Exercises for Stochastic Processes

Tutorial exercises:

T1. Let $S = \{0, 1\}$. Consider the general Q-matrix

$$\begin{pmatrix} -\beta & \beta \\ \delta & -\delta \end{pmatrix},\tag{1}$$

for some $\beta, \delta \geq 0$. Show that the corresponding transition probabilities are $p_t(x, y) = \mathbb{1}_{\{x=y\}}$ if $\beta + \delta = 0$, and otherwise they are given by

$$p_{t}(0,0) = \frac{\delta}{\beta + \delta} + \frac{\beta}{\beta + \delta} e^{-t(\beta + \delta)}, \quad p_{t}(0,1) = \frac{\beta}{\beta + \delta} \left(1 - e^{-t(\beta + \delta)}\right),$$

$$p_{t}(1,1) = \frac{\beta}{\beta + \delta} + \frac{\delta}{\beta + \delta} e^{-t(\beta + \delta)}, \quad p_{t}(1,0) = \frac{\delta}{\beta + \delta} \left(1 - e^{-t(\beta + \delta)}\right). \tag{2}$$

- T2. Consider the following stochastic process X(t) on $\{0,1\}$. If the process is in 0 it stays in this state for an exponential distributed time with parameter β and then jumps to state 1. If the process is in state 1 it stays in this state for an exponential distributed time with parameter δ and the goes to 0. Let $p_t(i,j)$ be the probability that X(t) = j if X(0) = i.
 - (a) Show that

$$p_t(0,1) = \int_0^t \beta e^{-\beta s} p_{t-s}(1,1) ds,$$

and

$$p_t(1,0) = \int_0^t \delta e^{-\delta s} p_{t-s}(0,0) ds,$$

- (b) Show that the Q-matrix for this process is the same as in (1), so that the transition probabilities for this process are given in (2).
- T3. With the notations used in the lecture in the probabilistic construction of a Markov chain with a given Q-matrix, show that the following statements are equivalent:
 - (a) $\mathbb{P}(N(t) < \infty) = 1$ for all $t \ge 0$.
 - (b) $\sum \tau_n = \infty$ a.s.
 - (c) $\sum \frac{1}{c(Z_n)} = \infty$ a.s.

Homework exercises:

H1. Let Q be a Q-matrix on a finite state space. Show that $p_t(x,y)$ defined by

$$P_t := \sum_{k=0}^{\infty} \frac{t^k Q^k}{k!}$$

is a transition function and show that

$$q(x,y) = \frac{\mathrm{d}}{\mathrm{d}t} p_t(x,y) \bigg|_{t=0}$$
.

- H2. Show that, for any continuous time Markov chain with deterministic starting point, the time of the first jump has an exponential distribution (possibly with parameter 0 or ∞). Does this generalize to arbitrary initial distributions?
- H3. Let (X_n) be a sequence of independent continuous time Markov chains on $\{0,1\}$ with Q-matrices $\begin{pmatrix} -\beta & \beta \\ \delta & -\delta \end{pmatrix}$. Assume that $\sum \frac{\beta_n}{\beta_n + \delta_n} < \infty$. Define

$$X(t) := (X_1(t), X_2(t), \dots)$$

and

$$S := \left\{ x \in \{0, 1\}^{\mathbb{N}} \mid \sum x_n < \infty \right\} .$$

- (a) Show that S is countable and $\mathbb{P}(X(t) \in S \mid X(0) \in S) = 1$!
- (b) Show that $p_t(x,y) := \mathbb{P}(X(t) = y \mid X(0) = x)$ is a transition function on S!
- (c) Assume that, moreover, $\sum \beta_n = \infty$. Show that $c(x) = \infty$ for all $x \in S!$
- (d) Show that, for any $x \in S$ and $\epsilon > 0$,

$$\mathbb{P}^x(X(t) = x)$$
 for all $t < \epsilon = 0$.

Conclude that there is no Markov chain with transition function p!

Deadline: Monday, 5.12.16