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1 Basic Principles
Definition 1.0.1. Let T ⊂ R, and (Ω,F , P ) a probability space. We call a family X = (Xt)t∈T of S-valued random
variables a stochastic process. πt(X ) = Xt is the projection on the t-th coordinate.

X is a random variable on (ST ,ST ).

Lemma 1.0.1. X is F − ST -measurable iff for all t ∈ T : Xt is F − S-measurable.

Definition 1.0.2. The law of the stochastic process X is the law of X on (ST ,ST ).

For a finite vector t = (t1, ..., tn) ∈ Tn let πt = (πt1 , ..., πtn). This induces a probability measure P t = P ◦ (πt)−1

on (Sn,Sn). We call {P t : t ∈ Tn, n ∈ N} the set of finite dimensional distributions (fdds) associated with P .

Questions:

1. Do the fdds uniquely determine P?

2. Given a family of fdds, (P t)t, is there a measure P on (ST ,ST ) such that (P t)t is associated with P?

Answers:

1. Yes: Let a =
∪
f⊂finT

(πt)−1(S |t|). It’s an ∩-stable algebra of cylinder events. If two measures agree on a
∩-stable generator a then they agree on σ(a). Hence the fdds uniquely determine P , since ST is in fact
generated by a.

2. One necessary condition is compatibility of (P t)|t|<∞: ∀t1 ⊂ t2 ⊂ T, A ∈ S |t1|: P |t2|(A×S|t2\t1|) = P |t1|(A).
For reasonable spaces, this is already sufficient.

Theorem 1.0.2 (Kolmogorov’s Extension Theorem). If S is a Polish space, then for any compatible family of fdds
there exists a measure P on (ST ,ST ) associated with the fdds.

Proof. Durrett, Theorems 2.1.14 and 2.1.15
See also: Dudley, Real analysis and probability, Theorem 12.1.2

1.1 Preview
Brownian Motion: A stochastic process (Xt)t∈[0,∞) such that

1. ∀t1 < t2: Xt2 −Xt1 ∼ N (0, t2 − t1),
2. ∀t1 < t2 < ... < tn: Xtn −Xtn−1 , ..., Xt2 −Xt1 are independent,

3. the map t 7→ Xt is continuous almost surely,

is called Brownian Motion.

We will show Donsker’s invariance principle: Let (ξn)n be iid with E(ξ1) = 0,Var(ξn) = 1 and Sn =
∑n
k=1 ξi.

Then S⌊nt⌋√
n

d→ (Xt)t∈[0,1] where Xt is Brownian motion.

Markov Chains: A family (Xt)t such that for s < t, E(Xt | Fs) = E(Xt | Xs) is called Markov Chain, where
Fs = σ(Xu : u ≤ s)
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1.2 Continuous modifications of stochastic processes
So far we have found a probability measure P on (ST ,ST ). However, the event {supt∈T Xt < c} is not an element of
ST . Neither is, in general, {ω : t 7→ Xt(ω) is continuous}.
Definition 1.2.1. Stochastic processes X,Y are stochastic equivalent if ∀t ∈ T : P (Xt = Yt) = 1. We then call Y a
modification of X.

Remark. If X,Y are stochastic equivalent then they have the same fdds.

Example 1.1. Let S = [0, 1], T = [0, 1], ω ∼ U([0, 1]) and Xt(ω) = 1{ω=t}, Yt(ω) = 0. X,Y are stochastic equivalent,
but suptXt = 1 > 0 = supt Yt and P (Xt ∈ C(T )) = 0 ̸= 1 = P (Yt ∈ C(T )).

Suppose for some continuous time process X we have a continuous modification Y , (i.e. Y has almost surely
continuous paths). Then Y lives on a bigger probability space (ST , S̃T , P̃ ) where C(T ) ∈ S̃T and P̃ (Y ∈ C(T )) = 1.
P̃ is not very handy, so we would rather work on (C(T ),Fc) where Fc = σ(cylinder sets of C(T )) and P̂ (A) :=

P̃ (A ∩ C(T )) for A ∈ Fc. If T is a bounded interval, then ρ(x, y) := supt∈T |x(t)− y(t)| is a metric on C(T ) and it
turns out that B(C(T )) = Fc.
Question: For which processes is there a continuous modification?

Theorem 1.2.1 (Kolmogorov’s continuity theorem). Let X be a stochastic process on (R[0,1],B[0,1]). If

∃a, b > 0 ∃c <∞ ∀t, t+ h ∈ [0, 1] : E(|Xt+h −Xt|a) ≤ c |h|1+b

then there exists a continuous modification Y of X.

Proof. Exercise.

Theorem 1.2.2. Let ϵ(h), q(h) be increasing such that
∑∞
n=1 ϵ(2

−n) < ∞ >
∑∞
n=1 2

nq(2−n). If ∀t, t + h ∈ [0, 1] :
P (|Xt+h −Xt| > ϵ(h)) ≤ q(h) then a continuous modification exists.

Proof. Define tn,r = r
2n for r = 0...2n, n ≥ 1 and Xn

t = Xtn,r + (t− tn,r)(Xtn,r+1 −Xtn,r ) for t ∈ [tn,r, tn,r+1]. Now

Zn,r := max
t∈[tn,r,tn,r+1]

∣∣Xn+1
t −Xn

t

∣∣ = ∣∣∣∣Xtn+1,2r+1 −
1

2
(Xtn+1,2r −Xtn+1,2r+2)

∣∣∣∣
≤ 1

2

∣∣Xtn+1,2r+1
−Xtn+1,2r

∣∣+ 1

2

∣∣Xtn+1,2r+2
−Xtn+1,2r+1

∣∣
Thus P (Zn,r > ϵ(2−n)) ≤ P

(
1
2

∣∣Xtn+1,2r+1 −Xtn+1,2r

∣∣ > ϵ(2−n)
)
+P

(
1
2

∣∣Xtn+1,2r+2 −Xtn+1,2r+1

∣∣ > ϵ(2−n)
)
≤ 2q(2−n).

Now

P

(
sup
t∈[0,1]

∣∣Xn+1
t −Xn

t

∣∣ > ϵ(2−n)

)
= P

(
2n∪
r=0

{
Zn,r > ϵ(2−n)

})
≤ 2n+1q(2−n)

Since
∑
n 2

nq(2−n) < ∞ Borel-Cantelli implies that there is an A such that P (A) = 1 and ∀ω ∈ A ∃n0(ω) ∀n ≥
n0(ω) : ρ(X

n, Xn+1) < ϵ(2−n). In particular for m > n ≥ n0 : ρ(Xn, Xm) ≤
∑∞
k=n ϵ(2

−k)→ 0.
Thus for ω ∈ A, Xn(ω) is a Cauchy sequence and a limiting function Y (ω) = limn→∞Xn(ω) exists.
It remains to show that Y is a modification of X. If t = tn,r we are done. If t ̸= tn,r for all n, r then there exists a
sequence rn such that tn,rn → t and 0 < t−tn,rn < 2−n. Then P

(∣∣Xtn,rn
−Xt

∣∣ > ϵ(t− tn,rn)
)
≤ q(t−tn,rn) ≤ q(2−n).

Borel-Cantelli tells us that Xtn,rn
→ Xt almost surely, and by continuity Ytn,rn

→ Yt almost surely. Therefore, since
Xtn,rn

= Ytn,rn
, the limiting points are the same: P (Xt = Yt) = 1.

Example 1.2. Let ω ∼ U([0, 1]) and Xt = 1{t≥ω}. Then E(|Xt+h −Xt|a) = P (|Xt+h −Xt| > 0) = h.

There are other criteria with (weaker) conditions which give weaker regularity properties

Definition 1.2.2. A process X is called stochastic continuous if ∀t ∈ T : Xt+h
h→0−→ Xt in probability. It is Lp-

continuous if ∀t ∈ T : Xt+h
h→0−→ Xt in Lp.

1.3 Processes with stationary independent increments
Definition 1.3.1. A process (Xt)t∈T has stationary independent increments if L(Xt−Xs) depends only on t− s and
∀0 = t0 < t1 < ... < tn : (Xti −Xti−1)i=1,...,n are independent.

Example 1.3 (Poisson process on [0,∞)). There are three different constructions:

• Nt(ω) as an increasing right-continuous step functions with jumps of size 1. Then Nt −Ns ∼ Poi(λ(t− s)) and
N0 = 0.

• (τi)i∈N ∼ Exp(λ) iid and Nt = |{k ≥ 1 : τ1 + ...+ τk ≤ t}|. The stationarity follows from the Markov property
of the exponential distribution.

• On any interval [i, i+ 1] place Poi(λ) number of jump points uniformly distributed over the interval.
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2 Brownian Motion

2.1 Multivariate Gaussian distributions
Definition 2.1.1. A vector X = (X1, ..., Xn) of R-valued random variables has a multivariate Gaussian distribution
if a ·X is a univariate Gaussian for any a ∈ Rn.

Remark. • If X1, ..., Xn are independent Gaussians then (X1, ..., Xn) is a multivariate Gaussian.

• (X1, ..., Xn) being Gaussian is much stronger than all Xj being Gaussian.

• It does not require a density, e.g. (Z,Z) is a multivariate Gaussian, but it lives on ∆R ⊂ R2 which is a nullset.

• If X is Gaussian then so is XA for any A ∈ Rn×m

• IfX is Gaussian then its distribution is characterized by its mean and covariance matrix E(X),Σ = (Cov(Xi, Xj))i,j .
This follows from the represantation of its characteristic function.

Lemma 2.1.1. If X is Gaussian then X1, ..., Xn are independent iff they are uncorrelated.

Proof. If Cov(Xi, Xj) = σiδij then we can take Y = (Y1, ..., Yn) independent Gaussians where L(Y ) = L(X). Now
use the last point in the remark.

Definition 2.1.2. A Gaussian process is a process such that all fdds are multivariate Gaussian.

2.2 Definition of Brownian Motion
Proposition 2.2.1. For (Xt) the following are equivalent:

1. (Xt) has stationary independent increments such that Xt ∼ N (0, t)

2. (Xt) is a Gaussian process and E(Xt) = 0, Cov(Xs, Xt) = s ∧ t.

Proof. 1. ⇒ 2.:
∑
akXtk =

∑
bk(Xtk −Xtk−1

) for suitable bk.

2. ⇒ 1.: For s < t : Xt − Xs is Gaussian with zero mean and Var(Xs, Xt) = EX2
t − 2EXsXt − EX2

s = t − s.
Furthermore for u < v ≤ s < t: Cov(Xv −Xu, Xt −Xs) = v − u− v + u = 0

Definition 2.2.1. Standard Brownian motion is a stochastic process satisfying the conditions of the Proposition with
almost surely continuous paths.

Theorem 2.2.2. Standard Brownian motion exists on (C(T ),BT ) and is unique.

Proof. There exists a Gaussian process with Cov(Bs, Bt) = s ∧ t because multivariate Gaussians form a compatible
family of fdds and they determine the process uniquely by Kolmogorov’s consistency theorem. Now

E((Xt+h −Xt)
2k) = hkE(Z2k) ≤ chk

For k = 2 we satisfy Kolmogorov’s continuity theorem with a = 4, b = 1.

Lemma 2.2.3. If (Bt)t is standard Brownian motion then so are

1. Bt+s −Bs

2. cBt/c2

3. Xt = tB1/t

Proof. Cov(Xt, Xs) = st(1/s ∧ 1/t) = s ∧ t with continuous paths on (0,∞). To check continuity in 0, write
{ω : limt↓0Xt = 0} =

∩
m≥1

∪
n≥1 {ω : |Bt| ≤ 1/m ∀t ∈ Q ∩ (0, 1/n)}. Now the right-hand side has the same prob-

ability as for Bt, and thus so does the left-hand side.

Some further properties of Brownian motion

• Almost surely the paths are nowhere differentiable

• Quadratic variation: Letting (πn) be a sequence of partitions of [0, t] with |πn| → 0, we can let ⟨Bt⟩ :=
limn→∞

∑
(s,u)∈πn

(Bu −Bs)2 which exists in Lp (and a.s. if
∑
n |πn| <∞) and ⟨Bt⟩ = t a.s.

• Almost surely the paths are monotone in no interval.

• The set of local maxima is dense and countable.

• Every local maximum is strict.
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2.3 The Markov property
Let B be standard Brownian motion defined on (C([0,∞)),B[0,∞)) where B[0,∞) is the smallest σ-algebra such that
the projections ω 7→ ω(t) are measurable. Consider the family of measures {P x}x∈R where P x is the measure of x+B.
Write (Xt)t for Brownian motion starting in x. In particular P x(X0 = x) = 1.

Proposition 2.3.1. If Y is a bounded random variable then x 7→ ExY is measurable.

Proposition 2.3.2 (Monotone class theorem). Let Ω ∈ P be a π-system and H a linear space with

1. A ∈ P ⇒ 1A ∈ H

2. Xn ∈ H bounded, Xn ↑ X, then X ∈ H

Then {X : X is bounded and σ(P )-measurable} ⊂ H.

Proof of 2.3.2. From H linear and 2. it follows that G = {A : 1A ∈ H} ⊃ P is a Dynkin system. Since H contains all
simple functions we win.

Lemma 2.3.3. Let f(x, y) be a bounded measurable function, X G-measurable and Y ⨿ G. Then E(f(X,Y ) | G) =
g(X) almost surely where g(x) = Ef(x, Y ).

Proof of 2.3.3. Exercise.

Proof of 2.3.1. Call Y special if Y (ω) =
∏n
m=1 fm(ω(tm)) for 0 < t1 < ... < tn and fm ∈ C0(R). Let pt(x, y) the

density of a N (x, t) random variable. If Y is special then ExY = Ex
∏n
m=1 fm(Xtm) = Ex

∏n
m=1 fm(x + Btm). We

show continuity in x by induction on n. For n = 1:

Ef1(x+Bt1) =

∫
f1(x+ y)pt1(0, y)dy =

∫
f1(z)pt1(x, z)dz

which is continuous in x. For n ≥ 2, using Lemma 2.3.3 and independent increments yields

E

(
E

(
n∏

m=1

fm(x+Btm) | Bti : 1 ≤ i ≤ n− 1

))
= E

(
n−1∏
m=1

fm(x+Btm)h(x+Btn−1)

)

where h(u) = Efn(u+Btn−tn−1). Now extend to Y ∈ C0(R) using the monotone class theorem.

