$ for $x \in S$, $f \in C_0(S)$, $t \geq 0$.

Proposition 4.0.10. Suppose $(M_t)_{t \in \mathbb{Q}^+}$ is a uniformly bounded sub-/supermartingale. Then a.s. $\lim_{s \to t, s \in \mathbb{Q}^+} M_s$ exists.

Proof. Use the upcrossing lemma.

Proof of theorem. Step 1: Define the finite dimensional distributions as follows: The one-dimensional marginals are given by the theorem. For the two-dimensional marginals, take $s \leq t$,

$$E^{x}f(X_{s})g(X_{t}) = E^{x}\left(f(X_{s})E^{X_{s}}\left(g(X_{t-s})\right)\right) = T_{s}\left(f(\cdot)T_{t-s}g(\cdot)\right)(x)$$

Higher-dimensional marginals are constructed inductively.

Step 2: Apply the Kolmogorov consistency theorem for rational $t \in \mathbb{Q}^+$, which yields a process $(Y_t)_{t \in \mathbb{Q}^+}$ with $Y_0 = x P^x$ -a.s.

Step 3: Let $0 \le f \in C_0(S)$.

$$e^{-\alpha t}T_tU_{\alpha}f = \int_t^{\infty} e^{-\alpha s}T_sfds \le U_{\alpha}f$$

so that

$$E^{x}\left(e^{-\alpha t}U_{\alpha}f(Y_{t})\right) \leq U_{\alpha}f(Y_{0}).$$

Hence $e^{-\alpha t}U_{\alpha}f(Y_t)$ is a bounded supermartingale, so that by the proposition the left- and right limits of $U_{\alpha}f(Y_s)$ exist a.s. for all $s \in [0, \infty)$.

Step 4: Any α and f contained an exceptional set. Therefore we take $\alpha \in \mathbb{N}$ and f in a countable dense subset of $C_0(S)$. Thus we obtain the left- and right limits everywhere because $\alpha U_{\alpha}f \to f$ and $C_0(S)$ is separable.

Step 5: Define $X_t := \lim_{s \downarrow t, s \in \mathbb{Q}^+} Y_s$, which is cádlág.

- $P^x(X_0 = x) = 1$ by construction.
- For the Feller property, note $x \mapsto E^x f(X_t) = T_t f(x) \in C_0(S)$.
- For the Markov property proceed as for Brownian motion.

Claim: Feller processes are quasi-left continuous, i.e. $(\tau_n)_{n\in\mathbb{N}}$ are stopping times and $\tau_n \uparrow \tau$ then $X_{\tau_n} \to X_{\tau}$ on $\{\tau < \infty\}$.

Definition 4.0.5 (Diffusion process). A diffusion process is a Feller process with continuous paths.

Definition 4.0.6. An operator \mathcal{L} is closed if its graph $\{(f, \mathcal{L}f) : f \in D(\mathcal{L})\}$ is a closed subset in $C_0(S) \times C_0(S)$. $\overline{\mathcal{L}}$ is the closure of \mathcal{L} if its graph is graph $(\mathcal{L}) = \overline{\operatorname{graph}(\mathcal{L})}$.

Note that not every operator has a closure.

Lemma 4.0.11. 1. Assume that \mathcal{L} satisfies 1), 2) in the definition of a probability generator. Then so does $\overline{\mathcal{L}}$.

2. If \mathcal{L} satisfies 1), 2), 3) then \mathcal{L} is closed.

- 3. If \mathcal{L} satisfies 2), 3) then $R(I \lambda \mathcal{L}) = C_0(S)$ for all $\lambda > 0$.
- 4. If \mathcal{L} is closed and satisfies 2) then $R(I \lambda \mathcal{L})$ is a closed subset of $C_0(S)$.

Definition 4.0.7. $D \subset D(\mathcal{L})$ is called *core* of \mathcal{L} if \mathcal{L} is the closure of $\mathcal{L}|_D$.

Theorem 4.0.12. Let (X_t) be a Feller process with generator \mathcal{L} . For each $f \in D(\mathcal{L})$,

$$M_t := f(X_t) - \int_0^t \mathcal{L}f(X_s) ds$$

is a (P^x, \mathcal{F}) -martingale for each $x \in S$.

Proof. Recall that $\frac{d}{dt}T_tf = T_t\mathcal{L}f = \mathcal{L}T_tf$. Hence

$$E^{x}(M_{t}) = T_{t}f(x) - \int_{0}^{t} T_{s}\mathcal{L}f(x)ds = T_{t}f(x) - \int_{0}^{t} \frac{d}{ds}T_{s}f(x)ds = f(x)$$

which is finite. For s < t we get

$$E^{x}(M_{t} \mid \mathcal{F}_{s}) = E^{x}(f(X_{t-s}) \circ \theta_{s} \mid \mathcal{F}_{s}) - \int_{0}^{s} \mathcal{L}f(X_{u})du - E^{x}\left(\int_{0}^{t-s} \mathcal{L}f(X_{u}) \circ \theta_{s}du \mid \mathcal{F}_{s}\right)$$
$$= E^{X_{s}}f(X_{t-s}) - \int_{0}^{s} \mathcal{L}f(X_{u})du - E^{X_{s}}\left(\int_{0}^{t-s} \mathcal{L}f(X_{u})du\right)$$
$$= E^{X_{s}}(M_{t-s}) - \int_{0}^{s} \mathcal{L}f(X_{u})du = f(X_{s}) - \int_{0}^{s} \mathcal{L}f(X_{u})du = M_{s}$$

We know that if X_t is Brownian motion then it generates $\mathcal{L}f = \frac{1}{2}f''$. If $Y_t = X_{ct}$ for c > 0 then

$$\lim_{t \downarrow 0} \frac{E^x(f(Y_t)) - f(x)}{t} = \frac{c}{2} f''(x)$$

Hence $\mathcal{L}f = \frac{c}{2}f''$ is the generator of time-changed Brownian motion.

