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1 Basic Principles

Definition 1.0.1. Let 7' C R, and (92, F, P) a probability space. We call a family X = (X;);er of S-valued random
variables a stochastic process. m(X) = X; is the projection on the t-th coordinate.

X is a random variable on (ST, S7T).
Lemma 1.0.1. X is F — ST -measurable iff for allt € T: X; is F — S-measurable.

Definition 1.0.2. The law of the stochastic process X is the law of X on (ST, ST).
For a finite vector t = (t1,...,t,) € T™ let ©* = (my,, ..., m, ). This induces a probability measure P* = P o (r*)~!
on (S™,8™). We call {P?:t e T" n e N} the set of finite dimensional distributions (fdds) associated with P.

Questions:

1. Do the fdds uniquely determine P?
2. Given a family of fdds, (P?);, is there a measure P on (ST, ST) such that (P!); is associated with P?

Answers:

1. Yes: Let a = Ufcﬁ“T(ﬂt)’l(Sm). It’s an N-stable algebra of cylinder events. If two measures agree on a
M-stable generator a then they agree on o(a). Hence the fdds uniquely determine P, since ST is in fact
generated by a.

2. One necessary condition is compatibility of (P*)yj<00: Vi1 Cta C T, A€ Sltil: plt2l(Ax Slt2\ty = pltil(4).
For reasonable spaces, this is already sufficient.

Theorem 1.0.2 (Kolmogorov’s Extension Theorem). If S is a Polish space, then for any compatible family of fdds
there exists a measure P on (ST,8T) associated with the fdds.

Proof. Durrett, Theorems 2.1.14 and 2.1.15
See also: Dudley, Real analysis and probability, Theorem 12.1.2 O

1.1 Preview
Brownian Motion: A stochastic process (X¢);c[0,00) such that
1. Vt1 < ta: th — th NN(O,tQ — tl),
2.V <ty < ... <ty Xy, — Xt ..., Xy, — X¢, are independent,
3. the map t — X; is continuous almost surely,
is called Brownian Motion.

We will show Donsker’s invariance principle: Let (&), be iid with E(&) = 0, Var(¢,) =1 and S, = > 1, &.

Sinel d . . .
Then % — (Xt)te[o,l] where X; is Brownian motion.

Markov Chains: A family (X;); such that for s < t, E(X; | Fs) = E(X; | Xs) is called Markov Chain, where
Fs=0(Xy:u<s)



1.2 Continuous modifications of stochastic processes

So far we have found a probability measure P on (S7,S”). However, the event {sup,c; X; < ¢} is not an element of
ST. Neither is, in general, {w : t = X;(w) is continuous}.

Definition 1.2.1. Stochastic processes X,Y are stochastic equivalent if ¥Vt € T : P(X; =Y;) = 1. We then call Y a
modification of X.

Remark. If X,Y are stochastic equivalent then they have the same fdds.

Example 1.1. Let S = [0,1], T'= [0,1], w ~U([0,1]) and X;(w) = 1{u—¢}, Yi(w) = 0. X, Y are stochastic equivalent,
but sup, X; =1>0=sup,Y; and P(X; € C(T))=0# 1= P(Y; € C(T)).

Suppose for some continuous time process X we have a continuous modification Y, (i.e. Y has almost surely
continuous paths). Then Y lives on a bigger probability space (ST,8T, P) where C(T') € ST and P(Y € C(T)) = 1.
P is not very handy, so we would rather work on (C(T),F.) where F, = o(cylinder sets of C(T)) and P(A) :=
P(ANC(T)) for A € F,. If T is a bounded interval, then p(z,y) := sup,er |2(t) — y(t)| is a metric on C(T") and it
turns out that B(C(T)) = Fe.

Question: For which processes is there a continuous modification?
Theorem 1.2.1 (Kolmogorov’s continuity theorem). Let X be a stochastic process on (RO, B0 [f
Ja,b>03c < oo Vt,t+he[0,1]: E(|Xepn — X¢|*) < c|n|'
then there exists a continuous modification Y of X.
Proof. Exercise. O

Theorem 1.2.2. Let €(h),q(h) be increasing such that Y~ €(27") < oo > > 02 2"q(2™™). IfVt,t+h € [0,1] :
P(|X4n — Xi| > €(h)) < q(h) then a continuous modification exists.

Proof. Define t,,, = 57 forr =0..2" n>1and X" = X;,  + (t —tn,)( Xy, . — Xy, ) for t € [ty tnrq1]. Now
1

Zny= max |X/T - X]| =
te[tn,7‘7tn,r+l]

th+1,2r+1 - i(th+l,2r - th+1,2r+2)

1 1
< 5 ’th+1,2r+1 - th+1,27‘ + § ‘th+1,27‘+2 - th+1,2r+1|

Thus P (Z,,, > €(27")) < P (5 | X,
Now

- X,

n41,2r+1 n+1,2r > 6(2_n))+P (% }th+1,27-+2 - th+1,27~+1‘ > 6(2_n)) < 2Q(2_n)'

gn
P ( sup ’Xt"'H - Xt"’ > 6(2_")> =P (U {Zn,r > 6(2_")}> < ntlg(e—™)
telo,1] r—0

Since ), 2"q(27") < oo Borel-Cantelli implies that there is an A such that P(A) = 1 and Yw € A 3ng(w) Vn >
no(w) : p(X™, X" 1) < €(27™). In particular for m >n > ng : p(X", X™) <377 €(27F) — 0.

Thus for w € A, X™(w) is a Cauchy sequence and a limiting function Y (w) = lim, ., X™(w) exists.

It remains to show that Y is a modification of X. If t = ¢, , we are done. If t # t,, , for all n,r then there exists a
sequence ry, such that ¢, —tand 0 <t—t,, <27" Then P (|X;,  — Xi| > €t —tnyr,)) < qlt—tny,) < q27").
Borel-Cantelli tells us that Xy = — X; almost surely, and by continuity Y;, =~ — Y; almost surely. Therefore, since
X =Y the limiting points are the same: P(X; =Y;) = 1. O]

n,Tn n,rn?

Example 1.2. Let w ~U([0,1]) and X; = 1g5,,3. Then E(|X¢yp — X¢|*) = P(| X¢un — X¢| > 0) = h.
There are other criteria with (weaker) conditions which give weaker regularity properties

Definition 1.2.2. A process X is called stochastic continuous if Vi € T : Xyqp o9 X, in probability. It is LP-
continuous if Vt € T : Xyyp, h=9 X; in LP.

1.3 Processes with stationary independent increments

Definition 1.3.1. A process (X;):er has stationary independent increments if £(X; — X;) depends only on ¢ — s and
VO=ty <ty <..<tn: (Xy, — X, ,)i=1,. n are independent.

Example 1.3 (Poisson process on [0,00)). There are three different constructions:

e N;(w) as an increasing right-continuous step functions with jumps of size 1. Then Ny — N ~ Poi(A(t — s)) and
Ny = 0.

o (7i)ien ~ Exp()\) iid and Ny = [{k > 1: 71+ ... + 7% < t}|. The stationarity follows from the Markov property
of the exponential distribution.

e On any interval [i,4 + 1] place Poi(\) number of jump points uniformly distributed over the interval.



2 Brownian Motion

2.1 Multivariate Gaussian distributions

Definition 2.1.1. A vector X = (X1, ..., X,,) of R-valued random variables has a multivariate Gaussian distribution
if a - X is a univariate Gaussian for any a € R".

Remark. o If Xy,..., X, are independent Gaussians then (X, ..., X,,) is a multivariate Gaussian.

X1,...,X,) being Gaussian is much stronger than all X; being Gaussian.
(X1, g g j being

It does not require a density, e.g. (Z, Z) is a multivariate Gaussian, but it lives on AR C R? which is a nullset.
e If X is Gaussian then so is X A for any A € R"*™

e If X is Gaussian then its distribution is characterized by its mean and covariance matrix E(X), X = (Cov(X;, X;)): ;.
This follows from the represantation of its characteristic function.

Lemma 2.1.1. If X is Gaussian then X1, ..., X,, are independent iff they are uncorrelated.

Proof. If Cov(X;, X;) = 0;d;; then we can take Y = (Y1, ...,Y,,) independent Gaussians where £(Y) = £(X). Now
use the last point in the remark. O

Definition 2.1.2. A Gaussian process is a process such that all fdds are multivariate Gaussian.

2.2 Definition of Brownian Motion
Proposition 2.2.1. For (X;) the following are equivalent:
1. (X}) has stationary independent increments such that X ~ N(0,t)
2. (Xy) is a Gaussian process and E(X;) =0, Cov(Xs, X¢) = s At.
Proof. 1. = 2.: > apXe, =Y bi(Xy, — Xi,_,) for suitable by.

2. = 1.: For s < t: X; — X, is Gaussian with zero mean and Var(X,, X;) = EX? — 2EX,X; — EX? =t —s.
Furthermore for u < v < s <t: Cov(X, — Xy, Xt — Xs)=v—u—v+u=0
O

Definition 2.2.1. Standard Brownian motion is a stochastic process satisfying the conditions of the Proposition with
almost surely continuous paths.

Theorem 2.2.2. Standard Brownian motion exists on (C(T),BT) and is unique.

Proof. There exists a Gaussian process with Cov(Bs, B;) = s At because multivariate Gaussians form a compatible
family of fdds and they determine the process uniquely by Kolmogorov’s consistency theorem. Now

E((Xern — X1)*") = WP E(Z°%) < ch®
For k = 2 we satisfy Kolmogorov’s continuity theorem with a = 4,b = 1. O
Lemma 2.2.3. If (B;); is standard Brownian motion then so are
1. Biys — Bs
2. cBye2
3. Xy =tBi

Proof. Cov(X, Xs) = st(1/s A1/t) = s At with continuous paths on (0,00). To check continuity in 0, write
{w i limy o Xy =0} = (o1 Upsy {w: [Be] £1/mVt € QN (0,1/n)}. Now the right-hand side has the same prob-
ability as for By, and thus so does the left-hand side. O

Some further properties of Brownian motion

e Almost surely the paths are nowhere differentiable

Quadratic variation: Letting (m,) be a sequence of partitions of [0,t] with |m,| — 0, we can let (B;) :=
limy, 00 32 (5 wyem, (Bu — Bs)? which exists in L? (and a.s. if 30, |m,| < 00) and (By) =t as.

Almost surely the paths are monotone in no interval.

The set of local maxima is dense and countable.

Every local maximum is strict.



2.3 The Markov property

Let B be standard Brownian motion defined on (C([0, 00)), BI%>)) where BI%>) is the smallest o-algebra such that
the projections w — w(t) are measurable. Consider the family of measures { P*}_ _p where P” is the measure of z + B.
Write (X3); for Brownian motion starting in . In particular P*(Xo = x) = 1.

Proposition 2.3.1. IfY is a bounded random variable then x — E*Y is measurable.
Proposition 2.3.2 (Monotone class theorem). Let Q2 € P be a w-system and H a linear space with
1.AeP=1a€H
2. X,, € H bounded, X,, T X, then X € H
Then {X : X is bounded and o(P)-measurable} C H.

Proof of 2.3.2. From H linear and 2. it follows that G = {A:14 € H} D P is a Dynkin system. Since H contains all
simple functions we win. O

Lemma 2.3.3. Let f(x,y) be a bounded measurable function, X G-measurable and Y I G. Then E(f(X,Y) | G) =
9(X) almost surely where g(x) = Ef(x,Y).