Definition 2.3.1. (Ft)t∈T is called a filtration if Ft is a σ-field such that Fs ⊂ Ft for any s ≤ t. It is called
right-continuous if Ft =

∩
s>t Fs.

For Brownian motion a natural candidate for a filtration is
F0
t = {smallest σ − algebra such that ω 7→ ω(s) are measurable for s ∈ [0, t]}. However, this is not right-continuous.

Therefore, define Ft =
∩
s>t F0

s .
Now let (θs)s∈[0,∞) be the time shift defined by θsω(t) = ω(s+ t). Note that Xt(ωs) = Xt+s(ω).

Theorem 2.3.4 (Markov property for Brownian motion). Let Y be a bounded random variable. Then for all x ∈
R, s ≥ 0 :

Ex(Y ◦ θs | Fs) = EXsY := EyY |y=Xs

Proof. It suffices to show that E(Y ◦ θs1A) = Ex(EXsY 1A) for s ≥ 0, Y bounded and A ∈ Fs.

1. Choose first Y special and A finite dimensional. Let 0 < r1 < ... < rk < s+ h < s+ t1 < s+ t2 < ... < s+ tn.
Let ϕ(y, h) := Eyf1(Xt1−h) · · · fn(Xtn−h).

2. ϕ is jointly continuous in (y, h) ∈ R× [0, t1) and Ex(Y ◦ θs1A) = Ex(ϕ(Xs+h, h)1A).
For k = n = 1 we have ϕ(y, h) =

∫
R dzpt1−h(y, z)f1(z) and

Ex(Y ◦ θs1A) = Ex(f1(ω(t+ s))1{ω(r1)∈A1}) =

∫
A1

dupr1(x, u)

∫
R
dvps+h−r1(u, v)

∫
R
dzf1(z)pt1−h(v, z)

= Ex(ϕ(Xs+h, h)1A)

which is what we wanted to show for n = k = 1. Now do induction on k, n.

3. Apply the Dynkin lemma to P =
{

finite dimensional subsets of F0
s+h/2

}
and L =

{
A ∈ F0

s+h/2 : 2. holds
}

4. Letting h ↓ 0 in 2. we use the following properties

• The paths of X are right-continuous
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• ϕ is jointly continuous

• ϕ(y, 0) = ExY

to get 1. for the special Y ’s.

5. To go from special Y to general bounded Y we apply the monotone class theorem to P = {finite dimensional sets} ,
H = {bounded random variables for which 1. holds}.

Remark.

• We have used only the right-continuity of the paths.

• pt+s(x, y) =
∫
dzpt(x, z)ps(z, y), which is known as the semi-group property.

Proposition 2.3.5. If Y is a bounded random variable and x ∈ R then Ex(Y | Fs) = Ex(Y | F0
s ).

Proof. First let Y be special. Write Y (ω) = Y1(ω)(Y2 ◦ θs)(ω) with Y1(ω) =
∏
m:tm≤s fm(ω(tm)) and Y2(ω) =∏

m:tm>s
f(ω(tm − s)). Then using Markov property:

Ex(Y | Fs) = Y1E
x(Y2 ◦ θs | Fs) = Y1E

XsY2

So Ex(Y | Fs) is F0
s -measurable. Dynkin lemma and Monotone class theorem to win.

Corollary 2.3.6 (Blumenthal 0-1 law). If A ∈ F0 then P x(A) ∈ {0, 1} for each x ∈ R.

Proof. Let A ∈ F0. Then 1A = Ex(1A | F0) = Ex(1A | F0
0 ) is constant almost surely.

Let τ>0 := inf {t : Xt > 0} and τ0 = inf {t > 0 : Xt = 0}. Then P 0(τ>0 = 0) = P 0(τ0 = 0) = 1. We know that
P 0(τ>0 ≤ t) ≥ P 0(Xt > 0) = 1/2. Now use the Blumenthal 0-1 law.
Furthermore we also get τ<0 = 0 P 0-almost surely. Now use continuous paths to conclude that P 0(τ0 = 0) = 1.

2.4 The Strong Markov Property
Let (Ω,F) be a measurable space and let (Ft)t be a right-continuous filtration.

Definition 2.4.1. A random variable τ : Ω→ [0,∞] is called a stopping time with respect to Ft if {τ ≤ t} ∈ Ft for
all t <∞.

Lemma 2.4.1. τ is a stopping time iff {τ < t} ∈ Ft for all t ≥ 0. Note that right-continuity is necessary for this.

Proposition 2.4.2. Let G be an open set. Then τG = inf {t : Xt ∈ G} is a stopping time.

Proof. {τ < t} =
∪

Q∋s<t {Xs ∈ G} ∈ Ft.

Lemma 2.4.3. If (τn)n is a sequence of stopping times, then so are inf τn, sup τn, lim inf τn, lim sup τn.

Proposition 2.4.4. If G is a closed set then τG is also a stopping time for Brownian motion.

Proof. For every n let Gn = {x : d(x,G) < 1/n} and τn = τGn . Clearly sup τn ≤ τG. The converse remains as a
maybe-not-so-easy exercise.

Definition 2.4.2. Let τ be a stopping time. Define Fτ := {A : ∀t : A ∩ {τ ≤ t} ∈ Ft}.

• Fτ is a σ-algebra.

• τ is Ft-measurable

• If τn ↓ τ then Fτ =
∩
n Fτn .

• If τ1 ≤ τ2 then Fτ1 ⊂ Fτ2 .

Proposition 2.4.5. If (Zt) is adapted to (Ft) and Zt has right-continuous paths then Zτ1τ<∞ is Fτ -measurable.

Proof. • First assume that τ takes on only countably many values t1, t2, .... Since Z is adapted {Zτ ≤ a}∩{τ < t} =∪
k:tk<t

{τ = tk, Ztk ≤ a} ∈ Ft

• Now assume τ <∞. Now we can approximate τ by τn := k+1
2n if k

2n ≤ τ <
k+1
2n . Now {τn ≤ t} = {τ < k/2n} ∈ Ft

for k
2n ≤ t < k+1

2n . Moreover, τn ↓ τ . Every Zτn is Fτn -measurable and therefore Zτ is Fτn-measurable and
therefore also Fτ -measurable because both Z, (Ft)t are right-continuous.
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• For arbitrary τ , Zτ∧n is Fτ∧n-measurable so that Zτ∧n1{τ<∞} and Zτ1{τ<∞} are Fτ -measurable too.

Theorem 2.4.6 (Strong Markov property for Brownian motion). Suppose Ys(ω) is bounded and jointly measurable
on [0,∞)× Ω and that τ is a stopping time. Then for all x ∈ R:

Ex(Yτ ◦ θτ | Fτ ) = EXτYτ = EyYt |t=τ,y=Xτ

P x-almost surely on {τ <∞}. In particular

Ex(Yτ ◦ θτ1τ<∞) = Ex(EXτ (Yτ )1τ<∞)

Proof idea. • If τ takes on countably many values t1, t2, ... we condition on τ = tk and apply the Markov property.

• General τ we can approximate with a sequence τn ↓ τ where each τn takes on countably many values.

• Use special Y ’s and generalize via the monotone class theorem.

For a first application we can look at the zeros of Brownian motion: Z(ω) = {t : ω(t) = 0}. Then

Exλ(Z) = Ex
∫ ∞

0

1Zdt =

∫ ∞

0

P x(t ∈ Z)dt = 0

Hence λ(Z) = 0 P x-almost surely.

Proposition 2.4.7. Z is almost surely perfect, hence uncountable.

Proof. We show that any point is an accumulation point. Let a ≥ 0, τa = inf {t ≥ a : Xt = 0}. Let Y = 1A for
A = {ω : ω(tn) = 0 for some sequence tn ↓ 0}. Then Y ◦θτa = 1Aa for Aa = {ω : ω(tn) = 0 for some sequence tn ↓ τa}.
Then

Ex(Y ◦ θτa | Fτa) = EXταY = E0Y = 1

Hence P x(Aa) = Ex(Ex(Y ◦θτa | Fτa)) = 1. Hence for all a, τa is a limit point in Z from the right. All other elements
of Z are accumulation points from the left.

As another application we can look at

Theorem 2.4.8 (Reflection principle). Let Mt := maxs≤tXs, 0 < b < a. Then P 0(Mt > a,Xt < b) = P 0(Xt > 2a−b)
for all t ≥ 0.

Proof. Let τ := inf {t : Xt = a}. Let Ys = 1ω(t−s)>2a−b−1ω(t−s)<b. We get ExYs = P x(Xt−s > 2a−b)−P x(Xt−s < b).
In particular EaYs = 0. On {τ < t}, 0 = EXτYτ and

0 = EaYs = E0
(
EXτYτ1τ<t

)
= E0 (Yτ ◦ θτ1τ<t) = P 0(Xt > 2a− b, τ < t)− P 0(Xt < b, τ < t)

= P 0(Xt > 2a− b)− P 0(Xt < b,Mt > a)

Corollary 2.4.9. Under P 0, Mt and |Xt| have the same distribution.

Proof. Using the reflection principle, we get

P 0(Mt > a) = P 0(Mt > a,Xt > a) + P 0(Mt > a,Xt < a) = P 0(Xt > a) + P 0(Xt > a) = P 0(|Xt| > a).

Corollary 2.4.10. Let τ0 = inf {t : Xt = 0}. Then P x(τ0 < t) =
t∫
0

|x|√
2πz3

e−x
2/2zdz

Proof.

P x(τ0 < t) = P |x|(τ0 < t) = P |x|(Xs < 0 for some s < t) = P 0(Xs > |x| for some s < t)

= P 0(Mt > |x|) = 2P 0(Xt > |x|) = 2

∞∫
|x|

pt(0, y)dy

Substituting y = |x|
√
t/z gives the desired result.
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2.5 The Skorohod Embedding
Definition 2.5.1. M = (Mt)t is called submartingale if for each t:

• Mt is Ft-measurable,

• Mt ∈ L1 and

• E(Mt | Fs) ≤Ms for all s < t

We call M supermartingale if −M is a submartingale and martingale if it is a super- as well as a submartingale.

Theorem 2.5.1 (Martingale convergence). If M is a right-continuous submartingale bounded in L1 then M∞ :=

limtMt exists and is finite a.s. If M is uniformly integrable, that is suptE(|Mt| , |Mt| > N)
N→∞−→ 0, then convergence

is also in L1.

Remark. If M is bounded in L2 then M is uniformly integrable.

Theorem 2.5.2 (Stopping time theorem). Let M be a right-continuous martingale, σ ≤ τ a stopping time. If either
τ is bounded or M is uniformly integrable then E(Mτ | Fσ) =Mσ.

Example 2.1. Brownian motion B as well as B2
t − t are martingales.

Proposition 2.5.3. Let τ be a stopping time such that Eτ <∞. Then EBτ = 0, EB2
τ = Eτ

Proof. • B2
τ∧n − (τ ∧ n) is a martingale in n by the stopping time theorem.

• EB2
τ∧n = E(τ ∧ n) ≤ Eτ <∞. Hence E(B2

τ ) ≤ Eτ <∞ by Fatou.

• Bτ∧n is also a martingale in n and is uniformly integrable because it’s bounded in L2 by the above. Hence
E(Bτ∧n) = 0 = E(Bτ ) by stopping time theorem and L1 convergence from martingale convergence theorem.

• E(τ ∧ n) = E(B2
τ∧n) = E

(
E(Bτ | Fτ∧n)2

)
≤ EB2

τ by Jensen’s inequality. Now use monotone convergence.

Let Y be an R-valued random variable. We can ask if there is a stopping time τ such that Eτ < ∞ and
L(Bτ ) = L(Y ). By the proposition we know that EY = 0, EY 2 <∞ are necessary conditions. It turns out that they
are already sufficient.

Example 2.2. Let Y take only two values a, b. Then the obvious choice is τ = τ{a,b}. Since EBτ = 0 and there is
only one distribution on {a, b} with mean 0 it does the job. This is the only such stopping time with finite mean. If
σ is another one then σ ≥ τ but Eσ = Eτ = EY 2.

Theorem 2.5.4 (Skorohod embedding). Let B be standard Brownian motion, Y a random variable with EY =
0, EY 2 <∞. Then there exists a stopping time τ with Eτ <∞ such that L(Bτ ) = L(Y ).

Note that given v ≤ u ≤ w there is a unique distribution on {v, w} with mean u.

Proof (Dubin). Consider a sequence of finite subsets of R: S0 = ∅, S1 = {0} = {E(Y )} , S2 = {E(Y | Y < 0), E(Y | Y > 0)} =:
{a, b} , S3 = {E(Y | Y < a), E(Y | a ≤ Y < 0), E(Y | 0 ≤ Y < b), E(Y | b ≤ Y )}, and so on.
More formally: Given S1, ..., Sn we let Fn = σ

({
x ≤ Y ≤ y, for x, y consecutive points of Tn :=

∪
k≤n Sk ∪ {±∞}

})
and Sn+1 = supp(E(Y | Fn)) Without loss of generality assume Y takes values in F = supp(Y ). Let τ0 = 0 and
τn = min {t > τn−1 : Bt ∈ Sn+1}.

(1) limn→∞E(Y | Fn) = Y a.s.

The martingale convergence theorem applied to Mn := E(Y | Fn) gives us an a.s. limit E(Y | σ(
∪
n Fn)). Thus

we need to show that Y is measurable with respect to σ(
∪
n Fn). It suffices to show that F ⊂

∪
k Sk. Suppose

u ∈ F \
∪
k Sk. Choose sequences (xn), (yn) of consecutive points in

∪
k≤n Sk ∪{±∞} such that xn ≤ u ≤ yn for

all n. Then xn ↓, yn ↑ and limxn = x < u < y = lim yn. But Sn+1 ∋ E(Y | xn < Y ≤ yn)→ E(Y | x < Y ≤ y).
Hence we have P (x < Y < y) = 0, otherwise there would be Sm ∈ (x, y) for some m sufficiently large. But we
assumed P (x < Y < y) > 0 as we took u ∈ F .