4.1 Wright-Fisher Diffusion

Let there be N individuals with genotypes aa, aA, AA and total numbers $N_1 + N_2 + N_3 = N$. The next generation has $(\tilde{N}_1, \tilde{N}_2, \tilde{N}_3)$ trinomially distributed individuals with parameters $(1 - x)^2, 2x(1 - x), x^2$ where $x = \frac{N_2 + 2N_3}{2N}$. Let X_n be the proportion of As in the n-th generation. Write

$$\mathcal{L}_N f(x) = E^x f(X_t) - f(x) = \sum_{k=0}^{2N} {\binom{2N}{k}} x^k (1-x)^{2N-k} \left(f(\frac{k}{2N}) - f(x) \right)$$

If $f:[0,1] \to \mathbb{R}$ is C^2 then

$$f(\frac{k}{2N}) - f(x) = f'(x)\left(\frac{k}{2N} - x\right) + \frac{1}{2}f''(x)\left(\frac{k}{2N} - x\right)^2 + o\left(\left(\frac{k}{2N} - x\right)^2\right)$$

Hence $\lim_{N\to\infty} 2N\mathcal{L}_N f(x) = \frac{1}{2}$. Now consider $\mathcal{L}f(x) = \frac{1}{2}x(1-x)f''(x)$ for (at least) polynomials f in C([0,1]). **Theorem 4.1.1.** 1. The closure of \mathcal{L} is a probability generator.

- 2. The Feller process (X_t) associated with $\overline{\mathcal{L}}$ is a diffusion process.
- 3. For $\tau := \inf \{t \ge 0 : X_t \in \{0, 1\}\}$ we have

$$E_x(\tau) = -2x\log(x) - 2(1-x)\log(1-x)$$

and

$$P^{x}(X_{\tau} = 1) = x, \quad E^{x}\left(\int_{0}^{\infty} X_{t}(1 - X_{t})dt\right) = x(1 - x)$$

Proof. 1. \mathcal{L} maps polynomials of degree n to polynomials of degree $\leq n$. We need to check properties 1)-4) of a probability generator.

(a) Polynomials are dense in C([0, 1]).

1 1	E.	-	
	н		
	н		

- (b) Let f be a polynomial and $f \lambda \mathcal{L}f = g$ for some $\lambda > 0$. If f has a minimum in $x_0 \in [0, 1]$, clearly $\mathcal{L}f(x_0) \ge 0$ so that $\min_x f = f(x_0) \ge g(x_0) \ge \min_x g(x)$.
- (c) Let $g = \sum_{k=0}^{n} a_k x^k$ be some poynomial and consider $f \lambda \mathcal{L}f = g$. Assume that $f(x) = \sum_{k=0}^{n} b_k x^k$. Then we get

$$b_k - \frac{\lambda}{2} \left(k(k+1)b_{k+1} - (k-1)kb_k \right) = a_k$$

with $b_{n+1} = 0$. We can solve these equations recursively. Then $R(I - \lambda \mathcal{L})$ contains all polynomials and is dense. Now use the Lemma.

- (d) is obvious.
- 2. $D(\mathcal{L}) \supset C^2[0,1]$ because we can approximate every $f \in C^2[0,1]$ by polynomials f_n such that $f_n \to f, f'_n \to f', f''_n \to f''$. Using the previous theorem with f(X) = X, $\mathcal{L}f = 0$ we get that X is a (uniformly bounded) Martingale, hence it has a limit $X_{\infty} P^x$ -a.s. and $E^x X_t = x$, hence $P^x (X_{\tau} = 1) = P^x (X_{\infty} = 1) = x$. Now using the same theorem again with f(x) = x(1-x) we get $\mathcal{L}f = -x(1-x)$ and $Z_t = X_t(1-X_t) + \int_0^t X_s(1-X_s) ds$ is a non-negative martingale. Therefore $Z_{\infty} := \lim_{t\to\infty} Z_t$ exists a.s. and $Z_{\infty} \ge 0$ a.s. as well as $E^x \left(\int_0^\infty X_s(1-X_s) ds \right) = x(1-x)$.

Now we verify the continuity criterion. Let $y \in [0,1]$ be fixed and $f(x) = (x-y)^2$ so that $\mathcal{L}f = x(1-x)$ and $(X_t-y)^2 - \int_0^t X_s(1-X_s)ds$ is a martingale. Then $E^y (X_t-y)^2 = \int_0^t E^y X_s(1-X_s)ds \le \frac{t}{4}$. Now $f(x) = (x-y)^4$ so that $\mathcal{L}f = 6x(1-x)(x-y)^2$. Then $(X_t-y)^4 - 6\int_0^t X_s(1-X_s)(X_s-y)^2ds$ is a martingale and $E^y (X_t-y)^4 = 6\int_0^t E^y X_s(1-X_s)(X_s-y)^2ds \le \frac{3}{2}\int_0^t E^y (X_s-y)^2ds \le \frac{3}{4}(\frac{t}{4})^2$. Now for s < t:

$$E^{y} (X_{t} - X_{s})^{4} = E^{y} \left(E^{y} \left((X_{t} - X_{s})^{4} \mid \mathcal{F}_{s} \right) \right) = E^{y} \left(E^{X_{s}} \left((X_{t-s} - X_{0})^{4} \right) \right) \le \frac{3}{16} (t-s)^{2}$$

so that the paths are continuous.