Proof of 2.3.3. Exercise. O

Proof of 2.3.1. Call Y special if Y(w) =[]/ _; f(w(ty,)) for 0 < t; < ... < ¢, and f,, € Co(R). Let py(z,y) the
density of a NV (z,t) random variable. If Y is special then E*Y = E*[[" _| fm(Xy,,) = E* 1 _; fm(z + By,,). We
show continuity in « by induction on n. For n = 1:

Efi(z + By,) =/fl(x+y)pt1(07y)dy=/fl(Z)ptl(x,Z)dz

which is continuous in x. For n > 2, using Lemma 2.3.3 and independent increments yields

where h(u) = Ef,(u+ By, —+,_,). Now extend to Y € Co(R) using the monotone class theorem. O

Definition 2.3.1. (F;)ier is called a filtration if F; is a o-field such that Fy C F; for any s < t. It is called
right-continuous if F; = (5, Fs.

For Brownian motion a natural candidate for a filtration is
F? = {smallest 0 — algebra such that w — w(s) are measurable for s € [0,¢]}. However, this is not right-continuous.
Therefore, define F; = (., FO.
Now let (65)sec[0,00) be the time shift defined by 6w (t) = w(s +t). Note that X;(w,) = X¢4s(w).

Theorem 2.3.4 (Markov property for Brownian motion). Let Y be a bounded random wvariable. Then for all x €
R,s>0:

E*(Y ofy | Fs) = EXY := EYY |,_x,
Proof. 1t suffices to show that E(Y 0 6s14) = E*(EX:Y1,) for s >0, Y bounded and A € F.

1. Choose first Y special and A finite dimensional. Let 0 <71 < ... <71y < s+ h <s+t; < s+ty <..<s+1,.
Let ¢(y,h) := EY f1(X¢,—n) - fu(Xe,—n)-

2. ¢ is jointly continuous in (y,h) € R x [0,¢1) and E*(Y 00,14) = E*(¢(Xsyn,h)14).
For k =n =1 we have ¢(y, h) = [ dzpy, —n(y, z) f1(z) and
E*(Y 00s14) = E*(fi(w(t + 8)l{wir)eay) = /A dup,., (:c,u)/ dvpsyh—r, (u,v) / dz f1(2)pt,—n(v, 2)
1 R R
= E"(¢(Xsyn, h)1a)
which is what we wanted to show for n = k = 1. Now do induction on &, n.

3. Apply the Dynkin lemma to P = {ﬁnite dimensional subsets of f£+,L/2} and £ = {A € ‘7:(’)+h/2 2. holds}

S
4. Letting h | 0 in 2. we use the following properties

e The paths of X are right-continuous



e ¢ is jointly continuous
* ¢(y,0) = E*Y

to get 1. for the special Y’s.

5. To go from special Y to general bounded Y we apply the monotone class theorem to P = {finite dimensional sets} ,
H = {bounded random variables for which 1. holds}.

O

Remark.

e We have used only the right-continuity of the paths.

o pits(z,y) = [ dzpi(x, 2)ps(2z,y), which is known as the semi-group property.
Proposition 2.3.5. IfY is a bounded random variable and x € R then E*(Y | Fs) = E*(Y | F?).
Proof. First let Y be special. Write Y (w) = Y1(w)(Y2 0 05)(w) with Yi(w) = [[,..;, <5 fm(w(tn)) and Yo(w) =
[Ln.t,, s f(W(tm — 5)). Then using Markov property:

E*(Y | Fs) = V1E* (Y00, | Fo) = Y1 E**Y,

So E®(Y | Fs) is F2-measurable. Dynkin lemma and Monotone class theorem to win. O
Corollary 2.3.6 (Blumenthal 0-1 law). If A € Fy then P*(A) € {0,1} for each x € R.
Proof. Let A € Fo. Then 14 = E%(14 | Fo) = E*(1a | FJ) is constant almost surely. O

Let 750 = inf {t : X; > 0} and 79 = inf {¢ > 0: X; = 0}. Then P°(r-¢ = 0) = P%(79 = 0) = 1. We know that
P10 <t) > P%(X; > 0) = 1/2. Now use the Blumenthal 0-1 law.
Furthermore we also get 7o = 0 P%-almost surely. Now use continuous paths to conclude that P%(my = 0) = 1.

2.4 The Strong Markov Property

Let (2, F) be a measurable space and let (F;); be a right-continuous filtration.

Definition 2.4.1. A random variable 7 :  — [0, 0] is called a stopping time with respect to F; if {r <t} € F; for
all t < oo.

Lemma 2.4.1. 7 is a stopping time iff {T <t} € F; for all t > 0. Note that right-continuity is necessary for this.
Proposition 2.4.2. Let G be an open set. Then 7 = inf {t: X; € G} is a stopping time.

Proof. {1 <t} =Ugs. {Xs € G} € Fr. O
Lemma 2.4.3. If (1,,)n is a sequence of stopping times, then so are inf 7,,, sup 7, liminf 7,,, limsup 7,,.
Proposition 2.4.4. If G is a closed set then ¢ is also a stopping time for Brownian motion.

Proof. For every n let G,, = {z:d(z,G) <1/n} and 7, = 7¢,. Clearly sup7, < 7¢. The converse remains as a
maybe-not-so-easy exercise. O

Definition 2.4.2. Let 7 be a stopping time. Define F, := {A :Vt: An{r <t} € F;}.
e F. is a o-algebra.
e T is F;-measurable
o If 7, | 7 then F; =, F~,-
o If ;; <7 then F, C Fr,.
Proposition 2.4.5. If (Z;) is adapted to (F;) and Z; has right-continuous paths then Z,;1,<o is Fr-measurable.

Proof. e First assume that 7 takes on only countably many values t1, to, .... Since Z is adapted {Z,; < a}n{r <t} =
Uk:tk<t {r=t 2y, <aleF

e Now assume 7 < c0. Now we can approximate 7 by 7, := EtLif 22 <7 < Bt Now {7, <t} = {r < k/2"} €
for 2% <t< % Moreover, 7, | 7. Every Z. is F; -measurable and therefore Z, is F, -measurable and
therefore also JF,-measurable because both Z, (F;); are right-continuous.



e For arbitrary 7, Z;apn is Fran-measurable so that Z;n,1(; <oy and Z; 1, <} are Fr-measurable too.
O

Theorem 2.4.6 (Strong Markov property for Brownian motion). Suppose Ys(w) is bounded and jointly measurable
on [0,00) X Q and that T is a stopping time. Then for all x € R:

E*(Yy 00, | Fr)=EXY, = VY, |i—ry—x,
P?-almost surely on {T < oo}. In particular
E*(Yr 00, 1rco0) = E*(EX" (Y7)lrcoo)
Proof idea. e If 7 takes on countably many values t1, t3, ... we condition on 7 = t; and apply the Markov property.

e General 7 we can approximate with a sequence 7, | 7 where each 7,, takes on countably many values.

e Use special Y'’s and generalize via the monotone class theorem.

For a first application we can look at the zeros of Brownian motion: Z(w) = {¢: w(t) = 0}. Then
ETA(Z) = E/ Lydt = / Pt € Z)dt =0
0 0

Hence A(Z) = 0 P*-almost surely.
Proposition 2.4.7. Z is almost surely perfect, hence uncountable.

Proof. We show that any point is an accumulation point. Let a > 0,7, = inf{t >a: X; =0}. Let Y = 14 for
A = {w : w(ty,) = 0 for some sequence ¢, | 0}. ThenYof, =14, for A, = {w: w(t,) = 0 for some sequence &, | 74}.
Then

E*(Y o0, | F.,)=FE*=Y =EY =1

Hence P*(A,) = E*(E*(Y 00,, | F+,)) = 1. Hence for all a, 7, is a limit point in Z from the right. All other elements
of Z are accumulation points from the left. [

As another application we can look at

Theorem 2.4.8 (Reflection principle). Let M; := maxs<¢ X5, 0 < b < a. Then P°(M; > a, X; < b) = P°(X; > 2a—b)
for allt > 0.

Proof. Let 7 :=inf {t: Xy = a}. Let Yy = 11— s)>20—b—lw(t—s)<b- Weget E¥Y, = P*(X;_ o > 2a—b)—P*(X;_s <b).
In particular E4Y; = 0. On {r < t}, 0 = EX*Y, and

0=E"Y,=E (EXY,;1,;) = E° (Y; 00,1, ;) = P°(X; > 2a — b,7 < t) — P°(X; < b,7 <t)
= PY(X; > 2a —b) — PY(X; < b,M; > a)

O
Corollary 2.4.9. Under P°, M; and |X,| have the same distribution.
Proof. Using the reflection principle, we get
PY(M; > a) = P°(M; > a, Xy > a) + P*(M; > a, X; < a) = P°(X; > a) + P°(X; > a) = P*(|X¢| > a).
O
Corollary 2.4.10. Let 1o = inf{t: X; = 0}. Then P*(19 <t) = Lof ‘213 e~ /2% g,
Proof.
P*(ry < t) = Pl*l(7y < t) = PI¥I(X, < 0 for some s < t) = P°(X, > |z| for some s < t)
= PO(M, > |a) = 2P°(X, > |a]) = 2/pt(0,y)dy
||
Substituting y = || \/t/7 gives the desired result. O



2.5 The Skorohod Embedding
Definition 2.5.1. M = (M,), is called submartingale if for each t¢:
e M; is F;-measurable,
e M, € L' and
o E(M; | Fs) < M forall s <t
We call M supermartingale if —M is a submartingale and martingale if it is a super- as well as a submartingale.

Theorem 2.5.1 (Martingale convergence). If M is a right-continuous submartingale bounded in L' then My, :=
N—o00

limy M, exists and is finite a.s. If M is uniformly integrable, that is sup, E(|M,|,|M;| > N) —= 0, then convergence
is also in L.

Remark. If M is bounded in L? then M is uniformly integrable.

Theorem 2.5.2 (Stopping time theorem). Let M be a right-continuous martingale, o < 7 a stopping time. If either
T is bounded or M is uniformly integrable then E(M, | F5) = M.

Example 2.1. Brownian motion B as well as B? — t are martingales.
Proposition 2.5.3. Let 7 be a stopping time such that ET < co. Then EB, =0, EB? = ET
Proof. o B2

2 \n — (T Am) is a martingale in n by the stopping time theorem.

e EB?

TAN

= E(r An) < ET < co. Hence E(B?) < ET < 0o by Fatou.

e B_,, is also a martingale in n and is uniformly integrable because it’s bounded in L? by the above. Hence
E(B;nn) = 0= E(B,) by stopping time theorem and L' convergence from martingale convergence theorem.

e E(t An)=E(B2,,)=FE (E(B: | Fran)?) < EB? by Jensen’s inequality. Now use monotone convergence.
O

Let Y be an R-valued random variable. We can ask if there is a stopping time 7 such that E7 < oo and
L(B,) = L(Y). By the proposition we know that EY = 0, EY? < co are necessary conditions. It turns out that they
are already sufficient.

Example 2.2. Let Y take only two values a,b. Then the obvious choice is 7 = 7(4y. Since EB, = 0 and there is
only one distribution on {a,b} with mean 0 it does the job. This is the only such stopping time with finite mean. If
o is another one then o > 7 but Eoc = ET = EY?2.

Theorem 2.5.4 (Skorohod embedding). Let B be standard Brownian motion, Y a random variable with EY =
0, EY? < co. Then there exists a stopping time T with ET < oo such that L(B,) = L(Y).

Note that given v < u < w there is a unique distribution on {v,w} with mean u.