(2) Eτn <∞ for all n by induction on n.

• E(τ0) = 0

• Eτn−1 <∞ and σ := inf {t | Bt ∈ Sn+1}. By the strong Markov property E(τn−τn−1 | Fτn−1) = EBτn−1σ.
Hence E(τn − τn−1) = E(EBτn−1σ). Now ∀u ∈ Sn ∃v, w ∈ Sn+1 consecutive : v ≤ u ≤ w hence the hitting
time of this subset is finite.

(3) Bτn and E(Y | Fn) have the same distribution, once more by induction on n.
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• Bτ0 = 0 = E(Y ) = E(Y | F0)

• (Bτn | Bτn−1 = u)
L
= (E(Y | Fn) | E(Y | Fn) = u). Let v = sup {s ∈ Sn+1 : s < u} , w = inf {s ∈ Sn+1 : s > u}.

On both sides it is the unique distribution concentrated on {v, w}.

(4) Let’s put everything together. Using (2), (3) and Jensen, we get Eτn = EB2
τn = E

(
E(Y | Fn)2

)
≤ EY 2 < ∞.

So the monotone limit τ := limn τn exists and is finite a.s. with Eτ < ∞. Taking the limit n → ∞ in (3) and
combining it with (1) we win.

Corollary 2.5.5. Let (Yi)i be iid, E(Yi) = 0, E(Y 2
i ) = 1. Let Sn =

∑n
i=1 Yi. Then there exist iid stopping times (τi)i

such that Eτi = 1 and (S1, S2, ...)
L
= (Bτ1 , Bτ1+τ2 , ...).

Proof. Construct sequences (Bit), (τi) such that B1
t = Bt, τ1 such that B1

τ1

L
= Yi. Then B2

t = B1
τ1+t −Bτ1 is Brownian

motion and is independent of Fτ1 . Choose τ2 such that B2
τ2

L
= Y2. If the same construction is used then τ1

L
= τ2. Now

τ1, Bτ1 are Fτ1 -measurable, hence (τ1, B1
τ1) and (τ2, B

2
τ2) are independent so that τ1, τ2 are iid and (B1

τ1 , B
2
τ2)

L
= (Y1, Y2).

Then (S1, S2)
L
= (Bτ1 , Bτ1+τ2). Iterate.

As a consequence Sn√
n

L
=

Bτ1+...+τn√
n

. If we had Sn/
√
n

L
= B 1

n (τ1+...+τn) then we would get the Central Limit Theorem.

Theorem 2.5.6. Let (Yi) as above. There exists a triangular array {τi,n : 1 ≤ i ≤ n} of stopping times such that:

1. Eτi,n = 1

2. ∀n : τ1,n, ..., τn,n are independent

3. ∀n :
(
Sk√
n
: 1 ≤ k ≤ n

)
L
=
(
B τ1,n+...+τk,n

n

: 1 ≤ k ≤ n
)

Proof. • Bnt :=
√
nBt/n is Brownian motion.

• Apply Corollary 5.5 to Bn to get τ1,n, ..., τn,n

• Using Corollary 5.5 once more we get(
Sk√
n
: 1 ≤ k ≤ n

)
L
=
(
Bnτ1,n+...+τk,n

/
√
n : 1 ≤ k ≤ n

)
L
=
(
B τ1,n+...+τk,n

n

: 1 ≤ k ≤ n
)
.

This implies the CLT: Sn/n
L
= Bτ1,n+...+τn,n/n. By the LLN: 1

n (τ1,n + ... + τn,n)
P−→ 1 so using continuity of the

paths it follows that Sn√
n
→ B1 ∼ N (0, 1).

Given a discrete time process (Yk) there are two ways to construct a continuous time process (Yt):

1. Linear interpolation (Yt)t∈[0,1] is a random function in (C[0, 1], ρ) where ρ is the sup-metric.

2. We could also work on D[0, 1] := {f : [0, 1]→ R | f is right-continuous with limits from the left} with the sup-
metric ρ.

We use the second option.

Theorem 2.5.7 (Donsker’s invariance principle). Let (Yi) be iid, EYi = 0, EY 2
i = 1, Sn :=

∑n
k=1 Yi and Znt :=

S⌊nt⌋/
√
n, t ∈ [0, 1]. Then Zn

d−→ B in (D[0, 1], ρ)

Proof. Take {τk,n}1≤k≤n from the previous theorem and let Tnt :=
τ1,n+...+τ⌊tn⌋,n

n and V nt := BTn
t

for t ∈ [0, 1]. Then

(V nt )t
L
= (Znt )t for all n. We now show that V nt

P−→ Bt. For ϵ, δ > 0:

P (ρ(V n, B) > ϵ) ≤ P
(
sup
t
(Tnt − t) ≥ δ

)
+ P

(
sup

|s−t|≤δ
|Bs −Bt| > ϵ

)
As δ ↓ 0 the second term converges to 0. Now let τ1, τ2, ... be iid with the same distribution as the τi,j . Then

sup
t
|Tnt − t| ≤

1

n
+ sup

0≤k≤n

∣∣∣∣τ1,n + ...+ τk,n − k
n

∣∣∣∣ L
=

1

n
+ sup

0≤k≤n

k

n

∣∣∣∣τ1 + ...+ τk
k

− 1

∣∣∣∣
≤ 1

n
+ ϵ sup

k

∣∣∣∣τ1 + ...+ τk
k

− 1

∣∣∣∣+ sup
k≥ϵn

∣∣∣∣τ1 + ...+ τk
k

− 1

∣∣∣∣
where the second term is a.s. bounded and the last term converges to 0 a.s. It follows that supt∈[0,1] |Tnt − t|

P−→ 0.
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Corollary 2.5.8. Suppose ϕ : D[0, 1] → R, P (B ∈ A) = 1 for A ⊂ D[0, 1] and ϕ is continuous on A. Then
ϕ(Zn)

d−→ ϕ(B).

Example 2.3.

• ϕ(f) = f(1) gives us the CLT.

• ϕ(f) = max0≤t≤1 f(t). Then max0≤k≤n Sk√
n

d−→ max0≤t≤1Bt
L
= |B1|

• etc.

3 Markov Chains

3.1 Markov Chains with finite state space in discrete time
A homogeneous Markov chain (Xn)n∈N on a finite state space S is given by an initial distribution µ on S and a
stochastic matrix P, i.e. P has dimension |S| × |S| with entries ≥ 0 and rows summing to 1, if P (X0 = x) =
µ(x), P (Xn+1 = y | Xn = x,Xn−1 = xn−1, ..., X0 = x0) = P (Xn+1 = y | Xn = x) = Px,y. In particular

P (Xn = x) =
∑

x0,...,xn−1

µ(x0)P (X1 = x1, ..., Xn−1 = xn−1, Xn = x) =
∑
x0

µ(x0)p
n(x0, x) = µPn·,x

where we write pr(x, y) for the r-step transition probabilities. Furthermore, by definition, (Xn) has the Markov
property.

Example 3.1. • P =
(
1−α α
β 1−β

)
for α, β ≥ 0

• P = (aij) where aij = 1
21{|i−j|=1 mod n}

• etc.

Definition 3.1.1. • A Markov chain X is called irreducible if for all x, y ∈ S there is an r such that pr(x, y) > 0.

• For x ∈ S we write period(x) := gcd {n ∈ N : pn(x, x) > 0}.

• A chain is aperiodic if ∀x ∈ S : period(x) = 1.

If X is an irreducible chain then all x ∈ S have the same period. Furthermore, if a chain is irreducible and aperiodic
then ∃r ∈ N ∀x, y ∈ S : pr(x, y) > 0.

Definition 3.1.2. A distribution π on S is called stationary for P if πP = π.

Let τx = inf {n ≥ 0 | Xn = x} and τ+x = inf {n ≥ 1 | Xn = x}.

Lemma 3.1.1. If X is irreducible then Eτ+x <∞.

Proof. For all x, y there exists r such that pr(x, y) ≥ ϵ > 0. Then we can find k ∈ N, ϵ > 0 such that ∀x, y ∈ S ∃r ≤
k : pr(x, y) ≥ ϵ > 0. Now P x(τ+y > lk) ≤ (1 − ϵ)P x(τ+y > (l − 1)k) ≤ (1 − ϵ)l. Then Eτ+x =

∑∞
n=0 P

x(τ+y > n) ≤∑∞
l=1 kP

x(τ+y > (l − 1)k) < ∞.

Lemma 3.1.2. Let X be irreducible. Then π(x) = 1/Ex(τ+x ) is a stationary distribution.

Proof. Let π̃(y) :=
∑∞
n=0 P

z(Xn = y, τ+z > n) be the expected number of visits to y before returning to z. Now

π̃P (y) =
∑
x∈S

∑
n≥0

P z(Xn = x, τ+z > n)Px,y =
∑
x∈S

∑
n≥0

Zz(Xn = x,Xn+1 = y, τ+z > n)

=
∑
n≥1

P z(Xn = y, τ ≥ n) = π̃ − P z(X0 = y, τ+z ≥ n+ 1) +

∞∑
n=1

P z(Xn = y, τ+z = n) = π̃(y).

Hence π(x) = π̃(x)∑
y∈S π̃(y)

= π̃(x)

Ezτ+
z

is stationary. π(z) = 1
Ezτ+

z
will follow from the uniqueness we prove below.

We call an h : S → R harmonic if for all x ∈ S, h(x) =
∑
y Px,yh(y). We write h as a column vector and express

this as h = Ph.

Lemma 3.1.3. If X is irreducible and h is harmonic then h is already constant.

Proof. Take x0 := argmaxx∈Sh(x) and M = h(x0). Now h(x0) =
∑
y∈S Px,yh(y). If h(y) < h(x0) for any y for which

Px,y ̸= 0 this is a contradiction. Otherwise iterate.
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Corollary 3.1.4. If X is irreducible then the stationary distribution π is unique.

Proof. dim (ker (P− I)) = 1 by the previous lemma.

Definition 3.1.3. Let µ, ν be probability measures on S. Define ∥µ− ν∥ := maxA⊂S |µ(A)− ν(A)|

Lemma 3.1.5. ∥µ− ν∥ = 1
2

∑
x∈S |µ(x)− ν(x)|.

Proof. Let B := {x ∈ S : µ(x) ≥ ν(x)}. Then µ(A) − ν(A) ≤ µ(A ∩ B) − ν(A ∩ B). It follows that ∥µ− ν∥ =
1
2 (µ(B)− ν(B) + ν(Bc)− µ(Bc)) = 1

2

∑
x∈S |µ(x)− ν(x)|.

We can also write it as ∥µ− ν∥ =
∑
µ(x)>ν(x)(µ(x)− ν(x))

Theorem 3.1.6 (Convergence theorem). Let X be irreducible and aperiodic, πP = π. Then there exist α ∈ (0, 1), c > 0
such that for all n ≥ 0:

max
x
∥pn(x, ·)− π(·)∥ ≤ cαn

Proof. From irreducibility and aperiodicity we know there exists r > 0 : Prx,y > 0 for all x, y and even a β ∈ (0, 1)
such that ∀y ∈ S : Prx,y ≥ (1 − β)π(y). Define Q by Pr = (1 − β)Π + βQ where Π has rows given by π. If M is a
stochastic matrix then MΠ = Π = ΠM . We see by induction on k that

Pr(k+1) = PrkPr = (1− βk)ΠPr + (1− β)βkQkΠ+ βk+1Qk+1 = (1− βk+1)Π + βk+1Qk+1.

Hence for j < r we have Prk+j − Π = βk(QkPj − Π). Take the x-row on both sides and sum the absolute values of
the entries

∥prk+j(x, ·)− π(·)∥ =
∑
y∈S
|prk+j(x, y)− π(y)| ≤ βk.

Theorem 3.1.7 (Ergodic theorem for finite state Markov chains). If X is an irreducible Markov chain, µ a probability
measure on S and f : S → R then

1

n

n∑
k=1

f(Xk)
a.s.−→

∑
x∈S

π(x)f(x) =: Eπf.

Example 3.2. Taking f(y) = δx(y) the Ergodic theorem tells us that 1
n

∑n
k=1 δx(Xk)

a.s.−→ π(x).

Let d(n) = maxx ∥pn(x, ·)− π(·)∥ and d(n) = maxx,y ∥pn(x, ·)− pn(y, ·)∥. Then d(n) ≤ d(n) ≤ 2d(n). The second
inequality is trivial. For the first,

∥pn(x, ·)− π(·)∥ = max
A

∣∣∣∣∣∑
y

π(y) (pn(x,A)− pn(y,A))

∣∣∣∣∣ ≤∑
y

π(y)max
A
|pn(x,A)− pn(y,A)|

≤ max
y

max
A
|pn(x,A)− pn(y,A)| = max

y
∥pn(x, ·)− pn(y, ·)∥ .

Now take the max over x.

Lemma 3.1.8. d(n+m) ≤ d(n)d(m).

Definition 3.1.4 (Mixing time). We define tmix(ϵ) := min {n : d(n) < ϵ} and tmix := tmix(1/4)

Why do we use 1/4? Consider

d(ltmix) ≤ d(ltmix) ≤ d(tmix)
l ≤ (2d(tmix))

l ≤ 2−l.

Furthermore tmix(ϵ) ≤ tmix⌈log2(1/ϵ)⌉.

Lemma 3.1.9. Let P be a stochastic matrix. Then

• If λ is ein eigenvalue for P then |λ| ≤ 1.

• If P is irreducible then 1 has a unique eigenfunction.

• If P is irreducible and aperiodic then −1 is not an eigenvalue.

Let P be reversible with respect to π, i.e. π(x)p(x, y) = π(y)p(y, x). We define ⟨f, g⟩π :=
∑
x∈S f(x)g(x)π(x).
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Lemma 3.1.10. 1. (RS , ⟨·, ·⟩π) is an inner product space with an orthonormal basis consisting of eigenfunctions
fj corresponding to the real eigenvalues λj of P.