3. Let $f(x) = 2x \log x + 2(1-x) \log(1-x)$. We want to show $E^x \tau = -f(x)$. We have $f''(x) = \frac{2}{x} + \frac{2}{1-x}, x \in (0,1)$ so that $\frac{1}{2}x(1-x)f''(x) = 1$. Problem: $f \notin D(\mathcal{L})$ because otherwise $f(X_t) - t$ would be a martingale in contradiction to the martingale convergence theorem. Therefore consider $f_{\epsilon} \in C^2[0,1]$ such that $f_{\epsilon}(x) = f(x)$ for all $x \in [\epsilon, 1-\epsilon]$ and extend to [0,1] such that $f_{\epsilon} \in C^2$. Now let $\tau_{\epsilon} := \inf \{t : X_t \in \{\epsilon, 1-\epsilon\}\}$. Then $f_{\epsilon}(X_t) - \int_0^t \mathcal{L}f_{\epsilon}(X_s)ds$ is a martingale, hence

$$f(X_{\tau_{\epsilon}\wedge\tau}) - (\tau_{\epsilon}\wedge t)$$

is a P^x -martingale for $x \in [\epsilon, 1-\epsilon]$. Hence $E^x(f(X_{\tau_{\epsilon}})) - E_x(\tau_{\epsilon}) = f(x)$. Now $\epsilon \downarrow 0$.

4.2 Brownian motion on $[0,\infty)$

1. Brownian motion with absorption $\tau = \inf \{s \ge 0 : B_s = 0\}$ and $X_t^{abs} := B_t \mathbf{1}_{\tau > t}$. For $f \in C_0[0, \infty)$ consider the odd extension $f_o(x) = f(x)\mathbf{1}_{x\ge 0} + (2f(0) - f(-x))\mathbf{1}_{x< 0}$. Then

$$E^{x}\left(f_{o}(B_{t})1_{\tau \leq t}\right) = E^{x}\left(f_{o}(-B_{t})1_{\tau \leq t}\right) = \frac{1}{2}E^{x}\left(\left(f_{o}(B_{t}) + f_{o}(-B_{t})\right)1_{\tau \leq t}\right) = f(0)P(\tau \leq t)$$

For $x \ge 0$:

$$(T_t^{abs} f)(x) = E^x \left(f(X_t^{abs}) \mathbf{1}_{\tau \le t} \right) + E^x \left(f(X_t^{abs}) \mathbf{1}_{\tau > t} \right) = f(0) P(\tau \le t) + E^x (f(B_t) \mathbf{1}_{\tau > t})$$

Now $f_o \in C_0(\mathbb{R})$ iff f(0) = 0. Furthermore $f''_0(x) = f''(x)1_{x>0} - f''(x)1_{x<0}$ so we require f''(0) = 0. Hence $\mathcal{L}^{abs}f = \frac{1}{2}f''$ on $D(\mathcal{L}^{abs}) = \{f \in C_0[0,\infty) : f', f'' \in C_0, f(0) = 0 = f''(0)\}.$

2. Brownian motion with reflection $X_t^{\text{refl}} := |B_t|$. For $f \in C_0[0,\infty)$ we set $f_e(x) = f(|x|)$. We have

$$T_t^{\text{refl}}f(x) = E^x \left(f(|B_t|) \right) = E^x \left(f_e(B_t) \right)$$

Hence $f \in D(\mathcal{L}^{\text{refl}})$ iff $f_e \in D(\mathcal{L}^{\text{refl}})$, and $\mathcal{L}^{\text{refl}}f = \frac{1}{2}f''$, $D(\mathcal{L}^{\text{refl}}) = \{f \in C_0[0,\infty) : f', f'' \in C_0[0,\infty), f'(0) = 0\}$.

Remark. Consider $Af = \frac{1}{2}f''$ and $D(A) = \{f \in C_0[0,\infty) : f', f'' \in C_0[0,\infty), f'(0) = f''(0) = 0\}$. This is not a generator because one generator cannot extend another generator.

4.3The Feynman-Kac formula

Consider the partial differential equation

$$\partial_t u(t,x) = \mathcal{L}u(t,x) + \xi(x) \cdot u(t,x)$$

$$u(0,x) = f(x)$$
(1)

which is solved by $u(t, x) = T_t f(x) = E^x f(X_t)$ for $\xi \equiv 0$.

Theorem 4.3.1. Let (X_t) be a Feller process with $(T_t), \mathcal{L}$ and $f \in D(\mathcal{L}), \xi \in C_0(S)$. Define

$$u(t,x) = E^x \left(f(X_t) \exp\left(\int_0^t \xi(X_s) ds\right) \right)$$

Then $u(t, \cdot) \in D(\mathcal{L})$ and u(t, x) solves (1).

Proof. The initial condition is clearly satisfied. Furthermore $u(t, \cdot) \in C_0(S)$ because it is a uniform limit of the continuous function $E^x\left(f(X_t)\exp\left(\frac{t}{n}\sum_{i=1}^n\xi(X_{it/n})\right)\right)$. Now we check the differential equation, letting I(s,t) := $\int_{s}^{t} \xi(X_r) dr$. Then we write

$$u(t + \epsilon, x) - u(t, x) = E^{x} \left(\xi_{1} + \xi_{2} + \xi_{3}\right)$$

$$\xi_{1} = f(X_{t+\epsilon} - f(X_{t}))e^{I(0,t)} \left(e^{I(t,t+\epsilon)} - 1\right)$$

$$\xi_{2} = (f(X_{t+\epsilon}) - f(X_{t}))e^{I(0,t)}$$

$$\xi_{3} = f(X_{t})e^{I(0,t)} \left(e^{I(t,t+\epsilon)} - 1\right)$$

We have, uniformly in x:

$$E^{x} |\xi_{1}| \leq E^{x} |f(X_{t+\epsilon}) - f(X_{t})| e^{t ||\xi||} \left(e^{\epsilon ||\xi||} - 1 \right) = o(\epsilon)$$

$$E^{x} \xi_{2} = E^{x} \left(f(X_{t+\epsilon}) - f(X_{t}) e^{I(0,t)} \right) = E^{x} \left(T_{\epsilon} f(X_{t}) - f(X_{t}) e^{I(0,t)} \right)$$

$$\lim_{\epsilon \to 0} \frac{u(t+\epsilon, x) - u(t, x)}{\epsilon} = E^{x} \mathcal{L} f e^{I(0,t)} + E^{x} \left(f(X_{t}) \xi(X_{t}) e^{I(0,t)} \right)$$

