Exercises for Stochastic Processes

Tutorial exercises:

T1. Let B be a Brownian motion and s, c > 0. Show that

$$X_t := B_{s+t} - B_s$$

and

$$Y_t := \frac{B_{ct}}{\sqrt{c}}$$

(each defined for $t \geq 0$) also define Brownian motions!

T2. Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is a bounded measurable function and X and Y are random variables such that X is \mathfrak{G} -measurable and Y is independent of \mathfrak{G} . Show that

$$\mathbb{E}(f(X,Y) \mid \mathfrak{G}) = g(X)$$

with

$$g(x) = \mathbb{E}(f(x, Y))!$$

T3. Let B be a Brownian motion. Show that $\frac{B_t}{t} \xrightarrow{t \to \infty} 0$ a.s.!

T4. Explain why

$$X_t := \int_0^t B_s \mathrm{d}s \quad (t \ge 0)$$

defines a Gaussian process! Compute its mean and covariance function!

Homework exercises:

- H1. Let B be a Brownian motion and 0 < s < t. Compute $\mathbb{P}(B_s > 0, B_t > 0)!$
- H2. (a) Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. with mean zero and finite variance and let $S_n := \sum_{k=1}^n X_k$. Show that a.s.

$$\liminf_{n \to \infty} \frac{1}{\sqrt{n}} S_n = -\infty$$

and

$$\limsup_{n \to \infty} \frac{1}{\sqrt{n}} S_n = \infty \,!$$

(Hint: First prove that $\mathbb{P}(|\lim \inf \frac{1}{\sqrt{n}} S_n|, |\lim \sup \frac{1}{\sqrt{n}} S_n| < C) < 1$ for all C > 0, by assuming the contrary and finding a contradiction with the central limit theorem. Then apply Kolmogorov's 0-1 law.)

(b) Let B be a Brownian motion.

Show that

$$\limsup_{t \uparrow \infty} \frac{B_t}{\sqrt{t}} = \limsup_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = \infty$$

and

$$\liminf_{t \uparrow \infty} \frac{B_t}{\sqrt{t}} = \liminf_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = -\infty \quad \text{a.s.!}$$

H3. (a) Let B be a Brownian motion. Show that the process defined by

$$X_t := B_t - tB_1$$

for $t \in [0,1]$ is Gaussian and compute its covariance function!

(b) Show that, for $0 < t_1 < \cdots < t_n < 1$ and real intervals $[a_1, b_1], \ldots, [a_n, b_n]$, the joint probabilities

$$\mathbb{P}(B_{t_1} \in [a_1, b_1], \dots, B_{t_n} \in [a_n, b_n] \mid |B_1| \le \epsilon)$$

converge to

$$\mathbb{P}(X_{t_1} \in [a_1, b_1], \dots, X_{t_n} \in [a_n, b_n])$$

as $\epsilon \to 0!$

(Hint: First show that B_1 is independent of the vector $(X_{t_1}, \ldots, X_{t_n})$.)

Deadline: Monday, 7.11.16