Proof (Dubin). Consider a sequence of finite subsets of R: Sy =0, S; = {0} ={E(Y)}, Se={E(Y |Y <0),EY |Y >0)} =:
{a,b}, Ss={EY |Y <a),E(Y |a<Y <0),EY |0<Y <)),E(Y |b<Y)}, and so on.
More formally: Given S, ...,S, we let F,, = o ({x <Y <y, for z,y consecutive points of T}, := ngn Sk U {j:oo}})
and Sp+1 = supp(E(Y | F,,)) Without loss of generality assume Y takes values in F' = supp(Y). Let 7o = 0 and
Tn = H’lln{t > Tp—1 : Bt c Sn+1}.
(1) limy 0o E(Y | Fr) =Y ass.
The martingale convergence theorem applied to M, := E(Y | F,,) gives us an a.s. limit E(Y | o(U,, F»)). Thus

we need to show that Y is measurable with respect to o(lJ,, F»). It suffices to show that F' C |J, Sk. Suppose
u € F'\|J, Sk. Choose sequences (z,,), (yn) of consecutive points in | J,,, Sk U{£oo} such that =, < u <y, for
all n. Then =, |,y, T and limz, =r <u <y =limy,. But S,;1 2 EY |z, <Y <y,) - EY |z <Y <y).
Hence we have P(z <Y < y) = 0, otherwise there would be S, € (z,y) for some m sufficiently large. But we
assumed P(z <Y < y) > 0 as we took u € F.

(2) Et, < oo for all n by induction on n.
(] E(TQ) =0
e Er,_; <ooando:=inf{t| B, € S,11}. By the strong Markov property E(r, —7n_1 | Fr, ) = EPm-10.

Hence E(7, — Th—1) = E(EB’"H1 o). Now Yu € S, Jv,w € S,41 consecutive : v < u < w hence the hitting
time of this subset is finite.

(3) B;, and E(Y | F,) have the same distribution, once more by induction on n.



° BTOZOZE(Y):E(YI}—O)

e (B;, | Br,_, =u) £ (E(Y | Fo) | E(Y | Fr) =u). Letv=sup{s € Spt1:s <u}, w=inf{s € S,41:5>u}.
On both sides it is the unique distribution concentrated on {v, w}.

(4) Let’s put everything together. Using (2), (3) and Jensen, we get E, = EBZ = E (E(Y | F,)?) < EY? < .
So the monotone limit 7 := lim,, 7,, exists and is finite a.s. with ET < co. Taking the limit n — oo in (3) and
combining it with (1) we win.

O
Corollary 2.5.5. Let (Y;); be iid, E(Y;) =0, E(Y?) =1. Let S, = >, Y;. Then there exist iid stopping times (7;);
such that ET; =1 and (S1, 52, ...) £ (Bryy Bryfrgy ooe)-
Proof. Construct sequences (Bj), (1;) such that Bf = B, 7y such that BL £Y;. Then B} = B} ., — B, is Brownian
motion and is independent of F,,. Choose 72 such that B?.Q £ Y5. If the same construction is used then 7 £ 2. Now
71, B;, are ., -measurable, hence (71, BL ) and (72, B2)) are independent so that 71, 72 are iid and (B}, B2) £ (Y1, Ya).
Then (S1,S2) £ (Br,, By, +r,). Tterate. O

As a consequence % £ BT”% If we had S,,/v/n £ Bi (s 4..4r,) then we would get the Central Limit Theorem.

Theorem 2.5.6. Let (Y;) as above. There exists a triangular array {7, : 1 < i < n} of stopping times such that:
1. Brp,=1

2. V1 Tipn,..., Tn,n are independent

3. Vn (% 1<k< n) £ (Bﬁ,“...wm 1<k< n)
Proof. o BI':= \/ﬁBt/n is Brownian motion.

e Apply Corollary 5.5 to B™ to get 1 pn, ..., Ton

e Using Corollary 5.5 once more we get

(jli : 1§k§n) £ (Bf1 - /v/n 1 Skﬁn) £ (BTL,L+...+T,€_” :1§k§n).
n e \n —r R

O

This implies the CLT: S, /n £ B;, . +..47,.,./n. By the LLN: L+ o+ Tom) L 150 using continuity of the

paths it follows that % — By ~N(0,1).

Given a discrete time process (Yj) there are two ways to construct a continuous time process (Y;):
1. Linear interpolation (Y});e[o,1] is a random function in (C[0, 1], p) where p is the sup-metric.

2. We could also work on D[0,1] := {f : [0,1] — R | f is right-continuous with limits from the left} with the sup-
metric p.

We use the second option.
Theorem 2.5.7 (Donsker’s invariance principle). Let (Y;) be iid, EY; = 0,EY? = 1,5, = >} Y; and Z]' :=
Simt)/ v/, t € [0,1]. Then Z™ —% B in (D[0,1], p)
Proof. Take {7k}, ), from the previous theorem and let 17" := w and V" := By for t € [0,1]. Then
(VM) £ (Z): for all n. We now show that V;" L, B,. For €,5 > 0

P(p(V",B) >¢) <P (sgp(Tt" —t) > 5) +P <| Sli|p<5 |Bs — B| > €>

As 6 | 0 the second term converges to 0. Now let 71,7, ... be iid with the same distribution as the 7; ;. Then

1 —k 1 k
sup |[T{" —t| < — + sup Tint o & Tom £ 4 sup = nte e 1’
¢ N o<k<n n N o<k<n T k
1 v o+
<Xy cow M_1‘+ sup M_l‘
n k k k>en k

where the second term is a.s. bounded and the last term converges to 0 a.s. It follows that sup,co 1 17" — ¢ 0. O



Corollary 2.5.8. Suppose ¢ : D[0,1] - R, P(B € A) = 1 for A C D[0,1] and ¢ is continuous on A. Then
oZ") = 6(B).
Example 2.3.

e o(f) = f(1) gives us the CLT.

L
= |

o (]5(f) = maXp<t<1 f(t) Then w i) maXp<t<i Bt Bl|

e etc.

3 Markov Chains

3.1 Markov Chains with finite state space in discrete time

A homogeneous Markov chain (X, )nen on a finite state space S is given by an initial distribution p on S and a
stochastic matrix P, i.e. P has dimension |S| x |S| with entries > 0 and rows summing to 1, if P(X, = z) =
wz), P(Xpt1 =y | X =2, X1 =Tp-1,..., Xo =20) = P(Xpy1 =y | X, = 2) = Py ,. In particular

PX,=2)= Z wxo)P(X1 =21, .., X1 = @p_1, X =) = Zu(zo)p"(xo,x) = puP?”,
L0y Tn—1 xo

where we write p"(x,y) for the r-step transition probabilities. Furthermore, by definition, (X, ) has the Markov
property.

Example 3.1. o P = (173“ 1213) for o, 3 >0
o P = (a;;) where a;; = $1{ji—j|=1 mod n}
e ctc.
Definition 3.1.1. e A Markov chain X is called irreducible if for all z,y € S there is an r such that p”(z,y) > 0.
e For z € S we write period(z) := ged {n € N: p"(x,z) > 0}.
e A chain is aperiodic if Vx € S : period(z) = 1.

If X is an irreducible chain then all z € S have the same period. Furthermore, if a chain is irreducible and aperiodic
then Ir e NVz,y € S: p"(z,y) > 0.

Definition 3.1.2. A distribution 7 on S is called stationary for P if 7P = .
Let 7, =inf{n >0] X, =z} and 7f =inf{n >1]| X, = z}.
Lemma 3.1.1. If X is irreducible then E7,] < .

Proof. For all z,y there exists r such that p"(z,y) > € > 0. Then we can find k € N, e > 0 such that Vz,y € S Ir <

k:p'(z,y) > €>0. Now P*(r} > 1k) < (1 —€e)P*(r,f > (I—1)k) < (1 —¢)'. Then E7 =3 >° P*(r,f > n) <
S kPE(rf > (1= 1)k) < oc. O
Lemma 3.1.2. Let X be irreducible. Then w(x) = 1/E*(7,") is a stationary distribution.
Proof. Let m(y) :=>_,°, P*(X, =y, 7" > n) be the expected number of visits to y before returning to z. Now
FP(y)=> Y P*(Xp=x,7 >n)Py=> > Z*(Xp=2,Xpp =y, 7 >n)
z€S n>0 €S N>0
=Y P(Xp=yr2n)=7-P(Xo=y, 7 >n+1)+ > P(X, =y, =n)=7(y).

n>1 n=1

Hence 7(x) = Te) _ — T@) s stationary. 7(z) = =L+ will follow from the uniqueness we prove below. O
Zyes 7(y) E=T1] E=zT]

We call an h : S — R harmonic if for all @ € S, h(z) = >_, P, h(y). We write h as a column vector and express
this as h = Ph.

Lemma 3.1.3. If X is irreducible and h is harmonic then h is already constant.

Proof. Take xg := argmax,cgh(z) and M = h(zo). Now h(zo) = >_, s Pz yh(y). If h(y) < h(zo) for any y for which
P,y # 0 this is a contradiction. Otherwise iterate. O



Corollary 3.1.4. If X is irreducible then the stationary distribution m is unique.
Proof. dim (ker (P — I)) = 1 by the previous lemma. O
Definition 3.1.3. Let u, v be probability measures on S. Define ||p — v|| := maxacs |u(A4) — v(4)]

Lemma 3.1.5. ||[p—v| =13 _o|u(z) —v(z)|.

Proof. Let B := {x € S:p(x) >v(z)}. Then pu(A) —v(A) < p(AN B) —v(An B). It follows that ||ju—v| =
3 (W(B) = v(B) + v(B°) — n(B%)) = 5 Ypes |nl(z) — v(2)]. 0

We can also write it as [[u — v|| = 32, )5 @) (1(2) — v(2))

Theorem 3.1.6 (Convergence theorem). Let X be irreducible and aperiodic, TP = w. Then there exist o € (0,1),¢ >0
such that for all n > 0:

max||pa(z, ) — 7} < ca”

Proof. From irreducibility and aperiodicity we know there exists r > 0: Py > 0 for all z,y and even a 8 € (0,1)
such that Vy € S : P}, > (1 — B)m(y). Define Q by P" = (1 — B)II + BQ where II has rows given by 7. If M is a
stochastic matrix then MII =II = IIM. We see by induction on k that

Pr(kJrl) _ PrkPr _ (1 _ Bk)HPT + (1 _ ﬂ)ﬂkaH + 6k+1Qk+1 _ (1 _ ﬂkJrl)H + Bk+1Qk+1~

Hence for j < r we have P™**J — II = p*¥(Q*PJ — II). Take the z-row on both sides and sum the absolute values of
the entries

Iprkts (@) = 7O = D ks (@, y) = w(y)| < B~
yEeS

O

Theorem 3.1.7 (Ergodic theorem for finite state Markov chains). If X is an irreducible Markov chain, u a probability
measure on S and f: S — R then

*Zka —>Z 7Tf'

€S
Example 3.2. Taking f(y) = 6,(y) the Ergodic theorem tells us that L >0 6,(X) =2 7(x).

Let d(n) = max, ||pn(z,) — 7(-)|| and d(n) = maxg 4 |pn(z, ) — pn(y,-)||. Then d(n) < d(n) < 2d(n). The second
inequality is trivial. For the first,

Ipa(z, ) = ()| = max | a(y) (po(z, 4) = puly, 4))| < Z ) max [py (2, A) = pu(y, A)|

y
< max max [p, (2, 4) — pn(y, 4)| = max ||pn(33, ) = paly: )l
Now take the max over .
Lemma 3.1.8. d(n+m) < d(n)d(m).
Definition 3.1.4 (Mixing time). We define tyix(€) := min {n : d(n) < €} and tyix := tmix(1/4)
Why do we use 1/4? Consider

d(ltmix) < d(ltmix) < d(tmix)' < (2d(tmix)) <275
Furthermore tpix(€) < tmix[logy(1/€)].
Lemma 3.1.9. Let P be a stochastic matriz. Then
e If \ is ein eigenvalue for P then |A| < 1.
o If P is irreducible then 1 has a unique eigenfunction.

e If P is irreducible and aperiodic then —1 is not an eigenvalue.