The right-hand side is continuous in t, s othat u is differential with respect to t. However, it is not in the desired form. We condition therefore on \mathcal{F}_{ϵ} and then use the Markov property to obtain

$$u(t+\epsilon,x) = E^x \left(u(t,X_{\epsilon})e^{I(0,\epsilon)} \right)$$

so that

$$u(t+\epsilon,x) - u(t,x) = E^x \left(u(t,X_\epsilon) \left(e^{I(0,\epsilon)} - 1 \right) \right) + \left(T_\epsilon u(t,x) - u(t,x) \right)$$

Divide by ϵ and let $\epsilon \to 0$ and see that a) the limit on the left-hand side exists by an earlier calculation b) the limit of the first term on the right-hand side is $\xi(x)u(t,x)$ and c) the limit of the second term on the right-hand side also exists and converges to $\mathcal{L}u(t, x)$.

Parabolic Anderson model 4.4

Let $\mathcal{L} = \Delta$ on $S = \mathbb{Z}^d$ or \mathbb{R}^d and $\xi(x)$ random. On \mathbb{Z}^d we let $\Delta f(x) = \sum_{y:|y-x|=1} (f(y) - f(x))$.

Theorem 4.4.1 (Two cities theorem). $P(\xi < x) = 1 - x^{-\alpha}$. Then there exist two \mathbb{Z}^d -valued processes Z^1, Z^2 such that

$$\frac{u(t, Z_t^1) + u(t, Z_t^2)}{\sum_x u(t, x)} \stackrel{t \to \infty}{\longrightarrow} 1$$

Lévy Processes 4.5

Definition 4.5.1. A Lévy-process is a Feller process with stationary independent increments.

Definition 4.5.2. A random variable Z is called *infinitely divisible* if for all $n \in \mathbb{N}$ there exist iid random variables $Z_{1,n}, ..., Z_{n,n}$ such that $\sum_{i=1}^{n} Z_{i,n} \stackrel{d}{=} Z$. Equivalently, μ is infinitely divisible if for all $n \in \mathbb{N}$ there exists μ_n such that $\mu = (\mu_n)^{*n}$.

Let $\psi(n) = -\log E\left(e^{inZ}\right)$ be the *characteristic exponent*. For $\phi_t(\theta) = e^{t\psi(\theta)}$ we have $\psi(\theta) = \frac{d}{dt}|_{t=0} \phi_t(\theta) = \frac{d}{dt}|_{t=0}$ $\lim_{n\to\infty} n\left(\phi_{1/n}(\theta)-1\right).$

Lemma 4.5.1. For (ϕ_n) sequence of characteristic functions, $\phi_n(\theta) \to 1$ for all θ , the following are equivalent

- 1. $\lim_{n\to\infty} \phi_n(\theta)^n = \phi(\theta)$ exists for all θ and is continuous in 0.
- 2. $\lim_{n\to\infty} n(\phi_n(\theta)-1) =: \psi(\theta)$ exists for all θ and is continuous in 0.

If either of the above holds then $\phi(\theta) = e^{\psi(\theta)}$ is a characteristic function.

- **Corollary 4.5.2.** 1. A characteristic function ϕ of an inifinitely divisible distribution fulfills 1. with $\phi_n = \phi^{1/n}$ so that $\phi(\theta) \neq 0$ for all θ . Thus there is a unique representation $\phi = e^{\psi}$ where ψ is continuous and $\psi(0) = 0$. In particular, the ϕ_n are uniquely determined to be $\phi_n = e^{\psi/n}$.
 - 2. Under the assumptions of the Lemma, $\phi^r := e^{r\psi}$ is a characteristic function.
 - 3. Infinitely divisible distributions are closed under weak limits.

Proof. 1. Lots of complex analysis!

- 2. This follows from $e^{r\psi} = \lim e^{rn(\phi_n-1)}$ being continuous limit of characteristic functions to compount Poisson distributions.
- 3. Indeed, if $\tilde{\phi}_n$ is infinitely divisible and $\tilde{\phi}_n \to \phi$ then apply 1. of the Lemma to $(\tilde{\phi}_n^{1/n})^n = \tilde{\phi}_n \to \phi$. Use the previous point of the corollary.

Theorem 4.5.3. A probability measure is infinitely divisible iff it is weakly approximable by compound Poisson distributions.

Proof. " \Leftarrow " follows from the above, since compound Poisson processes are infinitely divisible. " \Rightarrow " If ϕ is infinitely divisible then $\phi = \lim(\phi^{1/n})^n = \lim e^{n(\phi^{1/n}-1)}$.

Theorem 4.5.4 (Lévy-Khinchin formula). The law μ is infinitely divisible with characteristic exponent ψ if and only if $\psi(\theta) = -ia\theta + \frac{1}{2}\sigma^2\theta^2 + \int_{\mathbb{R}-0} \left(1 - e^{i\theta x} + i\theta x \mathbf{1}_{|x| \leq 1}\right) \pi(dx)$ for $a \in \mathbb{R}, \sigma \geq 0$ and π on $\mathbb{R}-0$ with $\int \left(|x|^2 \wedge 1\right) \pi(dx) < \infty$. Hence any infinitely divisible distribution is characterised by the triplet (a, σ, π) . π is called Lévy-measure.