2. Pnx,y =
∑
j fj(x)fj(y)π(y)λ

n
j , hence Png =

∑
j ⟨g, fj⟩π fjλ

n
j

Proof. Let Ax,y :=
√

π(x)
π(y)Px,y. Then A is symmetric, hence has an ONB {ϕj} of eigenfunctions with real eigenvalues

λj . λ1 = 1 has eigenfunction ϕ1 =
√
π. Then A = D

1/2
π PD

−1/2
π where Dπ = diag(π). The fj := D

−1/2
π ϕj

are the eigenfunctions of P with eigenvalues λj . Indeed, Pfj = PD
−1/2
π ϕj = D

−1/2
π Aϕj = D

−1/2
π λjϕj = λjfj .

Furthermore ⟨fi, fj⟩π =
⟨
D

1/2
π fi, D

1/2
π fj

⟩
= ⟨ϕi, ϕj⟩ = δij . Hence δy =

∑
j ⟨δy, fj⟩π fj =

∑
j fj(y)π(y)fj , whence

Pnx,y = (Pnδy)(x) =
∑
j fj(y)π(y)fj(x)λ

n
j .

Now let’s look at the spectrum of P: 1 ≥ λ1 ≥ ... ≥ λ|S| ≥ −1 and let λ∗ := max {|λ| : λ ̸= 1 is an eigenvalue}. We
call 1− λ∗ the absolute spectral gap and trel := 1

1−λ∗
the relaxation time.

Remark. For the lazy chain 1
2 (I + P) all eigenvalues are ≥ 0.

Note that for any f we get that Pnf(x)→ Eπf from the convergence theorem.

Lemma 3.1.11. Varπ(Pnf) ≤ λ2n∗ Varπ(f).

For reversible, irreducible, aperiodic chains one can show that (trel − 1) log( 1
2ϵ ) ≤ tmix(ϵ) ≤ trel log( 1

ϵminy π(y)
).

Definition 3.1.5. A coupling of probability measures µ, ν on S is a pair of random variables (X,Y ) on S × S and
joint distribution with correct margins: P (X = x) = µ(x), P (Y = y) = ν(y).

Lemma 3.1.12. ∥µ− ν∥ = min {P (X ̸= Y ) : (X,Y ) is a coupling of µ, ν}

Proof. • “≤” µ(A)− ν(A) = P (X ∈ A)− P (Y ∈ A) ≤ P (X ∈ A, Y /∈ A) ≤ P (X ̸= Y ).

• “≥” We construct an optimal coupling: Let q(x, x) := µ(x) ∧ ν(x) and q(x, y) = 0 if either q(x, x) = µ(x) or
q(y, y) = ν(y) and q(x, y) = (µ(x)−ν(x))(ν(y)−µ(y))

1−
∑

z q(z,z)
otherwise. Then

min {P (X ̸= Y ) : (X,Y ) is a coupling of µ, ν} ≤ P (X ̸= Y )

=
∑
x

µ(x)−

 ∑
x:µ(x)>ν(x)

ν(x) +
∑

x:µ(x)<ν(x)

µ(x)

 =
∑

x:µ(x)>ν(x)

(µ(x)− ν(x)) = ∥µ− ν∥

Proof of Lemma 3.1.8. We know that maxx,y ∥pn(x, ·)− pn(y, ·)∥ = P (Xn ̸= Yn) for an optimal coupling (Xn, Yn)
with respect to pn and X0 = x, Y0 = y. Now pn+m(x,w) =

∑
z pn(x, z)pm(z, w) = E (pm(Xn, z)) and similarly

pn+m(y, w) = E(pm(Yn, w)). Then 1
2

∑
w |pn+m(x,w)− pn+m(y, w)| = 1

2

∑
w |E (pm(Xn, w)− pm(Yn, w))|. Hence

∥pn+m(x, ·)− pn+m(y, ·)∥ ≤ E

(
1

2

∑
w

|pm(Xn, w)− pm(Yn, w)|

)
≤ d(m)E(1{Xn ̸=Yn}) ≤ d(m)d(n)

because (Xn, Yn) was the optimal coupling.

Theorem 3.1.13. tmix(lazy n-cycle) ≤ n2, where the transition matrix for the n-cycle is given by P = (aij) where
aij =

1
21{|i−j|=1 mod n} and the transition matrix for the lazy n-cycle is 1

2 (I + P).

Proof. Use Xn, Yn coupled lazy walks on the n-cube. Before τ = min {n : Xn = Yn} let P (Xn+1 ̸= Xn, Yn+1 =
Yn) = P (Xn+1 = Xn, Yn+1 ̸= Yn) = 1/2 with equal probabilities to go left and right. Now Dn := Xn − Yn is a
simple symmetric random walk on {0, ..., n}. Then τ = min {t : Dt ∈ {0, n}}. After τ move Xn, Yn together. Then
k = Ek(D0) = Ek(Dτ ) = nP k(Dτ = n). Since (D2

n−n)n is also a martingale we get k2 = Ek(D2
0−0) = Ek(D2

τ −τ) =
n2P k(Dτ = n)− Ek(τ). Hence Ek(τ) = k(n− k) ≤ n2

4 for all k. Furthermore d(t) ≤ d(t) ≤ maxx,y P
x,y(Xt ̸= Yt) =

maxk P
k(Dτ > t) ≤ maxk E

k(τ)/t ≤ n2

4t . If t = n2 then d(n2) ≤ 1/4, whence the claim follows.

3.1.1 The symmetric group and card shufflings

Let S = SN be the symmetric group of [N ] = {1, .., n}. Shuffling cards is then the process of achieving a uniform
distribution on S. The idea now is to choose a random transposition and shuffle in that way. However, this is 2-periodic
thanks to the parity of permutations.
Instead, for τ a transposition, let

µ(id) =
1

N
, µ(τ) =

2

N2
,

We now choose two positions Ln, Rn uniformly from [N ] and swap at these positions: If Xn ∈ S then P (Xn+1 =
σ ◦ σ′ | Xn = σ′) = µ(σ) and P (X0 = id) = 1.
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Proposition 3.1.14. For the chain above, tmix ≤ 2
3π

2N2

Proof. Strategy: Choose a card Xn ∈ [N ] and position Yn ∈ [N ] independently and uniformly and swap cards at
position Yn and card Xn. Note that this gives us the same chain as above.
Start with two decks. Use the same (Xn), (Yn) for both decks. Let an be the number of cards at the same location in
both decks. There are three possibilities for the n-th step:

• If position of card Xn and the card at position Yn agree in both decks then an = an−1.

• If one is different and the other not then an = an−1 as well.

• If both card Xn at different position and card at position Yn are different then an − an−1 ∈ {1, 2, 3}.

Using the lemma below we get that d(n) ≤ P (Xn ̸= Yn) = P (τ > n) ≤ 1
nE(τ) ≤ π2N2

6n . Now set n = 2
3π

2N2.

Lemma 3.1.15. Let τ = min {n : an = N}. Then E(τ) ≤ π2

6 N
2

Proof. Decompose τ = τ1 + τ2 + ... + τN where τi is the first time that {an = i} after {an = i− 1}, that is τi =
inf {m : an+m ≥ i, τi−1 = n}. Then τ0 = 0 and jumps can occur. Given {an = i} then N − i cards are not aligned.

Hence τi+1 | an = i ∼ Geo
((

N−i
N

)2). Then E(τi+1 | an = i) =
(

N
N−i

)2
, whence E(τ) ≤

∑N−1
i=0

N2

(N−i)2 ≤
π2

6 N
2

3.1.2 Markov Chain Monte Carlo (MCMC)

Suppose you want to sample from a finite yet very complicated distribution.
Idea: Construct a Markov chain with its stationary distribution equal to the distribution we want to sample from.

Example 3.3 (Ising model on a finite graph). Let G = (V,E) be a finite graph and S = {−1, 1}V . Let σ ∈ S be a
configuration and σ(v) the spin at v ∈ V . Let H(σ) = −

∑
{v,w}∈E σ(v)σ(w). Define the Boltzmann distribution by

µ(σ) = 1
Z(β) exp(−βH(σ)) where Z(β) =

∑
σ∈S exp(−βH(σ)). Since S can be large already for small graphs G, it’s

very hard to compute Z(β).
We use Glauber dynamics:

• Choose sites uniformly iid

• Update state there subject to everything else staying fixed

Set

µ(σ(w) = 1 | σ(v), v ̸= w) =
exp(−β

∑
u:{u,w}∈E σ(u))

exp(−β
∑
u′:{u′,w}∈E σ(u)) + exp(−β

∑
u:{u,w}∈E −σ(u))

The Glauber chain is given by

Pσ,σ′ =
1

V

∑
w∈V

exp(−βσ′(w)
∑
u:{u,w}∈E σ

′(u))

exp(−β
∑
u′:{u′,w}∈E σ

′(u′)) + exp(β
∑
u:{u,w}∈E σ

′(u))
1{σ(v)=σ′(v) for w ̸=v}.

3.2 Markov chains on countable state spaces
Example 3.4 (Random walk on the lattice Zd). Let S = Zd and P (X0 = 0) = 1. Let P (Xn+1 = y | Xn = x) =
1
2d1{|x−y|=1}. Then (Xn)n≥0 is a Markov chain.
Let τ+ = inf {n ≥ 1 | Xn = 0}

Definition 3.2.1. A random walk is called recurrent if P (τ+ <∞) = 1, otherwise it is called transient.

Theorem 3.2.1 (Pólya). The random walk on Zd is recurrent iff d ≤ 2.

Define Green’s function G(x) =
∑∞
n=0 P (Xn = x), which is the expected number of visits to x.

Theorem 3.2.2. (Xn)n is recurrent iff G(0) =∞.

Proof. Using the Markov property,

P (Xn = 0) =
n∑
i=1

P (τ+ = i)P (Xn−i = 0).

Consider the generating functions GZ :=
∑∞
n=0 Z

nP (Xn = 0), FZ :=
∑∞
n=0 Z

nP (τ+ = n) for Z ∈ [0, 1) :

GZ = 1 +
∞∑
n=1

n∑
i=1

Zi+(n−i)P (τ+ = i)P (Xn−i = 0) = 1 +GZFZ ,

12



so that FZ = 1− 1
GZ

, whence

P (τ+ <∞) = F1 = lim
Z↑1

FZ = 1− 1

limZ↑1GZ
= 1− 1

G(0)
.

Pólya. For d = 1:

G(0) =
∑
n

P (Xn = 0) =
∑
n

(
2n

n

)(
1

2

)2n

=
∑
n

(2n)!

(n!)222n
∼
∑
n

(2n)2ne2n
√
2π2n

e2nn2n22n2πn
∼
∑
n

1√
πn

.

For d = 2: Consider Yn = (Un, Vn) := (An +Bn, An −Bn). The coordinates of Y are independent so that we get

P (X2n = 0) = P (Y2n = 0) = P (U2n = 0)P (V2n = 0) ∼ 1

πn
.

For d ≥ 3: Let’s look at the characteristic function ϕ(k) = E(eik·X). This is (2π)d-periodic, so we may consider
k ∈ [−π, π)d. Then

ϕ(k) =
∑
x∈Zd

eik·xP (X1 = x) =
1

2d
(eik1 + e−ik1 + ....+ eikd + e−ikd) =

1

d

d∑
j=1

cos(kj)

Now use the inversion formula: P (Xn = x) =
∫
[−π,π)d

1
(2π)d

e−ik·xϕ(k)ndk. For z ∈ [0, 1) :

GZ(0) :=
∞∑
n=0

ZnP (Xn = 0) =
∑
n

1

(2π)d

∫
Znϕ(k)ndk =

1

(2π)d

∫
1

1− zϕ(k)
dk.

Taking Z ↑ 1 we get G1(0) < ∞ iff
∫
[−π,π)d

1
1−ϕ(k)dk < ∞. Use 2

π2d ≤
∑d
j=1 k

2
j ≤ 1 − ϕ(k) ≤ 1

2d

∑d
j=1 k

2
j . Now the

integral is finite iff
∫
[−π,π)d ∥k∥

−2
2 dk <∞

Let α := E1(τ+0 ) = 1 + E0(τ+0 ). Then α = 1
2 + 1

2 (E
2(τ+0 ) + 1), whence α = 1 + α, i.e. α =∞.

Definition 3.2.2. A state x ∈ S is null recurrent if P x(τ+x < ∞) = 1 but Ex(τ+x ) = ∞. It is positive recurrent if
Ex(τ+x ) <∞.

3.3 Markov chains in continuous time
Let S be a countable state space.

Definition 3.3.1 (Continuous Markov chain). Let Ω be the set of S-valued cádlág functions on [0,∞) and Xt(ω) =
ω(t) for t ≥ 0, θs(ω)(t) = ω(s+ t) for s, t ≥ 0 and F the smallest σ-field such that ω 7→ ω(t) is measurable for all t ≥ 0.
Then a continuous time Markov chain is given by

• {P x : x ∈ S} a family of probability measures on (Ω,F)

• A right-continuous filtration (Ft)t≥0 such that Ft ⊂ F , Xt is adapted to Ft

such that P x(X0 = x) = 1 and Ex(g ◦ θs | Fs) = EXsg P x-a.s. for all bounded measurable g.

Definition 3.3.2 (Transition function). {pt(x, y) : t ≥ 0, x, y ∈ S} such that pt(x, y) ≥ 0 and
∑
y pt(x, y) = 1 as

well as limt↓0 pt(x, x) = p0(x, x) = 1 for all x, y and for which the Chapman-Kolmogoroff equation ps+t(x, y) =∑
z∈S ps(x, z)pt(z, y) holds, is called transition function.

Given a transition function, we can construct a consistent family of probability measures by

P x(Xt1 = x1, ..., Xtn = xn) = pt1(x, x1)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn).

Note that the Chapman-Kolmogoroff equations are necessary for this family to be consistent. We aim to get an
infinitesimal description of pt:

q(x, y) =
dpt
dt

(x, y) |t=0

Definition 3.3.3 (Q-matrix). {q(x, y) : x, y ∈ S} with q(x, y) ≥ 0 if x ̸= y and
∑
y∈S q(x, y) = 0 for all x ∈ S.