Let P be reversible with respect to , i.e. w(z)p(z,y) = 7(y)p(y, z). We define (f,g)~ := >, cq f(x)g(x)m(2).
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Lemma 3.1.10. 1. (RS, (-,-)x) is an inner product space with an orthonormal basis consisting of eigenfunctions
f; corresponding to the real eigenvalues A; of P.

2. Py, =230, (@) fj()m(y) A}, hence P"g=73".(g, f;) [;\}

Proof. Let Ay := %Pwy Then A is symmetric, hence has an ONB {¢;} of eigenfunctions with real eigenvalues
Aj. A1 = 1 has eigenfunction ¢; = /7. Then A = DY?PD;'? where D, = diag(m). The f; := 1/2(/5]
are the eigenfunctions of P with eigenvalues A;. Indeed, Pf; = PD;1/2¢J- = D_1/2A¢j = D_l/2 Ajd; = Nifj
Furthermore (f;, fj) = <D,1r/2fi,D71r/2fj> = (¢i, ;) = di5. Hence oy = >0y, f5) fi = >, fi(y)m(y) f;, whence
PRy = Préy)(x) =22, [i()m(y) fi(@)A]. O

Now let’s look at the spectrum of P: 1 > A; > ... > A\jg) > —1 and let ), := max {|A] : A # 1 is an eigenvalue}. We
call 1 — A\, the absolute spectral gap and t,e := the relazation time.

Remark. For the lazy chain (I + P) all elgenvalues are > 0.
Note that for any f we get that P" f(x) — E.f from the convergence theorem.
Lemma 3.1.11. Var,(P"f) < \2"Var,(f).

For reversible, irreducible, aperiodic chains one can show that (¢, — 1) log(i) < tmix(€) < tral log(m).
Yy

Definition 3.1.5. A coupling of probability measures u,v on S is a pair of random variables (X,Y) on S x S and
joint distribution with correct margins: P(X = x) = u(z), P(Y =y) = v(y).

Lemma 3.1.12. ||p—v||=min{P(X #Y) : (X,Y) is a coupling of p,v}
Proof. o “<"p(A)—v(A)=P(X€A)—PYcA) <PXecAY ¢A) <PX#Y).

e “>" We construct an optimal coupling: Let ¢(z,z) := p(x) A v(z) and g(z,y) = 0 if either ¢(x,z) = u(x) or
q(y,y) = v(y) and q(x,y) = (ulz)— i%))(;((zy)z) £W) otherwise. Then

min {P(X #Y) : (X,Y) is a coupling of u,v} < P(X #Y)

=Y ulz) - Yoov@+ Y @)= Y (u@)—v@) =

z:pu(x)>v(x) z:p(x)<v(z) x:p(x)>v(z)

O

Proof of Lemma 3.1.8. We know that max, , [|pn(,-) — pn(y, )| = P(X, # Y,) for an optimal coupling (X,,Y})
with respect to p, and Xo = z,Yy = y. Now ppim(z,w) = > pn(x, 2)pm(2z,w) = E (pm(X,, 2)) and similarly
pn+m(yaw) = E(pm(Yna w)) Then %Zw ‘pn—&-m(xaw) _pn+m(yaw)| = % w | (pm(Xnaw) - pm(Yn7w))|' Hence

because (X,,,Y,,) was the optimal coupling. O

Theorem 3.1.13. t,,,(lazy n-cycle) < n?, where the transition matriz for the n-cycle is given by P = (a;;) where
ai; = %1{|i_j|=1 mod n} and the transition matriz for the lazy n-cycle is %(I +P).

Proof. Use X,,,Y, coupled lazy walks on the n-cube. Before 7 = min{n: X, =Y,} let P(X,11 # Xn,Ynir1 =
Y.) = P(Xn+1 = X, Ynt1 # Yn) = 1/2 with equal probabilities to go left and right. Now D,, := X,, — Y, is a
simple symmetric random walk on {0,...,n}. Then 7 = min{t: D; € {0,n}}. After 7 move X,,,Y,, together. Then
k= E*(Dg) = E*(D,) = nP*(D, = n). Since (D2 —n), is also a martingale we get k? = E¥(D3—0) = E¥(D2—71) =

2 —

n?P*(D,; =n) — E*(1). Hence E*(7) = k(n — k) < Zr for all k. Furthermore d(t) < d(t) < max, , P*Y(X; # Y;) =
maxy, P¥(D; > t) < maxy, E¥(7)/t < %, If t = n? then d(n?) < 1/4, whence the claim follows.

O

3.1.1 The symmetric group and card shufflings

Let S = Gy be the symmetric group of [N] = {1,..,n}. Shuffling cards is then the process of achieving a uniform
distribution on S. The idea now is to choose a random transposition and shuffle in that way. However, this is 2-periodic
thanks to the parity of permutations.

Instead, for 7 a transposition, let

. 1 2
p(id) = N’ p(T) = N2

We now choose two positions L, R, uniformly from [N] and swap at these positions: If X,, € S then P(X,+1 =
cgoco' | X, =0')=p(o) and P(Xy =1id) = 1.
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Proposition 3.1.14. For the chain above, t: < %772]\72

Proof. Strategy: Choose a card X,, € [N] and position Y,, € [N] independently and uniformly and swap cards at
position Y;, and card X,,. Note that this gives us the same chain as above.

Start with two decks. Use the same (X,,), (V) for both decks. Let a,, be the number of cards at the same location in
both decks. There are three possibilities for the n-th step:

e If position of card X,, and the card at position Y,, agree in both decks then a,, = a,_1.
e If one is different and the other not then a,, = a,,—1 as well.

e If both card X,, at different position and card at position Y,, are different then a,, — a,—1 € {1,2,3}.

Using the lemma below we get that d(n) < P(X,, #Y,) = P(r >n) < 1E(r) < ”Zgz. Now set n = 272N2. O

Lemma 3.1.15. Let 7 =min{n:a, = N}. Then E(7) < %NQ

Proof. Decompose 7 = 71 + T2 + ... + 7iv where 7; is the first time that {a, =i} after {a, =i — 1}, that is 7; =
inf {m : aptym > i,7i—1 =n}. Then 79 = 0 and jumps can occur. Given {a, =i} then N — i cards are not aligned.

, 2
Hence 741 | an =i ~ Geo ((N]\f)z) Then E(7i41 | an = 1) = ( l ) , whence E(7) < Zili_ol N < %QNZ O

N—i (N—3)2

3.1.2 Markov Chain Monte Carlo (MCMC)

Suppose you want to sample from a finite yet very complicated distribution.
Idea: Construct a Markov chain with its stationary distribution equal to the distribution we want to sample from.

Example 3.3 (Ising model on a finite graph). Let G = (V, E) be a finite graph and S = {—1,1}". Let o € S be a
configuration and o (v) the spin at v € V. Let H(0) = — >y, ,,yep 0(v)o(w). Define the Boltzmann distribution by
ulo) = ﬁ exp(—BH (o)) where Z(B) = > .gexp(—BH(c)). Since S can be large already for small graphs G, it’s
very hard to compute Z(/3).
We use Glauber dynamics:

e Choose sites uniformly iid

e Update state there subject to everything else staying fixed
Set

exp(—ﬂ Zu:{u,w}GE U(u))

wlotw) = 1ot ) = s e 000) + DB Swmes ()

The Glauber chain is given by

Py = > I Lostuanrer 7 () Lio(v)=c"(v) for wrtv}
o0’ = o(v)=0'(v) for w#v}-
14 wev eXp(—ﬁ Zu’:{u’,w}GE 0'/(’11//)) + eXp(ﬂ Zu:{u,w}GE Ul(u))

3.2 Markov chains on countable state spaces

Example 3.4 (Random walk on the lattice Z%). Let S = Z% and P(Xg = 0) = 1. Let P(Xpy1 =y | X, = ) =
23 1{jz—y=13. Then (X,,)n>0 is a Markov chain.
Let 77 =inf{n >1| X,, =0}
Definition 3.2.1. A random walk is called recurrent if P(7T < oo) = 1, otherwise it is called transient.
Theorem 3.2.1 (Polya). The random walk on Z% is recurrent iff d < 2.
Define Green’s function G(z) = Y-, P(X,, = ), which is the expected number of visits to x.

Theorem 3.2.2. (X,,), is recurrent iff G(0) = oc.

Proof. Using the Markov property,

P(X,=0)= En:P(ﬁ =i)P(X,_; =0).
i=1

Consider the generating functions G := > ° Z"P(X,, =0), Fz:=) .2 Z"P(r* =n) for Z € [0,1) :

Gz=14> Y ZH0IP(rt =i)P(X,_; =0) = 1+ Gz Fy,

n=1 i=1
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so that iy =1 — G%? whence

1 1
P(rT < =F=linfFz=1-—""7—=1-——+=.
(T OO) ! ZI% d limz¢1 GZ G(O)

Polya. For d = 1:
2n\ /1\>" (2n)! (2n)2ne2n /2120 1
G(0) = Z P(X, =0) = Z (n) (2) - Z (nh)222n Z e2np2n2nory Z NGO

For d = 2: Consider Y,, = (U,,V,,) := (4 + Bn, Ay, — By,). The coordinates of Y are independent so that we get

P(Xa, =0) = P(Ya, = 0) = P(Us;, = 0)P(Va,, = 0) ~ 7?17&

For d > 3: Let’s look at the characteristic function ¢(k) = E(e?*X). This is (27)%periodic, so we may consider
k € [-m,m)% Then

d
. 1 ) _ 1
k‘) — Z ezk-zP(Xl — ) 2d( etk + e~k 4+ o+ etka + efzkd _ g Z

z€Z j=1

Now use the inversion formula: P(X,, = x) = f[fﬂ )i ﬁe*ik'%(k)"dk. For z € [0,1) :

oo

1 1
Z"P(X, = Zr (k)" dk = .
Gz(0) := 7;) Xn: / o(k)"dk (%)d/l_w(k)dk
Taking Z 11 we get G1(0) < oo iff [_ . 7gydk < 0o, Use 33 < Y7_ k¥ < 1—6(k) < 55 37, k2. Now the
integral is finite iff f[f_n ) ||k||2_2 dk < o0 O

Let o := E'(7;") = 1+ E°(7y"). Then v = § + $(E*(7y") + 1), whence o = 1 + o, i.e. a = oo.
Definition 3.2.2. A state z € S is null recurrent if P*(1f < 0o) = 1 but E(1;}) = oo. It is positive recurrent if
E*(1}) < 0.
3.3 Markov chains in continuous time
Let S be a countable state space.

Definition 3.3.1 (Continuous Markov chain). Let € be the set of S-valued cadlag functions on [0, 00) and X;(w) =
w(t) for t > 0, O5(w)(t) = w(s+t) for s,t > 0 and F the smallest o-field such that w — w(t) is measurable for all ¢ > 0.
Then a continuous time Markov chain is given by

o {P¥:x € S} a family of probability measures on (2, F)
o A right-continuous filtration (F;);>o such that 7 C F, X is adapted to F;
such that P*(Xo =) =1 and E*(go 0, | Fs) = EX:g P®-a.s. for all bounded measurable g.

Definition 3.3.2 (Transition function). {p(z,y):¢ >0, z,y € S} such that pi(z,y) > 0 and 3 pi(z,y) = 1 a
well as limyope(z,2) = po(z,x) = 1 for all z,y and for which the Chapman-Kolmogoroff equatlon Pstt(x, )
> .cgPs(x, 2)pe(2,y) holds, is called transition function.