Proof. " \Leftarrow " ϕ given by e^{ψ} of this form is a characteristic function. If ψ is of the given form, then so is ψ/n . " \Rightarrow " Choose a sequence of compound Poisson distributions such that $P_n \xrightarrow{w} P$ with characteristic function

$$\phi_n(\theta) = e^{\lambda_n \int (e^{i\theta x} - 1)\nu_n(dx)} =: e^{\psi_n(\theta)} \to \phi(\theta) =: e^{\psi(\theta)}$$

where $\psi_n(\theta) = \int g_\theta(x) \lambda_n \nu_n(dx) + i a_n \theta$ where $a_n = \int x \mathbf{1}_{|x|<1} \lambda_n \nu_n(dx)$. Does $\lambda_n \nu_n$ converge? Consider

$$\begin{split} \overline{\psi}_n(\theta) &\coloneqq \psi_n(\theta) - \frac{1}{2} \int_{-1}^1 \psi_n(s) ds \\ &= \int e^{i\theta x} \lambda_n \nu_n(dx) - \lambda_n - \frac{1}{2} \int_{\theta-1}^{\theta+1} \int e^{isx} \lambda_n \nu_n(dx) ds + \lambda_n \\ &= \int e^{i\theta x} \left(1 - \left(\frac{1}{2} \int_{-1}^1 e^{isx} ds\right) \lambda_n \nu_n(dx) \right) = \int e^{i\theta x} \left(1 - \frac{\sin(x)}{x} \right) \lambda_n \nu_n(dx) \end{split}$$

Now using $1 - \frac{\sin(x)}{x} \approx \frac{x^2}{6}$ for small x. Since $\phi_n \to \phi$ uniformly on compact intervals (by Lévy's continuity theorem) it follows that $\psi_n \to \psi$ uniformly on compact intervals and thus also $\overline{\psi}_n \to \overline{\psi}$ converges pointwise.

Furthermore, using $\phi(-\theta) = \overline{\phi(\theta)}$, i.e. Im ψ being odd, as well as $|\phi(\theta)| \leq 1$, i.e. $\operatorname{Re}\psi \leq 0$, it follows that $\overline{\psi}(0) = -\frac{1}{2}\int_{-1}^{1}\operatorname{Re}\psi(s)ds \geq 0$ with equality iff $\operatorname{Re}\psi \equiv 0$ on [-1,1]. But since $|\int e^{i\theta x}P(dx)| = 1$ for all $|\theta| \leq 1$ it follows that $\operatorname{supp} P \subset a_0(\theta) + \frac{2\pi}{\theta}\mathbb{Z}$ for all θ , hence $P = \delta_0$, so that (a, 0, 0) is a suitable triple. There, assume $\overline{\psi}(0) > 0$. Then $\overline{\psi}_n(0) > 0$ for sufficiently large n, hence $\overline{\psi}_n(\theta)/\overline{\psi}_n(0)$ is characteristic function of $\widetilde{\nu}_n(dx) := \frac{\lambda_n}{\overline{\psi}_n(0)}h(x)\nu_n(dx)$. Since $\overline{\psi}_n \to \overline{\psi}, \ \widetilde{\nu}_n \xrightarrow{w} \widetilde{\nu}$ with characteristic function $\overline{\psi}(\theta)/\overline{\psi}(0)$. Hence

$$\int g_{\theta}(x)\lambda_n\nu_n(dx) \sim \int f_{\theta}(x)\widetilde{\nu}_n(dx) \to \int f_{\theta}(x)\widetilde{\nu}(dx)$$

where $f_{\theta}(x) = \frac{\overline{\psi}(0)g_{\theta}(x)}{h(x)}$ where f is bounded and continuous with $f_{\theta}(0) = -3\overline{\psi}(0)\theta^2$. Since $\psi_n \to \psi$, we also have $a := \lim_{n \to \infty} a_n$ existing so that

$$\psi(\theta) = \lim_{n \to \infty} \psi_n(\theta) = ia\theta + \int f_\theta(x)\widetilde{\nu}(dx) = ia\theta - 3\overline{\psi}(0)\widetilde{\nu}(\{0\})\theta^2 + \int g_\theta(x)\pi(dx)$$

where $\pi(dx) := 1_{x \neq 0} \frac{\overline{\psi}(0)}{h(x)} \widetilde{\nu}(dx)$ satisfies $\int (1 \wedge x^2) \pi(dx) < \infty$.

_		_	
		1	
		1	
_	_	_	

 \square

From the definition of Lévy process we see that the law of X_t must be infinitely divisible. Define $\psi_t(\theta) = -\log E\left(e^{i\theta X_t}\right)$ for $\theta \in \mathbb{R}, t \ge 0$. In particular, $m\psi_1(\theta) = \psi_m(\theta) = n\psi_{m/n}(\theta)$ so that for $t \in \mathbb{Q}^+$ we have $\psi_t(\theta) = t\psi_1(\theta)$. This holds for all $t \in \mathbb{R}$ because the paths are right-continuous, so that every Lévy-process has $E\left(e^{i\theta X_t}\right) = e^{-t\psi(\theta)}$.

Theorem 4.5.5. Suppose $a \in \mathbb{R}, \sigma \ge 0, \pi$ a measure on $\mathbb{R} - 0$ such that $\int (|x|^2 \wedge 1) \pi(dx) < \infty$. Define $\psi(\theta)$ as in the Lévy-Khinchin formula. Then there is a Lévy-process which satisfies $E(e^{i\theta X_t}) = e^{-t\psi(\theta)}$.