Further, set c(x) := −q(x, x) ≥ 0
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Example 3.5 (Poisson process). Let S = Z. After an exponentially distributed waiting time jump up by 1. The
Q-matrix is given by Q = (qxy := −λδxx + λδx,x+1)

Example 3.6. Take a discrete time Markov chain given by a stochastic matrix P . Define Xt as follows: Take a
sequence of iid Exp(1)-distributed random variables, wait at x for one of these, then jump according to P . The
Markov property holds for Ft := σ(Xu : u ≤ t) because the exponential distribution is memoryless.
Let T1, T2, ... be iid Exp(1). Let Nt := max

{
k :
∑k
i=1 Ti ≤ t

}
.

pt(x, y) := P x(Xt = y) =

∞∑
k=0

P x(Xt = y,Nt = k) =

∞∑
k=0

P x(Xt = y | Nt = k)P x(Nt = k) =

∞∑
k=0

pk(x, y)e
−t t

k

k!

hence Pt =
∑
e−t t

k

k!P
k and P0 = I.

Claim: Q = P − I.

d

dt
pt(x, y) |t=0=

d

dt
e−tP 0

x,y +
d

dt
e−t

∞∑
k=1

tk

k!
pk(x, y) |t=0= ... = Ix,y + Px,y

Lemma 3.3.1. Let S be finite and Q a Q-matrix. Then the transition function pt(x, y) is given by Pt = etQ.

Proof. 1. Pt is well-defined due to submultiplicativity of the operator norm.

2. Pt is a stochastic matrix.

3. Ps+t = Ps · Pt whence the Chapman-Kolmogoroff equation follows.

Example 3.7 (Birth- and death chain). (Xt) a Markov chain on S = N0. q(k, k− 1) = ρk, q(k, k− 1) = λk, q(k, k) =
−ρk − λk, e.g. for ρk = kρ, λk = kλ. In particular, c(k) need not be bounded.

Theorem 3.3.2. Let (Xt) be a Markov chain and pt(x, y) := P x(Xt = y). Then

1. {pt(x, y) : x, y ∈ S, t ≥ 0} is a transition function

2. It determines the measures {P x : x ∈ S} uniquely

Proof. 1. We first show limt↓0 pt(x, x) = 1. Let T := inf {t > 0 : Xt ̸= X0} > 0 P -a.s. for all x ∈ S because
the paths are right-continuous. Since pt(x, x) ≥ P x(T > t) for all t > 0, we get limt↓0 pt(x, x) = 1. For
Chapman-Kolmogoroff, use the Markov property with g = 1{Xt=y}:

Ex(P x(Xs+t = y | Fs)) = Ex(PXs(Xt = y)) = Ex(pt(Xs, y)),

so that ps+t(x, y) =
∑
z ps(x, z)pt(z, y)

2. By the Markov property:

P x(Xt1 = x1, Xt2 = x2, ..., Xtn = xn) = pt1(x, x1)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn)

This determines the finite dimensional marginals completely, hence also the process.

Definition 3.3.4. A state x ∈ S is absorbing if pt(x, x) = 1 for all t and instantaneous if c(x) =∞.

Heuristically, we have the Kolmogoroff backward equation d
dsps+t(x, y) =

∑
z∈S

d
dsps(x, z) |s=0 pt(z, y) as well as

the Kolmogoroff forward equation d
dtps+t(x, y) =

∑
z∈S ps(x, z)

d
dtpt(z, y) |t=0.

Lemma 3.3.3. 1. ∀t ≥ 0 ∀x ∈ S : pt(x, x) > 0

2. ∃t > 0 : pt(x, x) = 1⇒ ∀t > 0 : pt(x, x) = 1

3. t 7→ pt(x, y) is uniformly continuous. In particular |pt(x, y)− ps(x, y)| ≤ 1− p|t−s|(x, x)

Proof. 1. limt↓0 pt(x, x) = 1 so the claim is is clear for small t. Now use Chapman-Kolmogoroff.

2. ps+t(x, x) ≤ ps(x, x)pt(x, x) + (1− ps(x, x)) = 1 − ps(x, x)(1 − pt(x, x)) so that ps+t(x, x) = 1 ⇒ pt(x, x) = 1,
whence {t : pt(x, x) = 1} ⊃ [0, ϵ). Use Chapman-Kolmogoroff again.

3. Now write ps+t(x, y)−pt(x, y) = pt(x, y)(ps(x, x)−1)+
∑
z ̸=x ps(x, z)pt(z, y) =: T1+T2. |T1| ≤ 1−ps(x, x), |T2| ≤

1− ps(x, x). Since T1 ≤ 0, T2 ≥ 0, the claim follows.
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Theorem 3.3.4. Let (pt(x, y))x,y∈S,t>0 be a transition function. Then

1. c(x) = −q(x, x) = − d
dtpt(x, x) |t=0∈ [0,∞] exists and pt(x, x) ≥ e−c(x)t

2. c(x) <∞⇒ ∀y ̸= x : q(x, y) = d
dtpt(x, y) |t=0∈ [0,∞) exists and

∑
y q(x, y) ≤ 0

3. c(x) <∞ and
∑
y q(x, y) = 0 then ∀y : t 7→ pt(x, y) ∈ C1[0,∞) and d

dtpt(x, y) =
∑
z q(x, z)pt(z, y)

Proof. f(t) = − log pt(x, x) is continuous and subadditive.

1. In particular, using Fekete’s lemma, c(x) = limt↓0
f(t)
t = inft

f(t)
t exists and satisfies f(t) ≤ c(x)t

2. 1−pt(x, x) ≤ 1−e−c(x)t ≤ c(x)t so that
∑
y:y ̸=x pt(x, y)/t ≤ c(x) so that q(x, y) := lim supt↓0 pt(x, y)/t ≤ c(x) <

∞. We get ∀δ > 0∀n ∈ N : pnδ(x, y) ≥
∑n−1
k=0 p

k
δ (x, x)pδ(x, y)p(n−k−1)δ(y, y). Using pt(x, x) ≥ e−c(x)t we get:

pnδ(x, y)

nδ
≥ e−c(x)nδ pδ(x, y)

δ
inf

0≤s≤nδ
ps(y, y).

Choose n→∞, δ → 0 so that nδ → t: Then

pt(x, y)/t ≥ q(x, y)e−c(x)t inf
0≤s≤t

ps(y, y)

so that lim inft↓0 pt(x, y)/t ≥ q(x, y).

3. We have

1

s
(pt+s(x, y)− pt(x, y))−

∑
z

q(x, z)pt(z, y) =
∑
z

(
1

s
(ps(x, z)− p0(x, z))− q(x, z)

)
pt(z, y).

For any T ⊂ S, |T | <∞ and x ∈ T we get

∑
z ̸∈T

∣∣∣∣ps(x, z)s
− q(x, z)

∣∣∣∣ pt(z, y) ≤∑
z ̸∈T

ps(x, z)

s
+
∑
z ̸∈T

q(x, z) =
1

s

(
1−

∑
z∈T

ps(x, z)

)
−
∑
z∈T

q(x, z)
s↓0−→ −2

∑
z∈T

q(x, z)

The right-hand side→ 0 as T ↑ S because c(x) <∞ and
∑
y q(x, y) = 0, hence the right-derivative is continuous

and has the required form. Furthermore any continuous function with continuous right derivative is already
differentiable.

Let Q be a Q-matrix. Define the transition probability for a discrete time chain; if c(x) = 0, take p(x, y) := 1{x=y},
if c(x) > 0, take p(x, y) := q(x,y)

c(x) 1x ̸=y. Note that indeed p(x, y) ≥ 0 and
∑
y p(x, y) = 1. Consider the discrete time

Markov chain (Zn)n on S with this transition probability. Call it the embedded discrete time chain. Let τ0, τ1, ... be
random variables whose conditional distribution (given Z0, Z1, ...) is τk ∼ Exp(c(Zk)) and τk = 0 if c(Zk) = ∞. The
finite dimensional marginals are

P x(Z0 = x,Z1 = x1, ...., Zm = xm, τ0 > t0, ...., τm > tm) = p(x, x1)p(x1, x2) · · · p(xm−1, xm)e−c(x0)t0 · · · e−c(xm)tm .

Let N(t) = min {m : τ0 + ...+ τm > t}. Hence N(t) = 0 for an interval of length τ0, then N(t) = 1. Finally X̃t := ZNt

on {N(t) <∞}. X̃ has right-continuous paths, waits at x an Exp(c(x))-distributed time, then jumps to y with
probability p(x, y). The only trouble is jumping infinitely many times in a finite time.

Theorem 3.3.5. The following are equivalent:

1. The Kolmogorov Backward equation has a unique solution which is a transition function.

2. P (N(t) <∞) = 1 for all t ≥ 0.

3.
∑
n τn =∞ P -a.s.

4.
∑
n

1
c(Zn)

=∞ P -a.s.

Corollary 3.3.6. If either

1. supx∈S c(x) <∞, or

2. the embedded discrete-time chain is irreducible and recurrent,

then condition 4. holds in the above theorem.

Proof note. 1. ∃ϵ > 0∀x ∈ S : c(x) < 1
ϵ ⇒

1
c(x) > ϵ⇒

∑
n

1
c(Zn)

=∞.

2. Recurrence ⇒ ∃x : {Zn = x} infinitely often, so that 1
c(x) occurs infinitely often in the sum.
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4 Feller Processes
Let S be a compact or locally compact space. Let C0(S) := {f ∈ C(S) : f vanishes at ∞}. Note that if S is compact
then C0(S) = C(S). Endowing C0(S) with ∥f∥ := supx∈S |f(x)| makes C0(S) a seperable Banach space. Let
Ω = D[0,∞) = {f : [0,∞)→ S cádlág}. Let Xt(ω) = ω(t), (θs(ω))(t) = ω(s + t), F the σ-field that makes all
t 7→ ω(t) measurable.

Definition 4.0.1 (Feller process). A Feller process (Xt)t≥0 is given by

• {P x : x ∈ S} probability measures on (Ω,F)

• A right-continuous filtration (Ft)t≥0 to which X is adapted

such that P x(X0 = x) = 1 and ∀f ∈ C0(S), t ≥ 0 : x 7→ Exf(Xt) ∈ C0(S) as well as ∀g : Ω → R bounded and
measurable, x ∈ S: Ex (g ◦ θs | Fs) = EXsg P x-a.s.

Theorem 4.0.1 (Strong Markov Property). Let (Xt) be a Feller process and Y : [0,∞) × Ω → R be a bounded and
jointly measurable. Let τ be a stopping time with respect to (Ft). Then ∀x ∈ S :

Ex (Yτ ◦ θτ | Fτ ) = EXτ (Yτ ) P x-a.s. on {τ <∞}

Remark. There are only three ingredients needed:

• The Markov property

• Right-continuous paths

• y 7→ EyY is continuous for special Y .

Definition 4.0.2 (Transition semigroup). A probability semigroup is a family of continuous linear operators (Tt)t≥0

on C0(S) such that

1) T0 = id

2) limt↓0 Ttf = f , which we call strong continuity

3) Ts+t = TsTt, the semigroup property ; in particular TtTs = TsTt

4) Ttf ≥ 0 if f ≥ 0

5) Tt1 = 1 if S is compact, and otherwise ∃(fn)n ∈ C0(S)
N such that supn ∥fn∥ <∞ and Ttfn → 1 pointwise for all

t ≥ 0.

Claim ∥Ttf∥ ≤ ∥f∥ for all f ∈ C0(S)

Proof for S compact. Let g := ∥f∥−f ≥ 0 and g ∈ C0(S). Then Ttg = ∥f∥−Ttf ≥ 0 so that Ttf ≤ ∥f∥ pointwise.

Claim t 7→ Ttf is continuous on [0,∞).

Proof. Let tn ↓ t. Then

∥Ttnf − Ttf∥ ≤ ∥(Ttn−t − I) f∥

Example 4.1. • Let X be a Brownian motion, S = R. Then Ttf(x) := Ex (f(Xt)) defines a transition semigroup.

• For S countable, pt(x, y) a transition function, Ttf(x) :=
∑
y∈S pt(x, y)f(y). If S is finite, then (Tt)t is a

transition semigroup iff lim|x|→∞ pt(x, y) = 0 for all t > 0 and y ∈ Z.

Definition 4.0.3 (Resolvent). We write Uαf :=
∫∞
0
e−αtTtfdt for α > 0, f ∈ C0(S) and call it the resolvent associated

with the transition semigroup.

Clearly Uαf is a well-defined, linear operator with operator norm 1
α and limα→∞ αUαf = f .

Claim Uα − Uβ = (β − α)UαUβ for α, β > 0, known as the resolvent equation.

Proof.

UαUβ =

∫ ∞

0

e−αtTtUβfdt =

∫ ∞

0

e−αt
∫ ∞

0

e−βsTt+sfdsdt =

∫ ∞

0

Trf

∫ r

0

e−αt−β(r−t)dtdr =

∫ ∞

0

Trf
e−αr − e−βr

β − α
dr
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For S countable let Lf(x) :=
∑
y q(x, y)f(y) =

∑
y q(x, y) (f(y)− f(x)). Write D(L) for the domain of L and R(L)

for its range.

Definition 4.0.4. A probability generator L is a linear operator on C0(S) such that

1) D(L) is dense in C0(S)

2) f ∈ D(L), λ ≥ 0 then for g = f − λLf we have infS f ≥ infS g

3) For λ small enough we have R(I − λL) = C0(S)

4) For S compact we have 1 ∈ D(L) and L1 = 0. If S is locally compact then for λ sufficiently small there exist
fn ∈ D(L), gn := fn − λLfn such that supn ∥gn∥ <∞ and both fn, gn

n→∞−→ 1 pointwise.

Claim For f ∈ D(L), λ ≥ 0, g = f − λLf we have ∥f∥ ≤ ∥g∥.

Proof. We have infS g ≤ infS f ≤ supS f ≤ supS g by property 2.

Hence (I − λL)−1 exists and is a contraction for λ sufficiently small.

Example 4.2. • S = R and D(L) =
{
f ∈ C0(S), f ∈ C1

}
, Lf = f ′ is a generator.

• For S finite and q(x, y) a Q-matrix, Lf(x) =
∑
y q(x, y)f(y) is a probability generator.