Given a transition function, we can construct a consistent family of probability measures by

P Xy, =1, .., Xy, = 20) = Py (T, 1) Pty -1, (1, 22) -+ Diyy—t 1 (Trm1, Tn)-

Note that the Chapman-Kolmogoroff equations are necessary for this family to be consistent. We aim to get an
infinitesimal description of p;:

q(z,y) :iz (z,9)li=0

t

Definition 3.3.3 (Q-matrix).

). {q(z,y):x,y € S} with g(z,y) > 0 if z # y and Zyesq(m,y) =0 for all z € S.
Further, set ¢(z) :== —q(z,z) >0
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Example 3.5 (Poisson process). Let S = Z. After an exponentially distributed waiting time jump up by 1. The
Q-matrix is given by Q = (¢zy := =02z + A0z 041)

Example 3.6. Take a discrete time Markov chain given by a stochastic matrix P. Define X; as follows: Take a
sequence of iid Exp(1)-distributed random variables, wait at x for one of these, then jump according to P. The
Markov property holds for F; := (X, : u < t) because the exponential distribution is memoryless.

Let T1,Ts, ... be iid Exp(1). Let N, := max {k YT < t}.

o0 oo k.
pi(zy) =P (Xe=y) =Y P Xy=y,Ny=k) =Y P"(Xy=y| Ny =k)P"(N, = Zpkmy -~ 7
k=0 k=0

hence P, = e*”k—k!'P’C and Py = 1.
Claim: Q@ =P — 1.

d Ic
tkzk,l?k T y) li=0= . = Loy + Poy
1

d d 10 -
=—_—e 'P,
dtpt(x Y) [t=0= dte +dt

Lemma 3.3.1. Let S be finite and Q a Q-matriz. Then the transition function p;(x,y) is given by P, = '@
Proof. 1. P, is well-defined due to submultiplicativity of the operator norm.
2. P, is a stochastic matrix.

3. Psyy = Ps - P, whence the Chapman-Kolmogoroff equation follows.
O

Example 3.7 (Birth- and death chain). (X;) a Markov chain on S = Ny. q(k,k — 1) = p,q(k, k — 1) = A\, q(k, k) =
—pk — Ak, e.g. for pr = kp, \y = kA. In particular, ¢(k) need not be bounded.

Theorem 3.3.2. Let (X;) be a Markov chain and pi(x,y) := P*(X; = y). Then
1. {pt(z,y) : 2,y € S, t > 0} is a transition function
2. It determines the measures {P* : x € S} uniquely

Proof. 1. We first show limyjgps(x,2) = 1. Let T := inf{t > 0: X, # Xo} > 0 P-a.s. for all z € S because
the paths are right-continuous. Since p(z,z) > P*(T > t) for all ¢ > 0, we get lim;jop¢(x,2) = 1. For
Chapman-Kolmogoroff, use the Markov property with g = 1;x,—,}:

B (P*(Xope = y | F5)) = E*(PY(X; = y)) = B (pe(Xs, ),
so that psii(z,y) = X2, ps(w, 2)pe(z,y)
2. By the Markov property:
Pw(th =7, th = T2y ey th = xn) = ptl (lﬁxl)ptzftl (x171.2) o 'ptnftn,l(xnfla (En)

This determines the finite dimensional marginals completely, hence also the process.

Definition 3.3.4. A state x € S is absorbing if p;(x,z) = 1 for all ¢ and instantaneous if ¢(x) = oo.

Heuristically, we have the Kolmogoroff backward equation %ps+t(x7y) = s %ps(x,z) |s=0 pt(z,y) as well as
the Kolmogoroff forward equation %ps+t(z,y) = .cgPs(m, z)%pt(z, Y) lt=0-

Lemma 3.3.3. 1. Vi>0Vx € S:px,z) >0

2. (>0:p(z,z) =1=VE>0:pe(x,z) =1

8.t pi(x,y) is uniformly continuous. In particular |pi(x,y) — ps(z,y)| <1 — pp—g(x, )
Proof. 1. limy o pe(z, ) = 1 so the claim is is clear for small ¢. Now use Chapman-Kolmogoroff.

2. psyt(z,x) < ps(x, 2)pe(z, ) + (1 — ps(z,2)) = 1 — ps(z,2)(1 — pe(x, 2)) so that psie(z,2) =1 = pr(z,x) = 1,
whence {t : ps(x,2) =1} D [0,€). Use Chapman-Kolmogoroff again.

3. Now write pois (2, y) =pi(2, y) = pe(2, ) (ps (2, 2) = 1)+ 30, ps(2, 2)pi(2,y) = Ti+To. |Th] < 1=ps(2,2),[Ts| <

1 —ps(z,z). Since T1 <0,T5 >0, t he claim follows.
O
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Theorem 3.3.4. Let (p:(2,y))s,yes,t>0 be a transition function. Then

1. ¢(z) = —q(z,2) = = p,(2,2) [1=0€ [0, 00] exists and p(z,z) > e~<@*

c(x

)
c(x) < oo and 33, q(z,y) = 0 then Yy : t = pi(z,y) € C'[0,00) and Fpi(z,y) = 3. a(x, 2)pi(2,y)
Proof. f(t) = —log pi(x,x) is continuous and subadditive.

< oo =Yy #a:q(e,y) = Gpi(x,y) li=o€ [0,00) exists and 3, q(w,y) <0

1. In particular, using Fekete’s lemma, c(x) = lim; o = O — jnf, fgt exists and satisfies f(t) < c(x)t

2. 1—pi(z,2) < 1—e @t < ¢(x)t so that >yt Pr(T,y) [t < () so that q(z, y) := limsup, o pe(2, )/t < c(z) <
00. We get V6 > 0Yn € N : pps(w,y) > Y02 0k (@, 2)ps (2, y)P(n—k-1)s(y, y). Using py(, ) > e~ we get:
Pns(@,Y)  _c(aynaPs(@,y)
oA J) oA I
I 5 oot ps(y:y).

Choose n — 00, — 0 so that nd — ¢: Then

—c(a)t
pe(z,y)/t > q(x, y)e Oglf<tps(y Y)

so that liminf, o pe(x,y)/t > q(x,y).
3. We have
1 1
S Genn(o) ~ o) = Eato ) = X (50u00:2) = (o)~ a(2.2) ) e

z z

For any T' C S,|T| < oo and z € T we get

Z ) pez,y) Zpsxz _|_Z x,2) i<1—Zps(xvz)>—Zq(m,z)ﬂ—QZq(x,Z)

z¢T z¢T 2¢T z€T zeT zeT

ps(z,2)

. —q(x,

The right-hand side — 0 as T' 1 S because ¢(z) < oo and Zy q(z,y) = 0, hence the right-derivative is continuous
and has the required form. Furthermore any continuous function with continuous right derivative is already
differentiable.

O

Let Q be a Q-matrix. Define the transition probability for a discrete time chain; if ¢(x) = 0, take p(z,y) 1= 11,—yy,
if ¢(x) > 0, take p(z,y) := qé"fgf)’)lm;éy. Note that indeed p(z,y) > 0 and >_ p(z,y) = 1. Consider the discrete time
Markov chain (Z,,),, on S with this transition probability. Call it the embedded discrete time chain. Let 79,71, ... be

random variables whose conditional distribution (given Zy, Z1,...) is 7 ~ Exp(c(Zx)) and 7, = 0 if ¢(Z)) = oo. The
finite dimensional marginals are

P?(Zo=x,21 = X1, e, Zn = Ty T0 > b0y oy Ty > tm) = p(@, @1)p(x1, 22) - p(Tm—1, Tin )00 L o(@m)m

Let N(t) = min{m : 7o + ... + 7 > t}. Hence N(t) = 0 for an interval of length 7o, then N(t) = 1. Finally X; := Zy,
on {N(t) < oco}. X has right-continuous paths, waits at = an Exp(c(z))-distributed time, then jumps to y with
probability p(x,y). The only trouble is jumping infinitely many times in a finite time.

Theorem 3.3.5. The following are equivalent:
1. The Kolmogorov Backward equation has a unique solution which is a transition function.
2. P(N(t) < o0) =1 forallt>0.
3. >, T =00 P-a.s.
43, ﬁ =00 P-a.s.
Corollary 3.3.6. If cither
1. sup,cgc(z) < oo, or
2. the embedded discrete-time chain is irreducible and recurrent,

then condition 4. holds in the above theorem.

Proof note. 1. Je> Wz e S:c(z) < % = c(lz) >Se=y ﬁ = 0.

2. Recurrence = Jz : {Z,, = z} infinitely often, so that ﬁ occurs infinitely often in the sum.
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4 Feller Processes

then Cy(S) = C(S). Endowing Cy(S) with [|f| := sup,egq|f(z)| makes Cy(S) a seperable Banach space. Let
Q2 = D[0,0) = {f:]0,00) = S cadlag}. Let Xi(w) = w(t), (0s(w))(t) = w(s + t), F the o-field that makes all
t — w(t) measurable.

Let S be a compact or locally compact space. Let Cy(S) := {f € C(S) : f vanishes at co}. Note that if S is compact
su

Definition 4.0.1 (Feller process). A Feller process (X;)i>o is given by
e {P?:x € S} probability measures on ({2, F)
e A right-continuous filtration (F3),-, to which X is adapted

such that P*(Xo = z) = 1 and Vf € Cy(S),t > 0: x — E*f(Xy) € Co(S) as well as Vg : 2 — R bounded and
measurable, x € S: E% (gof, | Fs) = EX:g P*-as.

Theorem 4.0.1 (Strong Markov Property). Let (X;) be a Feller process and Y : [0,00) x Q@ — R be a bounded and
jointly measurable. Let T be a stopping time with respect to (F;). Then Va € S :

E® (Y, 00, | Fy) = EX"(Y;) P%-a.s. on {1 <o}
Remark. There are only three ingredients needed:
e The Markov property
e Right-continuous paths
e y+— EYY is continuous for special Y.

Definition 4.0.2 (Transition semigroup). A probability semigroup is a family of continuous linear operators (1})¢>0
on Cy(S) such that

1) Tp =id

2) limy o T3 f = f, which we call strong continuity

3) Tsyry =TTy, the semigroup property; in particular TyTs = TsT;
4) T,f >0if f >0

5) T;1 = 1if S is compact, and otherwise 3(f,,)n € Co(S)Y such that sup,, || f.|| < co and T;f,, — 1 pointwise for all
t>0.

Claim [|T3f|| < || f]| for all f € Co(5)
Proof for S compact. Let g := || f||—f > 0and g € Cy(S). Then Tyg = ||f||—T:f > 0so that T3 f < ||f|| pointwise. O
Claim t — T;f is continuous on [0, c0).
Proof. Let t,, | t. Then
T2, f=Tof | < [(Te,— = 1) £
O

Example 4.1. e Let X be a Brownian motion, S = R. Then T} f(z) := E* (f(X})) defines a transition semigroup.

e For S countable, p;(z,y) a transition function, T;f(z) := Zyespt(x,y)f(y). If S is finite, then (T3); is a
transition semigroup iff lim|,|— o0 p¢(z,y) =0 for all t > 0 and y € Z.

Definition 4.0.3 (Resolvent). We write U, f := f e~ Ty fdt for a > 0, f € Cp(S) and call it the resolvent associated
with the transition semigroup.

Clearly U, f is a well-defined, linear operator with operator norm i and limy oo @Usf = f.
Claim U, — U = (8 — a)U,Up for o, B > 0, known as the resolvent equation.
Proof.

0o 00 00 . 0o r . e} e—ar _ e—,Br
UnUg = / e T Usfdt = / et / e BT, fdsdt = / T.f / e~ Bt qidr = / T, fﬂidr
0 0 0 0 0 0 -«

O
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For S countable let Lf(z) :== > q(z,y)f(y) = >, a(z,y) (f(y) — f(x)). Write D(L) for the domain of £ and R(L)
for its range.