5 Spin Systems

Let V be a countable space, $S = \{0, 1\}^V$. Note that S is compact in the product topology. We let $c(x, \eta) \ge 0$ be a uniformly bounded function $V \times S \to \mathbb{R}$ such that $c(x, \cdot)$ is continuous for each $x \in V$. We let

$$\eta_x(z) = \begin{cases} \eta(z), & z \neq x \\ 1 - \eta(z), & z = x \end{cases}$$

Aim: Define a Feller process such that at each time only one state is changed, e.g. η becomes η_x at rate $c(x, \eta)$. We consider $\mathcal{L}f(\eta) = \sum_{x \in V} c(x, \eta) \left(f(\eta_x) - f(\eta) \right)$ defined on $D = \left\{ f \in C(S) : |||f||| := \sum_{x \in V} \sup_{\eta \in S} |f(\eta_x) - f(\eta)| < \infty \right\}$.

Claim. If $f \in D$ then f is Lipschitz continuous with respect to some norm that generates the product topology. Note that the product topology is generated by $d_{\alpha}(\eta,\xi) = \sum_{x \in V} \alpha(x) |\eta(x) - \xi(x)|$ where $\alpha > 0$ and $\sum_{x \in V} \alpha(x) < \infty$.

Proof. If $f \in D$ then $\alpha_f(x) := \sup_{\eta \in S} |f(\eta_x) - f(\eta)|$ and f is Lipschitz with respect to the metric induced by α_f . Indeed, Letting $I = \{x \in V : \xi(x) \neq \eta(x)\}$ we obtain

$$|f(\eta) - f(\xi)| \le \sum_{i=1}^{|I|} \left| f(\xi^i) - f(\xi)^{i-1} \right|$$

where $\xi^0 = \eta$ and $(\xi^i)_{i \in \mathbb{N}}$ is a sequence of single changes. Then

$$|f(\eta) - f(\xi)| \le \sum_{x \in I} \alpha_f(x) = d_{\alpha_f}(\xi, \eta)$$

Claim. For all $f \in D$ we have $\mathcal{L}f \in C(S)$.

Proof. $\forall \epsilon > 0 \exists N_{\epsilon} > 0$ such that

$$c(x_i, \eta) |f(\eta_{x_i}) - f(\eta)| \le \alpha_f(x_i) < \epsilon$$

for $i \geq N_{\epsilon}$ because $|||f||| < \epsilon$. Hence

$$|\mathcal{L}f(\eta) - \mathcal{L}f(\eta_{x_i})| < 2\epsilon, \ i > N_{\epsilon}.$$

Let $\overline{\mathcal{L}}$ be the closure of \mathcal{L} . We need to check the conditions for the generator.

1) Use Stone-Weierstrass: D is an algebra of continuous functions that separate points on a compact space.

2) Suppose $f \in D$ and $\lambda \ge 0, f - \lambda \mathcal{L}f = g$. Since S is compact, we have a minimum η of f. Hence, using $\mathcal{L}f(\eta) \ge 0$,

$$\inf_{\xi \in S} f(\xi) = f(\eta) \ge g(\eta) \ge \inf_{\xi \in S} g(\xi)$$

- 4) S is compact so that $1 \in C(S)$ and $\mathcal{L}1 \equiv 0$.
- **3)** Let $\epsilon := \inf_{u \in V, \eta \in S} (c(u, \eta) + c(u, \eta_u))$ and $a(x, u) := \sup_{\eta \in S} |c(x, \eta_u) c(x, \eta)|$. For $\alpha \in \ell^1(V)$ we define $\Gamma \alpha(u) := \sum_{x \in V: x \neq u} \alpha(x) a(x, u)$, and we want to show that Γ is an operator on $\ell^1(V)$. Γ is well-defined if $M := \sup_{x \in V} \sum_{u \neq x} a(x, u) < \infty$ and then $\|\Gamma\| = M$. For $f \in C(S)$ and $x \in V$ we define $\Delta_f(x) := \sup_{\eta \in S} |f(\eta_x) f(\eta)|$

Lemma 5.0.1. Assume either $f \in D$ or f continuous and $c(x, \cdot) = 0$ except for finitely many x. Then, if $f - \mathcal{L}f = g \in D, \lambda > 0, \lambda M < 1 + \lambda \epsilon$ then $\Delta_f \leq ((1 - \lambda \epsilon) I - \lambda \Gamma)^{-1} \Delta_g$ where the inverse is defined via $((1 - \lambda \epsilon) I - \lambda \Gamma)^{-1} \alpha = \frac{1}{1 + \lambda \epsilon} \sum_{k=0}^{\infty} \left(\frac{\lambda}{1 + \lambda \epsilon}\right)^k \Gamma^k \alpha$.

Theorem 5.0.2. Let $M < \infty$. Then $\overline{\mathcal{L}}$ is a probability generator and $\Delta_{T_t f} \leq e^{-\epsilon t} e^{t\Gamma} \Delta_f$

Proof. $\overline{\mathcal{L}}$ satisfies properties 1),2),4) because \mathcal{L} does so. For 3) take (V_n) to be an increasing sequence of finite subsets $V_n \subset V$ such that $\bigcup_n V_n = V$. Set $\mathcal{L}_n f(\eta) = \sum_{x \in V_n} c(x, \eta) (f(\eta_x) - f(\eta))$ for $f \in D$. \mathcal{L}_n is a bounded operator, so that $R(I - \lambda \mathcal{L}_n) = C(S)$ for all $\lambda > 0$. For a given $g \in D$, $f_n \in C(S)$ such that $f_n - \lambda \mathcal{L}_n f_n = g$, \mathcal{L}_n satisfies the condition of the previous Lemma and for λ small we get $\lambda M < 1 + \lambda \epsilon$. Define $g_n = f_n - \lambda \mathcal{L} f_n \in R(I - \lambda \mathcal{L})$. Set $K := \sup_{x \in V, n \in S} c(x, \eta)$. Then

$$\|g_n - g\| = \lambda \| (\mathcal{L} - \mathcal{L}_n) f\| \le \lambda \mathcal{L} \sum_{x \notin V_n} \Delta_{f_n}(x) \le \lambda K \sum_{x \notin V_n} \left((1 + \lambda \epsilon) I - \lambda \mathcal{L} \right)^{-1} \Delta_g(x)$$