Remark. Often L is second order differential operator. Consider the PDE ∂
∂tu(t, x) = Lu(t, x) where L acts only on

x with initial condition u(0, x) = f(x). Under some mild conditions, the solution is given by u(t, x) = Ttf(x).

Theorem 4.0.2. For any Feller process on S, Ttf(x) := Exf(Xt) defines a probability semigroup on C0(S).

Proof. 1), 4), 5) follow from construction. 3) uses the Markov property:

Tt+sf = Exf(Xs+t) = Ex (Ex (f(Xs+t) | Fs)) = Ex
(
EXsf(Xt)

)
= Ex (Ttf(Xs)) = TsTtf

For 2) note first that the pointwise convergence Ttf(x)
t↓0−→ f(x) follows from right-continuity of the paths and the

continuity of f . Now for the uniform continuity:
First, we obtain the pointwise resolvent equation from the pointwise continuity.
Second, let Uα : C0(S)→ C0(S). Now let R = R(Uα). This is independent of α: Let f ∈ R so that f = Uαg for some
g. Then Uβf = UβUαg = 1

α−β (Uβg − Uαg), hence f = (α− β)Uβ(Uαg − g). Now let f = Uαg. Then

Ttf =

∫ ∞

0

e−αsTs+tgds =

∫ ∞

t

e−α(r−t)Trgdr
t↓0−→ Uαg = f uniformly

Fourth, the contraction property implies limt↓0 |Ttf − f | = 0 for all f ∈ R. Finally, as for any linear subspace of a
Banach space the strong closure equals the weak closure and αUαf → f pointwise it follows that R = C0(S).

Theorem 4.0.3. Let (Tt)t≥0 be a probability semigroup. Then Lf = limt↓0
Ttf−f
t having the domain D(L) =

{f ∈ C0(S) : Lf is (strongly) convergent} is a probability generator. Moreover,

1. For all g ∈ C0(S), α > 0

f = αUαg iff
(
f ∈ D(L) and f − 1

α
Lf = g

)
2. If f ∈ D(L) then Ttf ∈ D(L), t 7→ Ttf is C1 and

d

dt
Ttf = TtLf = LTtf

Proof. Suppose that f = αUαg for g ∈ C0(S). Then

1

t
(Ttf − f) =

α

t
Tt

∫ ∞

0

e−αrTrgdr −
α

t

∫ ∞

0

e−αsTsgds =
α

t

∫ ∞

t

e−α(s−t)Tsgds−
α

t

∫ ∞

0

e−αsTsgds

=
α

t

(
eαt − 1

) ∫ ∞

t

e−αsTsgds−
α

t

∫ t

0

e−αsTsgds
t↓0−→ α2Uαg − αg = α(f − g) uniformly

This proves “⇒” in 1. as well as 3) in the definition of the probability generator. If αUαg ∈ D (L) then αUαg
α→∞−→ g,

henceD(L) is dense in C0(S), whence 1) in the definition follows. Now for t > 0, f ∈ D(L) and gt :=
(
1 + λ

t

)
f−λ

t Ttf =

f − λTtf−f
t we get limt↓0 gt = f − λLf and

(
1 + λ

t

)
infx f(x) ≥ λ

t infx Ttf(x) + infx gt(x) ≥ λ
t infx f(x) + infx gt(x).

Hence we get 2) in the definition.
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Now for “⇐” in 1. suppose that
(
I − 1

αL
)
f = g with f ∈ D(L). By “⇒” in 1. we get h := αUαg ⇒ h − 1

αLh = g.
Now since f − h ∈ D(L) we get ∥f − h∥ ≤ ∥g − g∥ = 0 whence f = h. 4) of the definition is clear if S is compact.
Otherwise suppose that (gn)n is a sequence in C0(S) and supn ∥gn∥ < ∞ as well as gn → 1, Ttgn → 1 pointwise.
Define fn ∈ D(L) by gn = (I − λL) fn, i.e. fn = αUαgn by 1. Since Ttgn → 1 pointwise, then fn → 1 pointwise. For
2.:

d

dt
Ttf = lim

s↓0

Ts+tf − Ttf
s

= lim
s↓0

Ts (Ttf)− Ttf
s

provided that any of the limits exist. The middle one does and equals TtLf , which is continuous in t. Then the right
one exists as well and equals LTtf .

Lemma 4.0.4. For f ∈ C0(S), t > 0, Lf = limt↓0
Ttf−f
t we have limn→∞

(
I + t

nL
)−n

f = Ttf .

Proof. We know
(
I − 1

αL
)−n

f = αnUnαf =
∫∞
0

αnsn−1

(n−1)! e
−αsTsfds. Hence

(
I − t

nL
)−n

f = E
(
T ξ1+...+ξn

n t
f
)

where
ξ1, ..., ξn are iid Exp(1)-distributed. Now if f ∈ D(L) then ∥Ttf − Tsf∥ ≤ ∥Lf∥ |t− s|. Therefore∥∥∥∥∥

(
I − t

n
L
)−n

f − Ttf

∥∥∥∥∥ ≤ t ∥Lf∥E
∣∣∣∣ξ1 + ...+ ξn

n
− 1

∣∣∣∣ n→∞−→ 0

Now both operators on the left-hand side are contractions, so that we can approximate all f ∈ C0(S).

For ϵ > 0 define Lϵ := L (I − ϵL)−1, which is well defined since R(I − ϵL) = C0(S) for ϵ > 0 sufficiently small.
Further f − ϵLf = g iff f = (I − ϵL)−1

g which implies ∥Lϵg∥ = ∥Lf∥ ≤ ∥f∥+∥g∥
ϵ ≤ 2

ϵ ∥g∥, so that Lϵ is also bounded.

Write Tϵ,t := etLϵ :=
∑
k
tkLk

ϵ

k! , which exists as strong limit.

Lemma 4.0.5. If L is a bounded operator then R(I − λL) = C0(S) for λ small enough.

Proof. For g find f with f − λLf = g by f =
∑
k λ

nLng which converges if λ ∥L∥ < 1.

Lemma 4.0.6. 1. For f ∈ C0(S) we have (I − ϵL)−1
f − ϵLϵf = f

2. Lϵ is a probability generator; the associated semigroup (Tϵ,t)t has Lϵ as its corresponding generator.

Proof. 1. (I − ϵL)−1
f − ϵL(I − ϵL)−1f = (I − ϵL) (I − ϵL)−1

f = f .

2. Indeed

• D(Lϵ) = C0(S)

• f = λLϵf = g implies that inf f ≥ inf g so that f − λ
(

1
ϵ (I − ϵL)

−1
f − 1

ϵ f
)

= g, i.e.
(
1 + λ

ϵ

)
f −

λ
ϵ (I − ϵL)

−1
f = g, or ϵ

ϵ+λ (I − ϵL)−1
f(x) + ϵ

ϵ+λg(x) = f(x). It follows λ
ϵ+λ infx f(x) +

ϵ
ϵ+λ infx g(x) ≤

λ
λ+ϵ infx (I − ϵL)

−1
f(x) + ϵ

ϵ+λ infx g(x) ≤ infx f(x)

• R (I − λLϵ) = C0(S) for λ > 0 small.

• If S is compact then Lϵ1 = L (I − ϵL)−1
1 but (I − ϵL)−1

1 = 1 because f − ϵLf = 1 is solved by f = 1
and Lϵ1 = L1 = 0.

Theorem 4.0.7. For f ∈ C0(S), Ttf := limϵ↓0 Tϵ,tf exists in the uniform sense on bounded t-intervals. It defines a
semigroup whose generator is L.

Proof. Step 1: Lϵ and Lδ commute: We know (I − ϵL)−1
(I − δL)−1

f = g iff f = g − (ϵ + δ)Lg + ϵδL2g which is
symmetric in ϵ, δ.

Step 2: We have (Tϵ,t − Tδ,t)f =
∫ t
0
d
dsTϵ,sTδ,t−sfds =

∫ t
0
Tϵ,sTδ,t−s (Lϵ − δL) fds, so that

∥(Tϵ,t − Tδ,t)f∥ ≤ t ∥Tϵ,sTδ,t−s (Lϵ − Lδ) f∥ ≤ t ∥(Lϵ − Lδ) f∥

Step 3: Let f ∈ D(L). Then (I − ϵL)−1
f − f = ϵ (I − ϵL)−1 Lf∥∥∥(I − ϵL)−1

f − f
∥∥∥ ≤ ϵ ∥Lf∥

In particular limϵ↓0 (I − ϵL)−1
f = f in the strong sense, so that limϵ↓0 Lϵf = Lf .
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Step 4: From Step 2, 3 we obtain that limϵ↓0 Tϵ,t exists in the strong sense on bounded t-intervals, using that C0(S)
is complete. The semigroup properties of Tϵ,t carry over to Tt:

∥T0f − f∥ ≤ ∥(T0 − Tϵ,0)f∥+ ∥Tϵ,0f − f∥
ϵ↓0−→ 0

and similarly for the other properties.

Step 5: Check that Tt has L as its generator: Let f ∈ D(L) Then

Ttf − f
ϵ↓0←− Tϵ,tf − f =

∫ t

0

d

ds
Tϵ,sfds =

∫ t

0

Tϵ,sLϵfds
ϵ↓0−→

∫ t

0

TsLϵfds,

whence limt↓0
Ttf−f
t = Lf so that L is an extension of the generator according to Theorem 4.0.3.

Corollary 4.0.8. limϵ↓0
∑∞
n=0

tn

n!

(
L (I − ϵL)−1

)n
= limn→∞

(
I − t

nL
)n

Theorem 4.0.9. If (Tt)t≥0 is a probability semigroup on C0(S), then there exists a Feller process (Xt) such that
Exf(Xt) = Ttf(x) for x ∈ S, f ∈ C0(S), t ≥ 0.

Proposition 4.0.10. Suppose (Mt)t∈Q+ is a uniformly bounded sub-/supermartingale. Then a.s. lims→t,s∈Q+ Ms

exists.

Proof. Use the upcrossing lemma.

Proof of theorem. Step 1: Define the finite dimensional distributions as follows: The one-dimensional marginals are
given by the theorem. For the two-dimensional marginals, take s ≤ t,

Exf(Xs)g(Xt) = Ex
(
f(Xs)E

Xs (g(Xt−s))
)
= Ts (f(·)Tt−sg(·)) (x).

Higher-dimensional marginals are constructed inductively.

Step 2: Apply the Kolmogorov consistency theorem for rational t ∈ Q+, which yields a process (Yt)t∈Q+ with Y0 = x
P x-a.s.

Step 3: Let 0 ≤ f ∈ C0(S).

e−αtTtUαf =

∫ ∞

t

e−αsTsfds ≤ Uαf

so that

Ex
(
e−αtUαf(Yt)

)
≤ Uαf(Y0).

Hence e−αtUαf(Yt) is a bounded supermartingale, so that by the proposition the left- and right limits of Uαf(Ys)
exist a.s. for all s ∈ [0,∞).

Step 4: Any α and f contained an exceptional set. Therefore we take α ∈ N and f in a countable dense subset of
C0(S). Thus we obtain the left- and right limits everywhere because αUαf → f and C0(S) is seperable.

Step 5: Define Xt := lims↓t,s∈Q+ Ys, which is cádlág.

• P x(X0 = x) = 1 by construction.

• For the Feller property, note x 7→ Exf(Xt) = Ttf(x) ∈ C0(S).

• For the Markov property proceed as for Brownian motion.

Claim: Feller processes are quasi-left continuous, i.e. (τn)n∈N are stopping times and τn ↑ τ then Xτn → Xτ on
{τ <∞}.

Definition 4.0.5 (Diffusion process). A diffusion process is a Feller process with continuous paths.

Definition 4.0.6. An operator L is closed if its graph {(f,Lf) : f ∈ D(L)} is a closed subset in C0(S)×C0(S). L is
the closure of L if its graph is graph (L) = graph(L).

Note that not every operator has a closure.

Lemma 4.0.11. 1. Assume that L satisfies 1), 2) in the definition of a probability generator. Then so does L.

2. If L satisfies 1), 2), 3) then L is closed.
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3. If L satisfies 2), 3) then R(I − λL) = C0(S) for all λ > 0.

4. If L is closed and satisfies 2) then R(I − λL) is a closed subset of C0(S).

Definition 4.0.7. D ⊂ D(L) is called core of L if L is the closure of L|D.

Theorem 4.0.12. Let (Xt) be a Feller process with generator L. For each f ∈ D(L),

Mt := f(Xt)−
∫ t

0

Lf(Xs)ds

is a (P x,F)-martingale for each x ∈ S.

Proof. Recall that d
dtTtf = TtLf = LTtf . Hence

Ex(Mt) = Ttf(x)−
∫ t

0

TsLf(x)ds = Ttf(x)−
∫ t

0

d

ds
Tsf(x)ds = f(x)

which is finite. For s < t we get

Ex (Mt | Fs) = Ex (f(Xt−s) ◦ θs | Fs)−
∫ s

0

Lf(Xu)du− Ex
(∫ t−s

0

Lf(Xu) ◦ θsdu | Fs
)

= EXsf(Xt−s)−
∫ s

0

Lf(Xu)du− EXs

(∫ t−s

0

Lf(Xu)du

)
= EXs (Mt−s)−

∫ s

0

Lf(Xu)du = f(Xs)−
∫ s

0

Lf(Xu)du =Ms

We know that if Xt is Brownian motion then it generates Lf = 1
2f

′′. If Yt = Xct for c > 0 then

lim
t↓0

Ex(f(Yt))− f(x)
t

=
c

2
f ′′(x)

Hence Lf = c
2f

′′ is the generator of time-changed Brownian motion.