Definition 4.0.4. A probability generator £ is a linear operator on Cy(S) such that
1) D(L) is dense in Cy(S)

2) f € D(L),\ >0 then for g = f — ALf we have infg f > infg g

3) For A small enough we have R(I — AL) = Cy(S)

4) For S compact we have 1 € D(L) and £1 = 0. If S is locally compact then for A sufficiently small there exist
fn € D(L),gn == fn — AL f, such that sup,, ||gn|| < oo and both f,, g, "—3 1 pointwise.

Claim For f € D(L),A > 0,9 = f — ALf we have ||f| <]
Proof. We have infg g <infg f <supg f < supg g by property 2. O
Hence (I — )\E)_l exists and is a contraction for A sufficiently small.
Example 4.2. e S=Rand D(L)={f € Co(S),feC'}, Lf = [is a generator.
e For S finite and ¢(z,y) a Q-matrix, Lf(z) = Zy q(z,y) f(y) is a probability generator.

Remark. Often £ is second order differential operator. Consider the PDE 2u(t,z) = Lu(t,z) where £ acts only on
2 with initial condition u(0,x) = f(x). Under some mild conditions, the solution is given by w(t, ) = Ty f ().

Theorem 4.0.2. For any Feller process on S, Ti f(x) := E* f(X;) defines a probability semigroup on Cy(S).
Proof. 1), 4), 5) follow from construction. 3) uses the Markov property:
Tovsf = B [(Xore) = B* (B* (f(Xore) | Fo)) = B* (EX f(Xy)) = E* (T (X)) = TN f
For 2) note first that the pointwise convergence T; f(x) LN f(z) follows from right-continuity of the paths and the
continuity of f. Now for the uniform continuity:
First, we obtain the pointwise resolvent equation from the pointwise continuity.

Second, let U, : Cy(S) = Co(S). Now let R = R(U,). This is independent of o:: Let f € R so that f = U,g for some
g. Then Ugf = UgUyg = ﬁ(Ugg —Uag), hence f = (a— B)Us(Uag — g). Now let f = Uyg. Then

T.f = / e *Tsyrgds = / e =T gdr AN Usg = f uniformly
0 ¢

Fourth, the contraction property implies lim; o |T3f — f| = 0 for all f € R. Finally, as for any linear subspace of a
Banach space the strong closure equals the weak closure and aU, f — f pointwise it follows that R = Cy(.S). O

Theorem 4.0.3. Let (T})i>0 be a probability semigroup. Then Lf = limtww having the domain D(L) =
{f € Co(S): Lf is (strongly) convergent} is a probability generator. Moreover,

1. For all g € Cy(S), >0
f=aU,g iff (f € D(L) and [ — ;ﬁf:g>
2. If f e D(L) then Tyf € D(L), t = Tyf is Ct and
%th:Ttﬁf:lthf

Proof. Suppose that f = aU,g for g € Cy(S). Then

1 o0 (o] X o0 o0
;(th —-f)= %Tt/ e~ Y T.gdr — %/ e~ *T,gds = %/ e_o‘(s_t)TSgds — %/ e~ Tygds
0 0 t 0

+]Q

oo t
(e —1) / e “Tsgds — %/ e”*Tsgds 1o, a*Uyg — ag = af — g) uniformly
t 0

a—> 0

This proves “=" in 1. as well as 3) in the definition of the probability generator. If aU,g € D (L) then aUyg — g,
hence D(L) is dense in Cy(S), whence 1) in the definition follows. Now fort > 0, f € D(L) and g, := (14 2) f—3T,f =

f = AL=L we get limgo g¢ = f — ACf and (1 + 2)inf, f(z) > 2 inf, T, f(z) + inf, g¢(z) > 2 inf, f(z) + inf, g;(2).
Hence we get 2) in the definition.

17



Now for “<" in 1. suppose that (I — éﬁ) f =g with f € D(L). By “=" in 1. we get h := aUyg = h — éﬁh =g.
Now since f —h € D(L) we get || f — h|| < |lg — g|]| = 0 whence f = h. 4) of the definition is clear if S is compact.
Otherwise suppose that (gn). is a sequence in Cy(S) and sup,, ||gn| < oo as well as g, — 1,Ttg, — 1 pointwise.
Define f,, € D(L) by g, = (I — AL) fn, i.e. fn = aUagn by 1. Since Tig,, — 1 pointwise, then f,, — 1 pointwise. For
2.
d T - T
i’-rtf —_ h\{l(’)l *Hff tf

~lim T, (Tyf) — Ti f
dt

S sl0 S

provided that any of the limits exist. The middle one does and equals T; L f, which is continuous in ¢. Then the right
one exists as well and equals LT} f. O

Lemma 4.0.4. For f € Cy(S), t >0, Lf = limy g % we have lim,,_ oo (I—|— %E) " f=1Tf.

n_ n—1

Proof. We know (I — 1£)™" f = a"ULf = [¢° Gepre **Tofds. Hence (I-LL)™"f = E (Tfﬁ...mtf) where

&, ..., &, are iid Exp(1)-distributed. Now if f € D(L) then | T f — Ts f|| < ||Lf]| |t — s|. Therefore

t N " o+ n—sco
‘(]_/3) f—T.f|| <t|Lf|E m_l "3
n n
Now both operators on the left-hand side are contractions, so that we can approximate all f € Cy(5). O

For € > 0 define £, := £ (I — L)™', which is well defined since R(I — eL) = Co(S) for e > 0 sufficiently small.
Further f —eLf = g iff f = (I — e£)”" g which implies || Lcg|| = ||Lf]] < L—!”g” < 2|g||, so that L. is also bounded.

Write T, 4 := etfe := 3", tkk—ff, which exists as strong limit.
Lemma 4.0.5. If L is a bounded operator then R(I — \L) = Cy(S) for X small enough.
Proof. For g find f with f — ALf =g by f= )", A"L"g which converges if A ||£]| < 1. O
Lemma 4.0.6. 1. For f € Cy(S) we have (I — eL) ™" f—eLef = f
2. L. is a probability generator; the associated semigroup (Te ) has Le as its corresponding generator.
Proof. 1. (I—e€L) ' f—eL(I—eL) f=(I—eL)(I—eL) ' f=1.
2. Indeed
e D(L,) = Co(8)
o f = MC.f = g implies that inf f > infg so that f—A(g(I—eﬁ)—lf—gf) =g, ie. (142)f—
21— L)' f =g, or - - L) flz) + -9(@) = f(z). It follows E%\infx f(@) + £ infy g(2) <
s inf, (1 — L) f(2) + =5 inf, g(z) < inf, f(z)
o R(I—MAL.)=Ch(S) for A > 0 small.

e If S is compact then £,1 = £ (I —eL) "1 but (I —eL) "1 =1 because f — eLf = 1 is solved by f = 1
and £.1=L1=0.

O

Theorem 4.0.7. For f € Cy(S), Tif = limeo Te . f exists in the uniform sense on bounded t-intervals. It defines a
semigroup whose generator is L.

Proof. Step 1: L, and L5 commute: We know (I — eﬁ)fl (I - 6£)71 f=giff f=g— (e+6)Lg+ edL?g which is
symmetric in ¢, J.

Step 2: We have (Tt — Ts)f = [y LT Ts.—sfds = [} Te\Tsi—s (Le — L) fds, so that

[(Te.e = Ts0) fIl < T, sTo—s (Le — Ls) fIl < tI[(Le — Ls) £l
Step 3: Let f € D(L). Then (I —eL) ' f—f=e(l —eL) " Lf
| =eoy™ p =1 <elnes

In particular lim¢ o (I — eﬁ)fl f = f in the strong sense, so that lim.jo L. f = Lf.
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Step 4: From Step 2, 3 we obtain that lim. o Tt ; exists in the strong sense on bounded ¢-intervals, using that Cy(S)
is complete. The semigroup properties of T¢ ; carry over to T;:

ITof = £l < [(To = Teo) fll + I Teof — £l <30

and similarly for the other properties.

Step 5: Check that T; has L as its generator: Let f € D(£) Then

t t t
th - f <€¢_0 Te,tf - f = / %Te,sfds = / Te,sﬁefds ﬂ / Tsﬂefd&
0 0 0

Tif—f
t

whence lim; | = Lf so that £ is an extension of the generator according to Theorem 4.0.3.

Corollary 4.0.8. lim.jo Y o0 ) & (E (I-— eﬁ)_l)n = lim,, o (I — ££)"

Theorem 4.0.9. If (T})i>0 is a probability semigroup on Cy(S), then there exists a Feller process (X;) such that
E*f(Xy) =Tif(z) forz € S, f € Cy(9),t > 0.

Proposition 4.0.10. Suppose (M;)icq+ is a uniformly bounded sub-/supermartingale. Then a.s. limg_,; seq+ M
exists.

Proof. Use the upcrossing lemma. O

Proof of theorem. Step 1: Define the finite dimensional distributions as follows: The one-dimensional marginals are
given by the theorem. For the two-dimensional marginals, take s < ¢,

ETf(X:)9(Xe) = E* (F(X)EX (9(Xi-s))) = Ts (f()Tr—s9()) ().
Higher-dimensional marginals are constructed inductively.

Step 2: Apply the Kolmogorov consistency theorem for rational t € Qt, which yields a process (Y;)icq+ with Yy =«
P?-as.

Step 3: Let 0 < f € Cp(5).
e TULf = / e Tsfds < Uyf
t

so that
E* (e=*"Uaf (V1)) < Uaf (o).

Hence e~ U, f(Y;) is a bounded supermartingale, so that by the proposition the left- and right limits of U, f(Y;)
exist a.s. for all s € [0,00).

Step 4: Any « and f contained an exceptional set. Therefore we take @ € N and f in a countable dense subset of
Co(S). Thus we obtain the left- and right limits everywhere because alU, f — f and Cy(S) is seperable.

Step 5: Define X; := lim,; seq+ Ys, which is cadlag.

e P¥(Xy=z) =1 by construction.
e For the Feller property, note z — E* f(X;) = T1 f(z) € Co(95).
e For the Markov property proceed as for Brownian motion.
O

Claim: Feller processes are quasi-left continuous, i.e. (7,)nen are stopping times and 7,, 1 7 then X, — X, on
{1 < o0}

Definition 4.0.5 (Diffusion process). A diffusion process is a Feller process with continuous paths.

Definition 4.0.6. An operator £ is closed if its graph {(f,£f): f € D(L)} is a closed subset in Cy(S) x Co(S). L is
the closure of L if its graph is graph (£) = graph(L).

Note that not every operator has a closure.
Lemma 4.0.11. 1. Assume that L satisfies 1), 2) in the definition of a probability generator. Then so does L.
2. If L satisfies 1), 2), 3) then L is closed.
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3. If L satisfies 2), 3) then R(I — AL) = Cy(S) for all A > 0.

4. If L is closed and satisfies 2) then R(I — AL) is a closed subset of Co(S).
Definition 4.0.7. D C D(L) is called core of L if L is the closure of L|p.
Theorem 4.0.12. Let (X;) be a Feller process with generator L. For each f € D(L),

M, = (X)) _/0 LF(X.)ds

is a (P*,F)-martingale for each x € S.
Proof. Recall that %th =T,Lf = LT;f. Hence

t t g
08) = Tif(@) — [ TLp@)is=Tif(e) — [ LTS @ds = f(@)
which is finite. For s <t we get

B (M, | Fu) = B* (f(Xo—2) 0 0, | Fu) — /

LF(X)du— B </Ot LF(X.) 0 Budu | ]-"s)
— BX (X)) — /0 LF(Xo)du — EX (/OH Ef(Xu)du)

— Xs _ ) u = — | U =
= B (M,_,) /O LF(X,)du = f(X.) /0 LF(X,)du = M,

We know that if X; is Brownian motion then it generates L£f = 1 f”. If Y; = X¢; for ¢ > 0 then

. EF(f(Y) - flx) ¢,
i ¢ =3/

Hence Lf = § f" is the generator of time-changed Brownian motion.