Since $\Delta_g \in \ell^1(S)$ the right-hand side goes to zero and $g_n \to g$. We conclude that $g \in \overline{R(I - \lambda \mathcal{L})} \supset D$ and $R(I - \lambda \mathcal{L})$ is dense in C(S). Again, this tells us that $R(I - \lambda \overline{\mathcal{L}})$ is closed, hence equal to C(S).

5.1 Ergodicity of spin systems

Definition 5.1.1. μ is called stationary for a Feller process (X_t) if for all $f \in C_0(S), t \ge 0$:

$$\int T_t f d\mu = \int f d\mu$$

Equivalently, for all $f \in \operatorname{core}(\mathcal{L})$:

$$\int \mathcal{L} f d\mu = 0$$

Theorem 5.1.1. If S is compact, then $I := \{\mu \in \mathbb{P}(S) : \mu \text{ is invariant for } (X_t)_t\} \neq \emptyset$.

Definition 5.1.2 (Ergodicity). A spin system is ergodic if |I| = 1. Equivalently:

$$\forall \nu \in \mathbb{P}(S) : \nu T_t \stackrel{w}{\longrightarrow} \mu$$

Example 5.1 (Voter model for \mathbb{Z}^d). Let $c(x,\eta) = \frac{1}{2d} \sum_{y:|x-y|=1} \mathbb{1}_{\{\eta(y)\neq\eta(x)\}}$ and $a(x,u) = \begin{cases} 0, & \text{if } |x-u| > 1 \\ \frac{1}{2d}, & \text{if } |x-u| = 1 \end{cases}$ so that M = 1, and the process exists. It is not ergodic, since $\delta_i(\eta) = 1$ if $\eta(x) = i$ for all x and 0 otherwise are both invariant.

Theorem 5.1.2. If $\epsilon > M$ then X is ergodic.

Proof. Let $\eta, \xi \in S$ and change η into ξ pointwise:

$$\eta^0 = \eta, \ \eta^i = \eta_{x_i}^{i-1}$$

so that $\xi = \lim_{i \to \infty} \eta^i$. Now let $f \in C(S)$, so that

$$|f(\eta) - f(\xi)| \le \sum_{i=1}^{\infty} |f(\eta^i) - f(\eta^{i-1})| \le \sum_{x \in V} \Delta_f(x)$$

By Theorem 5.0.2 we obtain that $|||T_t f||| \le e^{(M-\epsilon)t} |||f|||$, so that

$$\sup_{\eta,\xi} |T_t f(\eta) - T_t f(\eta)| \le e^{(M-\epsilon)t} |||f|||$$

Letting $\mu \in I$, $\nu \in \mathbb{P}(S)$, $f \in D$, we obtain

$$\left|\int f d\mu - \int f d(\nu T_t)\right| = \left|\int_{S \times S} \left(T_t f(\eta) - T_t f(\xi)\right) (\mu \otimes \nu) (d\eta d\xi)\right| \le e^{(M - \epsilon)t} |||f||| \stackrel{t \to \infty}{\longrightarrow} 0$$

Now since D is dense in C(S), the claim follows.

Example 5.2 (Noisy voter model). $c(x,\eta) = \sum_{y} p(x,y) \mathbf{1}_{\eta(x)\neq\eta(y)} + \beta \mathbf{1}_{\eta(x)=0} + \gamma \mathbf{1}_{\eta(x)=1}$ where $\beta, \gamma \ge 0$.

Example 5.3 (Contact process). V graph of bounded degree, and write $x \sim y$ if x and y are neighbors. Set

$$c(x,\eta) = \begin{cases} 1, & \text{if } \eta(x) = 1\\ \lambda \cdot |\{y \sim x : \eta(y) = 1\}|, & \text{if } \eta(x) = 0 \end{cases}$$

Interpretation: $x \in V$ individuals of a population, $\eta(x) = 1$ if x is infected and $\eta(x) = 0$ if x is healthy. $\delta_{\underline{0}}$ is an invariant measure. Infected people get healthy at rate 1 but infect their neighbors at rate $\lambda > 0$. Are there other invariant measures?

No, if $\epsilon = \inf_{u,\eta} \left(c(u,\eta) + c(u,\eta_u) \right) = 1 > \lambda \max \operatorname{degree}(V) = \sup_x \sum_{u \neq x} \sup_{\eta} \left| c(x,\eta) - c(x,\eta_u) \right| = M.$

Example 5.4 (Stochastic Ising Model). $V = \mathbb{Z}^d$, $\beta > 0$ inverse temperature, $c(x, \eta) = \exp\left(-\beta \sum_{y:y \sim x} (2\eta(x) - 1)(2\eta(y) - 1)\right)$. Interpretation: $2\eta(x) - 1 \in \{-1, 1\}$ are spins. Neighboring atoms prefer to align their spin values (in particular when β is large, i.e. temperature low). We have $\epsilon = 2$, $M = 2de^{2d\beta}(1 - e^{-2\beta})$. Feller process (η_t) is hence well-defined and has a unique invariant measure if β is small enough. In fact, the following hold:

- For d = 1, it is ergodic for all β .
- For $d \ge 1$ it is ergodic iff $\beta < \beta_c$.