4.1 Wright-Fisher Diffusion
Let there be N individuals with genotypes aa, aA,AA and total numbers N1 + N2 + N3 = N . The next generation
has (Ñ1, Ñ2, Ñ3) trinomially distributed individuals with parameters (1 − x)2, 2x(1 − x), x2 where x = N2+2N3

2N . Let
Xn be the proportion of As in the n-th generation. Write

LNf(x) = Exf(Xt)− f(x) =
2N∑
k=0

(
2N

k

)
xk(1− x)2N−k

(
f(

k

2N
)− f(x)

)
If f : [0, 1]→ R is C2 then

f(
k

2N
)− f(x) = f ′(x)

(
k

2N
− x
)
+

1

2
f ′′(x)

(
k

2N
− x
)2

+ o

((
k

2N
− x
)2
)

Hence limN→∞ 2NLNf(x) = 1
2 . Now consider Lf(x) = 1

2x(1− x)f
′′(x) for (at least) polynomials f in C([0, 1]).

Theorem 4.1.1. 1. The closure of L is a probability generator.

2. The Feller process (Xt) associated with L is a diffusion process.

3. For τ := inf {t ≥ 0 : Xt ∈ {0, 1}} we have

Ex(τ) = −2x log(x)− 2(1− x) log(1− x)

and

P x(Xτ = 1) = x, Ex
(∫ ∞

0

Xt(1−Xt)dt

)
= x(1− x)

Proof. 1. L maps polynomials of degree n to polynomials of degree ≤ n. We need to check properties 1)-4) of a
probability generator.

(a) Polynomials are dense in C([0, 1]).
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(b) Let f be a polynomial and f − λLf = g for some λ > 0. If f has a minimum in x0 ∈ [0, 1], clearly
Lf(x0) ≥ 0 so that minx f = f(x0) ≥ g(x0) ≥ minx g(x).

(c) Let g =
∑n
k=0 akx

k be some poynomial and consider f − λLf = g. Assume that f(x) =
∑n
k=0 bkx

k. Then
we get

bk −
λ

2
(k(k + 1)bk+1 − (k − 1)kbk) = ak

with bn+1 = 0. We can solve these equations recursively. Then R(I − λL) contains all polynomials and is
dense. Now use the Lemma.

(d) is obvious.

2. D(L) ⊃ C2[0, 1] because we can approximate every f ∈ C2[0, 1] by polynomials fn such that fn → f, f ′n →
f ′, f ′′n → f ′′. Using the previous theorem with f(X) = X, Lf = 0 we get that X is a (uniformly bounded)
Martingale, hence it has a limit X∞ P x-a.s. and ExXt = x, hence P x (Xτ = 1) = P x (X∞ = 1) = x. Now
using the same theorem again with f(x) = x(1 − x) we get Lf = −x(1 − x) and Zt = Xt(1 −Xt) +

∫ t
0
Xs(1 −

Xs)ds is a non-negative martingale. Therefore Z∞ := limt→∞ Zt exists a.s. and Z∞ ≥ 0 a.s. as well as
Ex
(∫∞

0
Xs(1−Xs)ds

)
= x(1− x).

Now we verify the continuity criterion. Let y ∈ [0, 1] be fixed and f(x) = (x − y)2 so that Lf = x(1 − x) and
(Xt−y)2−

∫ t
0
Xs(1−Xs)ds is a martingale. Then Ey (Xt − y)2 =

∫ t
0
EyXs(1−Xs)ds ≤ t

4 . Now f(x) = (x−y)4

so that Lf = 6x(1−x)(x−y)2. Then (Xt−y)4−6
∫ t
0
Xs(1−Xs)(Xs−y)2ds is a martingale and Ey (Xt − y)4 =

6
∫ t
0
EyXs(1−Xs)(Xs − y)2ds ≤ 3

2

∫ t
0
Ey (Xs − y)2 ds ≤ 3

4

(
t
4

)2. Now for s < t:

Ey (Xt −Xs)
4
= Ey

(
Ey
(
(Xt −Xs)

4 | Fs
))

= Ey
(
EXs

(
(Xt−s −X0)

4
))
≤ 3

16
(t− s)2

so that the paths are continuous.

3. Let f(x) = 2x log x+2(1−x) log(1−x). We want to show Exτ = −f(x). We have f ′′(x) = 2
x +

2
1−x , x ∈ (0, 1) so

that 1
2x(1−x)f

′′(x) = 1. Problem: f /∈ D(L) because otherwise f(Xt)−t would be a martingale in contradiction
to the martingale convergence theorem. Therefore consider fϵ ∈ C2[0, 1] such that fϵ(x) = f(x) for all x ∈ [ϵ, 1−ϵ]
and extend to [0, 1] such that fϵ ∈ C2. Now let τϵ := inf {t : Xt ∈ {ϵ, 1− ϵ}}. Then fϵ(Xt)−

∫ t
0
Lfϵ(Xs)ds is a

martingale, hence

f(Xτϵ∧τ )− (τϵ ∧ t)

is a P x-martingale for x ∈ [ϵ, 1− ϵ]. Hence Ex (f(Xτϵ))− Ex(τϵ) = f(x). Now ϵ ↓ 0.

4.2 Brownian motion on [0,∞)

1. Brownian motion with absorption τ = inf {s ≥ 0 : Bs = 0} and Xabs
t := Bt1τ>t. For f ∈ C0[0,∞) consider the

odd extension fo(x) = f(x)1x≥0 + (2f(0)− f(−x)) 1x<0. Then

Ex (fo(Bt)1τ≤t) = Ex (fo(−Bt)1τ≤t) =
1

2
Ex ((fo(Bt) + fo(−Bt)) 1τ≤t) = f(0)P (τ ≤ t)

For x ≥ 0: (
T abs
t f

)
(x) = Ex

(
f(Xabs

t )1τ≤t
)
+ Ex

(
f(Xabs

t )1τ>t
)
= f(0)P (τ ≤ t) + Ex(f(Bt)1τ>t)

Now fo ∈ C0(R) iff f(0) = 0. Furthermore f ′′0 (x) = f ′′(x)1x>0 − f ′′(x)1x<0 so we require f ′′(0) = 0. Hence
Labsf = 1

2f
′′ on D(Labs) = {f ∈ C0[0,∞) : f ′, f ′′ ∈ C0, f(0) = 0 = f ′′(0)}.

2. Brownian motion with reflection Xrefl
t := |Bt|. For f ∈ C0[0,∞) we set fe(x) = f(|x|). We have

T refl
t f(x) = Ex (f(|Bt|)) = Ex (fe(Bt))

Hence f ∈ D(Lrefl) iff fe ∈ D(Lrefl), and Lreflf = 1
2f

′′, D(Lrefl) = {f ∈ C0[0,∞) : f ′, f ′′ ∈ C0[0,∞), f ′(0) = 0}.

Remark. Consider Af = 1
2f

′′ and D(A) = {f ∈ C0[0,∞) : f ′, f ′′ ∈ C0[0,∞), f ′(0) = f ′′(0) = 0}. This is not a
generator because one generator cannot extend another generator.
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4.3 The Feynman-Kac formula
Consider the partial differential equation

∂tu(t, x) = Lu(t, x) + ξ(x) · u(t, x)
u(0, x) = f(x)

(1)

which is solved by u(t, x) = Ttf(x) = Exf(Xt) for ξ ≡ 0.

Theorem 4.3.1. Let (Xt) be a Feller process with (Tt),L and f ∈ D(L), ξ ∈ C0(S). Define

u(t, x) = Ex
(
f(Xt) exp

(∫ t

0

ξ(Xs)ds

))
Then u(t, ·) ∈ D(L) and u(t, x) solves (1).

Proof. The initial condition is clearly satisfied. Furthermore u(t, ·) ∈ C0(S) because it is a uniform limit of the
continuous function Ex

(
f(Xt) exp

(
t
n

∑n
i=1 ξ(Xit/n)

))
. Now we check the differential equation, letting I(s, t) :=∫ t

s
ξ(Xr)dr. Then we write

u(t+ ϵ, x)− u(t, x) = Ex (ξ1 + ξ2 + ξ3)

ξ1 = f(Xt+ϵ − f(Xt))e
I(0,t)

(
eI(t,t+ϵ) − 1

)
ξ2 = (f(Xt+ϵ)− f(Xt))e

I(0,t)

ξ3 = f(Xt)e
I(0,t)

(
eI(t,t+ϵ) − 1

)
We have, uniformly in x:

Ex |ξ1| ≤ Ex |f(Xt+ϵ)− f(Xt)| et∥ξ∥
(
eϵ∥ξ∥ − 1

)
= o(ϵ)

Exξ2 = Ex
(
f(Xt+ϵ)− f(Xt)e

I(0,t)
)
= Ex

(
Tϵf(Xt)− f(Xt)e

I(0,t)
)

lim
ϵ→0

u(t+ ϵ, x)− u(t, x)
ϵ

= ExLfeI(0,t) + Ex
(
f(Xt)ξ(Xt)e

I(0,t)
)

The right-hand side is continuous in t, s othat u is differential with respect to t. However, it is not in the desired form.
We condition therefore on Fϵ and then use the Markov property to obtain

u(t+ ϵ, x) = Ex
(
u(t,Xϵ)e

I(0,ϵ)
)

so that

u(t+ ϵ, x)− u(t, x) = Ex
(
u(t,Xϵ)

(
eI(0,ϵ) − 1

))
+ (Tϵu(t, x)− u(t, x))

Divide by ϵ and let ϵ → 0 and see that a) the limit on the left-hand side exists by an earlier calculation b) the limit
of the first term on the right-hand side is ξ(x)u(t, x) and c) the limit of the second term on the right-hand side also
exists and converges to Lu(t, x).

4.4 Parabolic Anderson model
Let L = ∆ on S = Zd or Rd and ξ(x) random. On Zd we let ∆f(x) =

∑
y:|y−x|=1 (f(y)− f(x)).

Theorem 4.4.1 (Two cities theorem). P (ξ < x) = 1 − x−α. Then there exist two Zd-valued processes Z1, Z2 such
that

u(t, Z1
t ) + u(t, Z2

t )∑
x u(t, x)

t→∞−→ 1

4.5 Lévy Processes
Definition 4.5.1. A Lévy-process is a Feller process with stationary independent increments.

Definition 4.5.2. A random variable Z is called infinitely divisible if for all n ∈ N there exist iid random variables
Z1,n, ..., Zn,n such that

∑n
i=1 Zi,n

d
= Z.

Equivalently, µ is infinitely divisible if for all n ∈ N there exists µn such that µ = (µn)
∗n.

Let ψ(n) = − logE
(
einZ

)
be the characteristic exponent. For ϕt(θ) = etψ(θ) we have ψ(θ) = d

dt |t=0 ϕt(θ) =

limn→∞ n
(
ϕ1/n(θ)− 1

)
.
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Lemma 4.5.1. For (ϕn) sequence of characteristic functions, ϕn(θ)→ 1 for all θ, the following are equivalent

1. limn→∞ ϕn(θ)
n = ϕ(θ) exists for all θ and is continuous in 0.

2. limn→∞ n (ϕn(θ)− 1) =: ψ(θ) exists for all θ and is continuous in 0.

If either of the above holds then ϕ(θ) = eψ(θ) is a characteristic function.

Corollary 4.5.2. 1. A characteristic function ϕ of an inifinitely divisible distribution fulfills 1. with ϕn = ϕ1/n so
that ϕ(θ) ̸= 0 for all θ. Thus there is a unique representation ϕ = eψ where ψ is continuous and ψ(0) = 0. In
particular, the ϕn are uniquely determined to be ϕn = eψ/n.

2. Under the assumptions of the Lemma, ϕr := erψ is a characteristic function.

3. Infinitely divisible distributions are closed under weak limits.

Proof. 1. Lots of complex analysis!

2. This follows from erψ = lim ern(ϕn−1) being continuous limit of characteristic functions to compount Poisson
distributions.

3. Indeed, if ϕ̃n is infinitely divisible and ϕ̃n → ϕ then apply 1. of the Lemma to (ϕ̃
1/n
n )n = ϕ̃n → ϕ. Use the

previous point of the corollary.

Theorem 4.5.3. A probability measure is infinitely divisible iff it is weakly approximable by compound Poisson dis-
tributions.

Proof. “⇐” follows from the above, since compound Poisson processes are infinitely divisible.
“⇒” If ϕ is infinitely divisible then ϕ = lim(ϕ1/n)n = lim en(ϕ

1/n−1).

Theorem 4.5.4 (Lévy-Khinchin formula). The law µ is infinitely divisible with characteristic exponent ψ if and only if
ψ(θ) = −iaθ+ 1

2σ
2θ2+

∫
R−0

(
1− eiθx + iθx1|x|≤1

)
π(dx) for a ∈ R, σ ≥ 0 and π on R−0 with

∫ (
|x|2 ∧ 1

)
π(dx) <∞.

Hence any inifinitely divisible distribution is characterised by the triplet (a, σ, π). π is called Lévy-measure.

Proof. “⇐” ϕ given by eψ of this form is a characteristic function. If ψ is of the given form, then so is ψ/n.
“⇒” Choose a sequence of compound Poisson distributions such that Pn

w−→ P with characteristic function

ϕn(θ) = eλn

∫
(eiθx−1)νn(dx) =: eψn(θ) → ϕ(θ) =: eψ(θ)

where ψn(θ) =
∫
gθ(x)λnνn(dx) + ianθ where an =

∫
x1|x|<1λnνn(dx). Does λnνn converge? Consider

ψn(θ) := ψn(θ)−
1

2

∫ 1

−1

ψn(s)ds

=

∫
eiθxλnνn(dx)− λn −

1

2

∫ θ+1

θ−1

∫
eisxλnνn(dx)ds+ λn

=

∫
eiθx

(
1−

(
1

2

∫ 1

−1

eisxds

)
λnνn(dx)

)
=

∫
eiθx

(
1− sin(x)

x

)
λnνn(dx)

Now using 1− sin(x)
x ≈ x2

6 for small x. Since ϕn → ϕ uniformly on compact intervals (by Lévy’s continuity theorem)
it follows that ψn → ψ uniformly on compact intervals and thus also ψn → ψ converges pointwise.
Furthermore, using ϕ(−θ) = ϕ(θ), i.e. Imψ being odd, as well as |ϕ(θ)| ≤ 1, i.e. Reψ ≤ 0, it follows that ψ(0) =

−1
2

∫ 1

−1
Reψ(s)ds ≥ 0 with equality iff Reψ ≡ 0 on [−1, 1]. But since

∣∣∫ eiθxP (dx)∣∣ = 1 for all |θ| ≤ 1 it follows that
suppP ⊂ a0(θ) +

2π
θ Z for all θ, hence P = δ0, so that (a, 0, 0) is a suitable triple. There, assume ψ(0) > 0. Then

ψn(0) > 0 for sufficiently large n, hence ψn(θ)/ψn(0) is characteristic function of ν̃n(dx) := λn

ψn(0)
h(x)νn(dx). Since

ψn → ψ, ν̃n
w−→ ν̃ with characteristic function ψ(θ)/ψ(0). Hence∫

gθ(x)λnνn(dx) ∼
∫
fθ(x)ν̃n(dx)→

∫
fθ(x)ν̃(dx)

where fθ(x) = ψ(0)gθ(x)
h(x) where f is bounded and continuous with fθ(0) = −3ψ(0)θ2. Since ψn → ψ, we also have

a := limn→∞ an existing so that

ψ(θ) = lim
n→∞

ψn(θ) = iaθ +

∫
fθ(x)ν̃(dx) = iaθ − 3ψ(0)ν̃({0})θ2 +

∫
gθ(x)π(dx)

where π(dx) := 1x ̸=0
ψ(0)
h(x) ν̃(dx) satisfies

∫
(1 ∧ x2)π(dx) <∞.
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From the definition of Lévy process we see that the law of Xt must be infinitely divisible. Define ψt(θ) =
− logE

(
eiθXt

)
for θ ∈ R, t ≥ 0. In particular, mψ1(θ) = ψm(θ) = nψm/n(θ) so that for t ∈ Q+ we have ψt(θ) = tψ1(θ).