4.1 Wright-Fisher Diffusion

Let there be N individuals with genotypes aa,aA, AA and total numbers Ny + N + N3 = N. The next generation
has (N1, Na, N3) trinomially distributed individuals with parameters (1 — x)2,2z(1 — ), 2% where z = % Let
X, be the proportion of As in the n-th generation. Write

Lnfle) = E7F(X) ~ f(x) = ;N (% )e - 02 (g5 - o)

If f:]0,1] — R is C? then

o)~ 10 = 7' (5 =) + 570 (5 - x) o ((;jv - x))
Hence limy_,o0 2N Ly f(x) = 5. Now consider Lf(z) = 3x(1 — z) f”(x) for (at least) polynomials f in C([0,1]).
Theorem 4.1.1. 1. The closure of L is a probability generator.
2. The Feller process (X;) associated with L is a diffusion process.
3. For 7 :=1inf{t > 0: X; € {0,1}} we have
E.(7) = —2zlog(z) — 2(1 — z)log(1l — z)

and
PY(X,=1) =z FE* (/000 Xi(1— Xt)dt) =z(l —x)

Proof. 1. £ maps polynomials of degree n to polynomials of degree < n. We need to check properties 1)-4) of a
probability generator.

(a) Polynomials are dense in C([0, 1]).
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(b) Let f be a polynomial and f — ALf = g for some A > 0. If f has a minimum in zy € [0,1], clearly
Lf(xp) > 0 so that min, f = f(zg) > g(x¢) > min, g(x).

(c) Let g = > _, axz” be some poynomial and consider f — ALf = g. Assume that f(z) = Y }_,bxz". Then
we get

A
by, — 5 (k‘(k‘ + 1)bk+1 — (k‘ — 1)/€bk) = ap

with b,41 = 0. We can solve these equations recursively. Then R(I — AL) contains all polynomials and is
dense. Now use the Lemma.

(d) is obvious.

2. D(L) D C?[0,1] because we can approximate every f € C2[0,1] by polynomials f,, such that f, — f,f —
f'f7 — f"”. Using the previous theorem with f(X) = X, £f = 0 we get that X is a (uniformly bounded)
Martingale, hence it has a limit X, P*-a.s. and E*X; = x, hence P* (X, =1) = P* (X, =1) = z. Now
using the same theorem again with f(z) = z(1 — ) we get Lf = —x(1 — ) and Z; = X;(1 — Xy) + fo s(1—
X;)ds is a non-negative martingale. Therefore Z,, := lim; o, Z; exists a.s. and Z,, > 0 a.s. as well as
E7(fy° Xs(1— Xo)ds) = z(1 — ).

Now we Verify the continuity criterion. Let y € [0, 1] be ﬁxed and f(z) = (x —y)? so that Lf = (1 — z) and

fo s)ds is a martlngale Then Ev (Xt = fot EVX,(1-X,)ds < £. Now f(z) = (z—y)*
SO that ,Cf = 63@(1 x)(x y)2. Then (X; —y)*—6 fo s)(Xs —y)2ds is a martingale and EY (X, —y)* =
6 [7 BYX (1 — X,)(X, —y)2ds < 3 [} Ey( —y)?ds < 3 (3) . Now for s < t:
B9 (X, = X' = B (B (X, = X1 | F2)) = B (B ((Xim — Xo)')) < )7

so that the paths are continuous.

3. Let f(x) = 2zlogz+2(1—x)log(1—xz). We want to show E*7 = —f(z). We have f”(z) = 2+ 2 2 € (0,1) so

11—’
that $2(1—z)f”(z) = 1. Problem: f ¢ D(L) because otherwise f(X;)—t would be a martingale in contradiction
to the martingale convergence theorem. Therefore consider f. € C?[0, 1] such that f.(x) = f(z) for allz € [¢, 1—¢]

and extend to [0,1] such that f. € C2. Now let 7. :=inf {t : X; € {¢,1 — €}}. Then f.(X;) fo Lf(Xs)ds is a

martingale, hence
f(Xrnr) = (Te A)

is a P*-martingale for = € [¢,1 — €]. Hence E* (f(X,.)) — Ex(7) = f(x). Now € ] 0.

4.2 Brownian motion on [0, c0)

1. Brownian motion with absorption 7 = inf {s > 0: B, = 0} and X" := B;1,5;. For f € C[0,00) consider the
odd extension f,(z) = f(z)1ly>0 + (2f(0) — f(—2)) lz<o. Then

E* (fo(Be)lr<t) = E* (fo(—=Bi)lr<t) = %EI ((fo(Bt) + fo(=Bt)) 1r<t) = f(O)P(T < 1)
For x > 0:
(TP f) () = E* (f(XPP)lrcs) + B (F(XPP)1rss) = FO)P(T < ) + E*(f(By)1rt)

Now f, € Co(R) iff f(0) = 0. Furthermore f{'(z) = f"(x)lys0 — f”(2)1z<o so we require f”(0) = 0. Hence
Labsf =1 on D(L*) = {f € Cy[0,00) : [/, f" € Co, f(0) =0= f"(0)}.

2. Brownian motion with reflection Xf°! := |B,|. For f € C[0,00) we set f.(x) = f(|z|). We have
Ty f(x) = B (f(IB))) = E* (f(By))
Hence f € D(L™) iff f, € D(£™%), and L f = £ 7, D(L™%) = {f € Co[0,00) : f/, f"" € Co[0,00), f'(0) = 0}.

Remark. Consider Af = 1f” and D(A) = {f € Co[0,00): f/, f"" € Co[0,00), f'(0) = f”(0) = 0}. This is not a
generator because one generator cannot extend another generator.
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4.3 The Feynman-Kac formula

Consider the partial differential equation

Ou(t,r) = Lu(t,z) +E&(x) - u(t, z)
u(.2) = f(a) .

which is solved by u(t,x) = Ty f () = E* f(X) for £ = 0.
Theorem 4.3.1. Let (X;) be a Feller process with (1), L and f € D(L),& € Co(S). Define

attea) = 5 (s e ([ s ) )

Then u(t,-) € D(L) and u(t,z) solves (1).

Proof. The initial condition is clearly satisfied. Furthermore u(t,-) € Cy(S) because it is a uniform limit of the
continuous function E* (f(Xt)exp( S f(Xit/n))). Now we check the differential equation, letting I(s,t) :=

t
fst &(X,)dr. Then we write "
u(t+e€x) —u(t,z) = E* (& + & +&3)
& = f(Xepe — F(X4))e! O (el(t’tﬂ) - 1)
& = (f(Xese) — F(Xy))e! D)
£y = f(Xt)eI(O’t) (el(t,tJre) B 1)

We have, uniformly in x:
B |61] < B |f(Xire) = S0 (€0 —1) = (o)

Bg = B (f(Xevd) = (X' = B7 (Tf(X0) = f(X0)e @)
lim u(t + e, 2) —u(t, )

e—0 €

= BoLfe! 0 1 BT (£(X)E(X)e )

The right-hand side is continuous in ¢, s othat u is differential with respect to t. However, it is not in the desired form.
We condition therefore on F. and then use the Markov property to obtain

u(t+e,x)=E" (u(t7X€)61(016))
so that
u(t+e,x) —u(t,x) = E* (u(t,XE) (61(0,6) - 1)) + (Teu(t, z) — u(t, x))

Divide by € and let € — 0 and see that a) the limit on the left-hand side exists by an earlier calculation b) the limit
of the first term on the right-hand side is &£(x)u(t,2) and c) the limit of the second term on the right-hand side also
exists and converges to Lu(t,x). O

4.4 Parabolic Anderson model
Let £L= A on S =79 or R? and £(x) random. On Z% we let Af(x) = Dyly—ai=1 (f(y) = f(2)).

Theorem 4.4.1 (Two cities theorem). P(¢ < ) = 1 — x~%. Then there exist two Z-valued processes Z', Z* such
that
1 2
U,(t, Zt ) + U(t, Zt ) tif 1
Yo u(t,x)

4.5 Lévy Processes
Definition 4.5.1. A Lévy-process is a Feller process with stationary independent increments.

Definition 4.5.2. A random variable Z is called infinitely divisible if for all n € N there exist iid random variables
Zimy s Ly such that Y0 | Z; 4z
Equivalently, u is infinitely divisible if for all n € N there exists p,, such that p = (u,)*".

Let ¢(n) = —log E (e™"%) be the characteristic exponent. For ¢;(0) = e¥®) we have (0) = 4 |,_o ¢.(0) =
lim,, oo (¢1/n(0) — 1).
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Lemma 4.5.1. For (¢,) sequence of characteristic functions, ¢,(0) — 1 for all 0, the following are equivalent
1. limy, o0 o (0)™ = @(0) exists for all 6 and is continuous in 0.
2. limy_yoo 1 (n(0) — 1) =: (0) exists for all 6 and is continuous in 0.

If either of the above holds then ¢(0) = e*9) is a characteristic function.

Corollary 4.5.2. 1. A characteristic function ¢ of an inifinitely divisible distribution fulfills 1. with ¢, = ¢*/™ so
that ¢(0) # 0 for all 6. Thus there is a unique representation ¢ = e¥ where 1 is continuous and ¥(0) = 0. In
particular, the ¢,, are uniquely determined to be ¢, = e¥/™.

2. Under the assumptions of the Lemma, ¢" := €™ is a characteristic function.
8. Infinitely divisible distributions are closed under weak limits.
Proof. 1. Lots of complex analysis!

2. This follows from e = lim e"(¢»—1) being continuous limit of characteristic functions to compount Poisson
distributions.

3. Indeed, if ¢, is infinitely divisible and ¢, — ¢ then apply 1. of the Lemma to (N%L/n)” = ¢n — ¢. Use the

previous point of the corollary.
O

Theorem 4.5.3. A probability measure is infinitely divisible iff it is weakly approzimable by compound Poisson dis-
tributions.

Proof. “<=" follows from the above, since compound Poisson processes are infinitely divisible.
“=7 If ¢ is infinitely divisible then ¢ = lim(¢'/"™)" = lim en(@!/" 1) O

Theorem 4.5.4 (Lévy-Khinchin formula). The law p is infinitely divisible with characteristic exponent ¢ if and only if
Y(0) = —iaf+ 50207+ [ (1 — € +i021),<1) 7(dz) for a € R,0 > 0 and © on R—0 with [ (\$|2 A 1) m(dx) < 0o

Hence any inifinitely divisible distribution is characterised by the triplet (a,o,m). 7 is called Lévy-measure.

Proof. “<” ¢ given by e? of this form is a characteristic function. If 1 is of the given form, then so is ¥/n.
“=” Choose a sequence of compound Poisson distributions such that P, — P with characteristic function

b (0) = e)\nf(ei“—l)un(dx) —. e¥n(0) b(0) =: e¥(9)

where 1, (0) = [ go(z)\yvn(dz) + ia, 0 where a,, = f:v1|x‘<1)\ vp(dz). Does A, vy, converge? Consider

Ba(0) = 00(0) = 5 [ (s}

1 0+1
:/ e\ vy (da) — 7/ / e X\ (dz)ds + Ay,
2 6—1

_ / ¢ife (1 - (; /_ 11 eismd5> /\nun(dx)> - / ¢t (1 - Smf)) At (de)

2 for small z. Since ¢n — ¢ uniformly on compact intervals (by Lévy’s continuity theorem)

Now using 1 — 2@ ~

it follows that v, — ¥ umformly on compact intervals and thus also 1,, — 1 converges pointwise.