5.2 Attractive Spin Systems and Coupling

Definition 5.2.1. A coupling of (η_t) and (ξ_t) on S is a process $(\tilde{\eta}_t, \tilde{\xi}_t)$ on $S \times S$ with $\tilde{\eta}_t \stackrel{\mathcal{L}}{=} \eta_t$ and $\tilde{\xi}_t \stackrel{\mathcal{L}}{=} \xi_t$.

Lemma 5.2.1. Let (η_t) have rate $c_1(x,\eta)$ and (ξ_t) have rates $c_2(x,\xi)$. If $\eta \leq \xi$ implies $c_1(x,\eta) \leq c_2(x,\xi)$ for $\eta(x) = \xi(x) = 0$ and $c_1(x,\eta) \geq c_2(x,\xi)$ for $\eta(x) = \xi(x) = 1$. Then there is a coupling such that

$$\forall \eta \leq \xi : P^{(\eta,\xi)} \ (\forall t \geq 0 : \eta_t \leq \xi_t) = 1$$

Proof. We give rates for $(\eta_t, \xi_t)_t$ on the space $\{(0, 0), (0, 1), (1, 1)\}$:

$$\begin{array}{ll} (0,0) \to \left\{ \begin{array}{ll} (1,1), & \text{with rate } c_1(x,\eta) \\ (0,1), & \text{with rate } c_2(x,\xi) - c_1(x,\eta) \end{array} \right. \\ (0,1) \to \left\{ \begin{array}{ll} (0,0), & \text{with rate } c_2(x,\xi) \\ (1,1), & \text{with rate } c_1(x,\eta) \end{array} \right. \\ (1,1) \to \left\{ \begin{array}{ll} (0,0), & \text{with rate } c_2(x,\xi) \\ (0,1), & \text{with rate } c_1(x,\eta) - c_2(x,\xi) \end{array} \right. \end{array} \right.$$

Definition 5.2.2 (Attractive spin system). A spin system is called *attractive* if

$$\eta \leq \xi \Rightarrow \begin{cases} c(x,\eta) \leq c(x,\xi) & \text{ if } \eta(x) = \xi(x) = 0\\ c(x,\eta) \geq c(x,\xi) & \text{ if } \eta(x) = \xi(x) = 1 \end{cases}$$

(Noisy) voter models, contact processes and the stochastic Ising model are all attractive.

Corollary 5.2.2. For any attractive spin system there is a coupling of two copies (η_t, ξ_t) started in $\eta \leq \xi$ such that $P^{(\eta,\xi)}(\forall t : \eta_t \leq \xi_t) = 1.$

Proof. Lemma for $c_1 = c_2$.

Definition 5.2.3. Function $f \in C(S)$ is called increasing if $\eta \leq \xi \Rightarrow f(\eta) \leq f(\xi)$. Denote the set consisting of these functions f by $C^{\uparrow}(S)$. For $\mu, \nu \in \mathbb{P}(S)$ write $\mu \leq \nu :\Leftrightarrow \int f d\mu \leq \int f d\nu$ for all $f \in C^{\uparrow}(s)$.

Lemma 5.2.3. Let (η_t) be an attractive spin system, and (T_t) its corresponding semi-group. Then

1. $f \in C^{\uparrow} \Rightarrow T_t f \in C^{\uparrow}$

2.
$$\mu \leq \nu \Rightarrow \mu T_t \leq \nu T_t$$

Proof. 1. Let $\eta \leq \xi$. Then

$$T_t f(\eta) = E^{\eta} f(\eta_t) = E^{(\eta,\xi)} \left(f_1(\nu_t,\xi_t) \right) \le E^{(\eta,\xi)} \left(f_2(\eta_t,\xi_t) \right) = E^{\xi}(f(\eta_t)) = (T_t f)(\xi)$$

2. For $f \in C^{\uparrow}$ we have

$$\int f d\mu \leq \int f d\nu \Rightarrow \int T_t f d\mu \leq \int T_t f d\nu \Leftrightarrow \int f d(\mu T_t) \leq \int f d(\nu T_t)$$

Theorem 5.2.4. Let (η_t) be an attractive spin system

- 1. $\delta_{\underline{0}}T_s \leq \delta_{\underline{0}}T_t$ and $\delta_{\underline{1}} > \delta_{\underline{1}}$ for $s \leq t$.
- 2. $\underline{\nu} := \lim_{t \to \infty} \delta_{\underline{0}} T_t$ exists and is invariant $\overline{\nu} := \lim_{t \to \infty} \delta_{1} T_t$ exists and is invariant
- 3. $\forall \mu \in \mathbb{P}(S) \, \forall s \ge 0 : \delta_{\underline{0}} T_s \preceq \mu T_s \preceq \delta_{\underline{1}} T_s$

4. If $\nu := \lim_{k \to \infty} \mu T_{t_k}$ for $t_k \uparrow \infty$ exists then $\underline{\nu} \preceq \nu \preceq \overline{\nu}$.

 $Proof. \qquad 1. \ \ \delta_{\underline{0}} \preceq \delta_{\underline{0}} T_r \Rightarrow \delta_{\underline{0}} T_t \preceq \delta_{\underline{0}} T_{r+t}$

2. For each $t_k \uparrow \infty \ \delta_{\underline{0}} T_{t_k}$ has a limit point, which are the same due to 1.

- 3. $\delta_{\underline{0}} \preceq \mu \preceq \delta_{\underline{1}}$ for all μ , hence also $\delta_{\underline{0}}T_t \preceq \mu T_t \preceq \delta_{\underline{1}}T_t$
- 4. Follows from 3.

Corollary 5.2.5. An attractive spin system is ergodic iff $\underline{\nu} = \overline{\nu}$.