This holds for all t ∈ R because the paths are right-continuous, so that every Lévy-process has E
(
eiθXt

)
= e−tψ(θ).

Theorem 4.5.5. Suppose a ∈ R, σ ≥ 0, π a measure on R − 0 such that
∫ (
|x|2 ∧ 1

)
π(dx) < ∞. Define ψ(θ) as in

the Lévy-Khinchin formula. Then there is a Lévy-process which satisfies E(eiθXt) = e−tψ(θ).

5 Spin Systems

Let V be a countable space, S = {0, 1}V . Note that S is compact in the product topology. We let c(x, η) ≥ 0 be a
uniformly bounded function V × S → R such that c(x, ·) is continuous for each x ∈ V . We let

ηx(z) =

{
η(z), z ̸= x
1− η(z), z = x

Aim: Define a Feller process such that at each time only one state is changed, e.g. η becomes ηx at rate c(x, η). We
consider Lf(η) =

∑
x∈V c(x, η) (f(ηx)− f(η)) defined onD =

{
f ∈ C(S) : |||f ||| :=

∑
x∈V supη∈S |f(ηx)− f(η)| <∞

}
.

Claim. If f ∈ D then f is Lipschitz continuous with respect to some norm that generates the product topology. Note
that the product topology is generated by dα(η, ξ) =

∑
x∈V α(x) |η(x)− ξ(x)| where α > 0 and

∑
x∈V α(x) <∞.

Proof. If f ∈ D then αf (x) := supη∈S |f(ηx)− f(η)| and f is Lipschitz with respect to the metric induced by αf .
Indeed, Letting I = {x ∈ V : ξ(x) ̸= η(x)} we obtain

|f(η)− f(ξ)| ≤
|I|∑
i=1

∣∣f(ξi)− f(ξ)i−1
∣∣

where ξ0 = η and
(
ξi
)
i∈N is a sequence of single changes. Then

|f(η)− f(ξ)| ≤
∑
x∈I

αf (x) = dαf
(ξ, η)

Claim. For all f ∈ D we have Lf ∈ C(S).

Proof. ∀ϵ > 0∃Nϵ > 0 such that

c(xi, η) |f(ηxi)− f(η)| ≤ αf (xi) < ϵ

for i ≥ Nϵ because |||f ||| < ϵ. Hence

|Lf(η)− Lf(ηxi)| < 2ϵ, i > Nϵ.

Let L be the closure of L. We need to check the conditions for the generator.

1) Use Stone-Weierstrass: D is an algebra of continuous functions that separate points on a compact space.

2) Suppose f ∈ D and λ ≥ 0, f − λLf = g. Since S is compact, we have a minimum η of f . Hence, using Lf(η) ≥ 0,

inf
ξ∈S

f(ξ) = f(η) ≥ g(η) ≥ inf
ξ∈S

g(ξ)

4) S is compact so that 1 ∈ C(S) and L1 ≡ 0.

3) Let ϵ := infu∈V,η∈S (c(u, η) + c(u, ηu)) and a(x, u) := supη∈S |c(x, ηu)− c(x, η)|. For α ∈ ℓ1(V ) we define Γα(u) :=∑
x∈V :x̸=u α(x)a(x, u), and we want to show that Γ is an operator on ℓ1(V ). Γ is well-defined if M :=

supx∈V
∑
u̸=x a(x, u) <∞ and then ∥Γ∥ =M . For f ∈ C(S) and x ∈ V we define ∆f (x) := supη∈S |f(ηx)− f(η)|

Lemma 5.0.1. Assume either f ∈ D or f continuous and c(x, ·) = 0 except for finitely many x. Then, if f − Lf =

g ∈ D,λ > 0, λM < 1+ λϵ then ∆f ≤ ((1− λϵ) I − λΓ)−1
∆g where the inverse is defined via ((1− λϵ) I − λΓ)−1

α =

1
1+λϵ

∑∞
k=0

(
λ

1+λϵ

)k
Γkα.

Theorem 5.0.2. Let M <∞. Then L is a probability generator and ∆Ttf ≤ e−ϵtetΓ∆f
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Proof. L satisfies properties 1),2),4) because L does so. For 3) take (Vn) to be an increasing sequence of finite subsets
Vn ⊂ V such that

∪
n Vn = V . Set Lnf(η) =

∑
x∈Vn

c(x, η) (f(ηx)− f(η)) for f ∈ D. Ln is a bounded operator, so
that R(I − λLn) = C(S) for all λ > 0. For a given g ∈ D, fn ∈ C(S) such that fn − λLnfn = g, Ln satisfies the
condition of the previous Lemma and for λ small we get λM < 1 + λϵ. Define gn = fn − λLfn ∈ R(I − λL). Set
K := supx∈V,η∈S c(x, η). Then

∥gn − g∥ = λ ∥(L − Ln) f∥ ≤ λL
∑
x/∈Vn

∆fn(x) ≤ λK
∑
x/∈Vn

((1 + λϵ) I − λL)−1
∆g(x)

Since ∆g ∈ ℓ1(S) the right-hand side goes to zero and gn → g. We conclude that g ∈ R(I − λL) ⊃ D and R(I − λL)
is dense in C(S). Again, this tells us that R(I − λL) is closed, hence equal to C(S).

5.1 Ergodicity of spin systems
Definition 5.1.1. µ is called stationary for a Feller process (Xt) if for all f ∈ C0(S), t ≥ 0:∫

Ttfdµ =

∫
fdµ

Equivalently, for all f ∈ core(L): ∫
Lfdµ = 0

Theorem 5.1.1. If S is compact, then I := {µ ∈ P(S) : µ is invariant for (Xt)t} ̸= ∅.

Definition 5.1.2 (Ergodicity). A spin system is ergodic if |I| = 1. Equivalently:

∀ν ∈ P(S) : νTt
w−→ µ

Example 5.1 (Voter model for Zd). Let c(x, η) = 1
2d

∑
y:|x−y|=1 1{η(y)̸=η(x)} and a(x, u) =

{
0, if |x− u| > 1
1
2d , if |x− u| = 1

so that M = 1, and the process exists. It is not ergodic, since δi(η) = 1 if η(x) = i for all x and 0 otherwise are both
invariant.

Theorem 5.1.2. If ϵ > M then X is ergodic.

Proof. Let η, ξ ∈ S and change η into ξ pointwise:

η0 = η, ηi = ηi−1
xi

so that ξ = limi→∞ ηi. Now let f ∈ C(S), so that

|f(η)− f(ξ)| ≤
∞∑
i=1

∣∣f(ηi)− f(ηi−1)
∣∣ ≤∑

x∈V

∆f (x)

By Theorem 5.0.2 we obtain that |||Ttf ||| ≤ e(M−ϵ)t|||f |||, so that

sup
η,ξ
|Ttf(η)− Ttf(η)| ≤ e(M−ϵ)t|||f |||

Letting µ ∈ I, ν ∈ P(S), f ∈ D, we obtain∣∣∣∣∫ fdµ−
∫
fd(νTt)

∣∣∣∣ = ∣∣∣∣∫
S×S

(Ttf(η)− Ttf(ξ)) (µ⊗ ν)(dηdξ)
∣∣∣∣ ≤ e(M−ϵ)t|||f ||| t→∞−→ 0

Now since D is dense in C(S), the claim follows.

Example 5.2 (Noisy voter model). c(x, η) =
∑
y p(x, y)1η(x)̸=η(y) + β1η(x)=0 + γ1η(x)=1 where β, γ ≥ 0.

Example 5.3 (Contact process). V graph of bounded degree, and write x ∼ y if x and y are neighbors. Set

c(x, η) =

{
1, if η(x) = 1
λ · |{y ∼ x : η(y) = 1}| , if η(x) = 0

Interpretation: x ∈ V individuals of a population, η(x) = 1 if x is infected and η(x) = 0 if x is healthy. δ0 is an
invariant measure. Infected people get healthy at rate 1 but infect their neighbors at rate λ > 0. Are there other
invariant measures?
No, if ϵ = infu,η (c(u, η) + c(u, ηu)) = 1 > λmaxdegree(V ) = supx

∑
u̸=x supη |c(x, η)− c(x, ηu)| =M .
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Example 5.4 (Stochastic Ising Model). V = Zd, β > 0 inverse temperature, c(x, η) = exp
(
−β
∑
y:y∼x(2η(x)− 1)(2η(y)− 1)

)
.

Interpretation: 2η(x)− 1 ∈ {−1, 1} are spins. Neighboring atoms prefer to align their spin values (in particular when
β is large, i.e. temperature low). We have ϵ = 2,M = 2de2dβ(1− e−2β). Feller process (ηt) is hence well-defined and
has a unique invariant measure if β is small enough. In fact, the following hold:

• For d = 1, it is ergodic for all β.

• For d ≥ 1 it is ergodic iff β < βc.

5.2 Attractive Spin Systems and Coupling

Definition 5.2.1. A coupling of (ηt) and (ξt) on S is a process (η̃t, ξ̃t) on S × S with η̃t
L
= ηt and ξ̃t

L
= ξt.

Lemma 5.2.1. Let (ηt) have rate c1(x, η) and (ξt) have rates c2(x, ξ). If η ≤ ξ implies c1(x, η) ≤ c2(x, ξ) for
η(x) = ξ(x) = 0 and c1(x, η) ≥ c2(x, ξ) for η(x) = ξ(x) = 1. Then there is a coupling such that

∀η ≤ ξ : P (η,ξ) (∀t ≥ 0 : ηt ≤ ξt) = 1

Proof. We give rates for (ηt, ξt)t on the space {(0, 0), (0, 1), (1, 1)}:

(0, 0)→
{

(1, 1), with rate c1(x, η)
(0, 1), with rate c2(x, ξ)− c1(x, η)

(0, 1)→
{

(0, 0), with rate c2(x, ξ)
(1, 1), with rate c1(x, η)

(1, 1)→
{

(0, 0), with rate c2(x, ξ)
(0, 1), with rate c1(x, η)− c2(x, ξ)

Definition 5.2.2 (Attractive spin system). A spin system is called attractive if

η ≤ ξ ⇒
{
c(x, η) ≤ c(x, ξ) if η(x) = ξ(x) = 0
c(x, η) ≥ c(x, ξ) if η(x) = ξ(x) = 1

(Noisy) voter models, contact processes and the stochastic Ising model are all attractive.

Corollary 5.2.2. For any attractive spin system there is a coupling of two copies (ηt, ξt) started in η ≤ ξ such that
P (η,ξ)(∀t : ηt ≤ ξt) = 1.

Proof. Lemma for c1 = c2.

Definition 5.2.3. Function f ∈ C(S) is called increasing if η ≤ ξ ⇒ f(η) ≤ f(ξ). Denote the set consisting of these
functions f by C↑(S). For µ, ν ∈ P(S) write µ ⪯ ν :⇔

∫
fdµ ≤

∫
fdν for all f ∈ C↑(s).

Lemma 5.2.3. Let (ηt) be an attractive spin system, and (Tt) its corresponding semi-group. Then

1. f ∈ C↑ ⇒ Ttf ∈ C↑

2. µ ⪯ ν ⇒ µTt ⪯ νTt

Proof. 1. Let η ≤ ξ. Then

Ttf(η) = Eηf(ηt) = E(η,ξ) (f1(νt, ξt)) ≤ E(η,ξ) (f2(ηt, ξt)) = Eξ(f(ηt)) = (Ttf)(ξ)

2. For f ∈ C↑ we have ∫
fdµ ≤

∫
fdν ⇒

∫
Ttfdµ ≤

∫
Ttfdν ⇔

∫
fd(µTt) ≤

∫
fd(νTt)

Theorem 5.2.4. Let (ηt) be an attractive spin system

1. δ0Ts ⪯ δ0Tt and δ1 > δ1 for s ≤ t.

2. ν := limt→∞ δ0Tt exists and is invariant
ν := limt→∞ δ1Tt exists and is invariant

3. ∀µ ∈ P(S)∀s ≥ 0 : δ0Ts ⪯ µTs ⪯ δ1Ts
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4. If ν := limk→∞ µTtk for tk ↑ ∞ exists then ν ⪯ ν ⪯ ν.

Proof. 1. δ0 ⪯ δ0Tr ⇒ δ0Tt ⪯ δ0Tr+t

2. For each tk ↑ ∞ δ0Ttk has a limit point, which are the same due to 1.

3. δ0 ⪯ µ ⪯ δ1 for all µ, hence also δ0Tt ⪯ µTt ⪯ δ1Tt

4. Follows from 3.

Corollary 5.2.5. An attractive spin system is ergodic iff ν = ν.

27