Furthermore, using ¢(—0) = #(6), i.e. Im1) being odd, as well as |¢p(0)| < 1, i.e. Reyp < 0, it follows that ¥(0) =
-5 f Retp(s)ds > 0 with equality iff Rey = 0 on [—1,1]. But since | [ e"*P(dz)| = 1 for all |6 §i it follows that
suppP C ag(0) + 2”Z for all #, hence P = §p, so that (a,0,0) is a suitable triple. There, assume 1¥(0) > 0. Then

1, (0) > 0 for suﬁimently large n, hence 1,,(6)/1,,(0) is characteristic function of 7, (dz) = — ’(*0) (2)vn(dx). Since

¥, — b, U — U with characteristic function () /+(0). Hence

[ovteirantin) ~ [ folainian) [ fo@iido)

where fp(x) = % where f is bounded and continuous with f5(0) = —3%(0)6%. Since 1, — 1, we also have
a = lim, . a, existing so that

0(6) = lim 6,(6) = a0 + [ fo(w)7(do) = iad ~ 5HOFONE + [ ga(w)n(ae)
where 7(dz) := 1,204 ( ) v(dz) satisfies [(1 A z?)m(dz) < oco. O
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From the definition of Lévy process we see that the law of X; must be infinitely divisible. Define 9.(0) =
—log E (e%+) for 6 € R,t > 0. In particular, mt; (6) = ¥, (6) = n)y, /,(6) so that for t € QT we have ¢y (6) = t1h1(6).
This holds for all £ € R because the paths are right-continuous, so that every Lévy-process has F (eth) = e t¥(0),

Theorem 4.5.5. Suppose a € R,0 > 0,7 a measure on R — 0 such that [ <|x|2 A 1) m(dx) < co. Define ¥(0) as in

the Lévy-Khinchin formula. Then there is a Lévy-process which satisfies E(eXt) = et (),

5 Spin Systems

Let V' be a countable space, S = {0, 1}V. Note that S is compact in the product topology. We let ¢(z,n) > 0 be a
uniformly bounded function V' x S — R such that ¢(x, ) is continuous for each x € V. We let

(), sfu
n’”(z)_{?—n(zL 2=

Aim: Define a Feller process such that at each time only one state is changed, e.g. n becomes 7, at rate c¢(x,n). We

consider Lf(1) = Y ,cy- c(@,n) (f(na) — f(n)) defined on D = {f € C(S) : I [l := Xper supyes [f () — F(1)] < 00}

Claim. If f € D then f is Lipschitz continuous with respect to some norm that generates the product topology. Note
that the product topology is generated by du(n,§) = >, oy a(z) [n(x) — &(z)| where a > 0 and )\, a(z) < oco.

Proof. If f € D then ay(x) := sup,cg|f(n:) — f(n)| and f is Lipschitz with respect to the metric induced by ay.
Indeed, Letting I = {z € V : {(z) # n(z)} we obtain

11

[F(n) = FEOI <D |FED) = (Y
i=1
where £° = 7 and <£i)iEN is a sequence of single changes. Then

F) = FOI < S ap(@) = da, (1)

zel

O

Claim. For all f € D we have Lf € C(S).

Proof. Ve > 03N, > 0 such that

c(@i,n) |f(ne,) = F(n)| < ayp (25) <€
for i > N, because ||| f|| < e. Hence
ILf(n) = Lf(nz,)| < 2€, i > Ne.

O

Let £ be the closure of £. We need to check the conditions for the generator.
1) Use Stone-Weierstrass: D is an algebra of continuous functions that separate points on a compact space.

2) Suppose f € D and A >0, f — ALf = g. Since S is compact, we have a minimum 7 of f. Hence, using Lf(n) > 0,

5irelgf(é) =f(n) =g > gggg(f)

4) S is compact so that 1 € C(S) and £1 = 0.

8) Let e := infycvyes (c(u,n) + c(u, 1)) and a(z, u) = sup, ¢ 5 [c(z,ny) — c(z,n)|. For a € £'(V) we define Fev(u) :=
> veviosy @(x)a(x,u), and we want to show that I' is an operator on ¢'(V). T is well-defined if M :=
Sup,cy ilﬁém a(x,u) < oo and then ||I'| = M. For f € C(S) and x € V we define Ay(z) := sup, cg [ f(1n:) — f(n)]

Lemma 5.0.1. Assume either f € D or f continuous and c(x,-) = 0 except for finitely many x. Then, if f — Lf =
gE€DXN>0,AM <1+ Xe then Ay < ((1—Xe) I — ATt A, where the inverse is defined via ((1 — Ae) I — D)o =

k
1 ) A k
T+ re pyas (1+)\e> Ia.

Theorem 5.0.2. Let M < oo. Then L is a probability generator and Ary < e’ftetFAf
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Proof. L satisfies properties 1),2),4) because £ does so. For 3) take (V},) to be an increasing sequence of finite subsets
Vo, C V such that J, V. = V. Set Lf(n) = > .cv, c(z,n) (f(ne) — f(n)) for f € D. L, is a bounded operator, so
that R(I — AL,) = C(S) for all A > 0. For a given g € D, f,, € C(S) such that f,, — AL, f, = g, L, satisfies the
condition of the previous Lemma and for A small we get A\M < 1+ Xe. Define g, = f, — \Lf, € R(I — A\L). Set
K :=sup,cy  es c(®,n). Then

lgn = gl = ML= La) FI ALY Ap (@) SAK Y (L+A) T =AL) ™ Ay(x)
¢V, ¢V,

Since Ay € £1(S) the right-hand side goes to zero and g, — g. We conclude that g € R(I —AL) D D and R(I — AL)
is dense in C'(S). Again, this tells us that R(I — AL) is closed, hence equal to C(S). O

5.1 Ergodicity of spin systems
Definition 5.1.1. p is called stationary for a Feller process (X;) if for all f € Cy(S),t > 0:

[ 1isdn= [ san
/ﬁfdu =0

Theorem 5.1.1. If S is compact, then I := {p € P(S) : p is invariant for (X¢):} # 0.

Equivalently, for all f € core(£):

Definition 5.1.2 (Ergodicity). A spin system is ergodic if |I| = 1. Equivalently:
Yo € P(S) : vTy %

0 if |lo—ul>1
d 1 _ )
Example 5.1 (Voter model for Z¢). Let c(2,n) = 55 3 ,.1.—yi=1 Hn(w)#n(x)} and a(z,u) = { L i el =1
so that M = 1, and the process exists. It is not ergodic, since d;(n) = 1 if n(z) = i for all  and 0 otherwise are both
invariant.
Theorem 5.1.2. Ife > M then X is ergodic.
Proof. Let n,& € S and change 7 into £ pointwise:

0’ =mn, 0" ="
so that £ = lim; o, °. Now let f € C(S), so that

1F) = FOI <D0 = fH] <D Ap(a)
i=1

zeV

By Theorem 5.0.2 we obtain that ||T; ]| < e™ =9 f||, so that

sup I Tef () = Tef ()] < M= £l
s

Letting p € I, v € P(S), f € D, we obtain

\ [ rau— [ sawn)

Now since D is dense in C'(.S), the claim follows. O

/S (T 0) =T () (0@ w)(ande)| < M= ] 0

Example 5.2 (Noisy voter model). c(z,n) = >>, p(®,Y)1y(x)£nw) T Bly@)=o + ¥ly@)=1 where 8,7 > 0.
Example 5.3 (Contact process). V graph of bounded degree, and write = ~ y if « and y are neighbors. Set

o, if 7(x)
() _{ A Hy~ain(y) =1}, if ()

Interpretation: = € V individuals of a population, n(z) = 1 if z is infected and n(x) = 0 if = is healthy. Jp is an
invariant measure. Infected people get healthy at rate 1 but infect their neighbors at rate A > 0. Are there other
invariant measures?

No, if € = inf, ,, (c(u,n) + c(u,ny)) = 1 > Amax degree(V) = sup,, Zu;éz sup,, |e(z,n) — c(z,mu)| = M.

1
0
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Example 5.4 (Stochastic Ising Model). V = Z¢, 8 > 0 inverse temperature, c¢(x,7) = exp (7,8 Dy~ (2n(z) = 1)(2n(y) — 1))

Interpretation: 2n(z) — 1 € {—1,1} are spins. Neighboring atoms prefer to align their spin values (in particular when
B is large, i.e. temperature low). We have € = 2, M = 2de?¥(1 — e=28). Feller process (1) is hence well-defined and
has a unique invariant measure if § is small enough. In fact, the following hold:

e For d =1, it is ergodic for all 5.

e For d > 1 it is ergodic iff 5 < S..

5.2 Attractive Spin Systems and Coupling
Definition 5.2.1. A coupling of (1;) and (§;) on S is a process (ﬁt,é}) on S x S with 7 £ 7 and Et £ &.

Lemma 5.2.1. Let (n:) have rate c1(xz,n) and (&) have rates co(x,&). If n < & implies c1(xz,n) < co(x,&) for
n(x) =&(x) =0 and c1(x,n) > ca(x, &) for n(x) = £(x) = 1. Then there is a coupling such that

V< &P (VE>0:m, < &) =1

Proof. We give rates for (n:,&;): on the space {(0,0),(0,1),(1,1)}:

(1,1),  with rate ¢;(z,n)

(0,0) = { (0,1),  with rate co(z,&) — c1(x,n)
(0,0),  with rate ca(z, &)

(0,1) = { (1,1), with rate ¢1(x,n)
(0,0),  with rate co(z,&)

(1,1) = { (0,1),  with rate ¢1(x,n) — ca(x, &)

Definition 5.2.2 (Attractive spin system). A spin system is called attractive if

C(wvn) < C(l‘7f) if 77(55) = f(.ﬁ)
nsé= { c(x,n) > clx,€) it n(z) = £(x)

(Noisy) voter models, contact processes and the stochastic Ising model are all attractive.

0
1

Corollary 5.2.2. For any attractive spin system there is a coupling of two copies (nt, &) started in n < & such that
P("’f)(Vt M < §t) =1.

Proof. Lemma, for ¢; = cs. O

Definition 5.2.3. Function f € C(S5) is called increasing if n < & = f(n) < f(£). Denote the set consisting of these
functions f by CT(S). For u,v € P(S) write p < v & [ fdu < [ fdv for all f € CT(s).

Lemma 5.2.3. Let (1) be an attractive spin system, and (1) its corresponding semi-group. Then
1. feCt=TfeCt
2. w3v=uly VI

Proof. 1. Let n <. Then

Ty f(n) = E"f(n) = B (f1 (4, &) < B9 (fa(mi, &) = ES(f(me)) = (T.f)(€)

2. For f € CT we have

[tin< [riv= [Tigan< [Tsare [ raqr) < [ raem)

Theorem 5.2.4. Let (1) be an attractive spin system
1. 6oTs = 6Ty and 61 > 0 for s < t.
2.

v = limy_ oo 0013 exists and is invariant
U= limy_, o 617} exists and is invariant

3. VM c P(S) Vs Z 0: 5QTS = /JTS j 5LTS
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4. If vi=limg_ oo puTy, for ty 1 oo exists thenv X v 2 T.

Proof. 1. dg % 0oT, = 60Ty = 0oTr4¢
2. For each t 1 oo dgT%, has a limit point, which are the same due to 1.
3. dp =X p =6y for all p, hence also 60T} < pTy < 61T}

4. Follows from 3.

Corollary 5.2.5. An attractive spin system is ergodic iff v = U.
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