Klausur zur Mathematik IV für gymnasiales Lehramt Modularisiert (neue LPO)

Nachname:				Vor	Vorname:			
Matrikelnummer:								
Geburtsdatum:								
alte LPO \square neue LPO \boxtimes .								
	1	2	3	4	5	6	\sum	

Bitte beachten Sie:

- (a) Bitte tragen Sie auf jedem Blatt, das Sie abgeben, Ihren Namen ein!
- (b) Arbeitszeit: 16:15 17:55 Uhr.
- (c) Zugelassene Hilfsmittel: Schreibgerät.
- (d) Schreiben Sie auf gar keinen Fall Lösungsvorschläge zu verschiedenen Aufgaben auf das selbe Blatt!
- (e) Jede Aufgabe gibt die selbe Punktzahl.
- (f) Bei Bedarf kann zusätzlich Papier angefordert werden.

Viel Erfolg!

Aufgabenstellung

Aufgabe 1.

Es sei $f_1: \mathbb{R}^2 \to \mathbb{R}$, $f_1(x,y) = x^2 - y^2 + 5$. Finden Sie eine Funktion $f_2: \mathbb{R}^2 \to \mathbb{R}$, sodass $f(z) := f_1(x,y) + i f_2(x,y)$, z = x + i y komplex differenzierbar ist.

Aufgabe 2.

Berechnen Sie das Wegintegral

$$\int_{\gamma} \frac{1+z^2}{z} dz ,$$

wobei γ

- (a) der Kreisbogen um die Null von 1 nach i in positivem Umlauf ist.
- (b) der Kreisbogen um die Null von 1 nach i in negativem Umlauf ist, indem Sie die Cauchy-Integralformel und Ihr Ergebnis aus Aufgabenteil (a) verwenden.

Aufgabe 3.

Geben Sie die Laurentreihen (Entwicklungspunkt $z_0 = 0$) folgender Funktionen an und bestimmen Sie Hauptteil, Nebenteil und die Residuen.

(a)
$$f(z) = \frac{\cos(z)}{z}$$

(b)
$$f(z) = \frac{\sin(z)}{z}$$

Aufgabe 4.

Berechnen Sie das Integral $\int_{-\infty}^{\infty} \frac{1}{x^2+1} dx$ mithilfe des Residuensatzes (achten Sie auf korrekte Argumentation bei der Diskussion des Beitrages des komplexen Kreisbogens im Unendlichen).

Aufgabe 5.

Es sei $M := \{x \in [0,1] \mid x \in \mathbb{Q}\}$. Zeigen Sie, dass für das innere Jordanmaß von M gilt $\lambda_I(M) = 0$. Geben Sie auch das äußere Jordanmaß der Menge M an (kein Beweis nötig). Ist M Jordan-messbar?

Aufgabe 6.

Betrachten Sie die Menge der Lösungen $\varphi(x)$ der Differentialgleichung $y' = \frac{3}{2}\sqrt[3]{y} \equiv \frac{3}{2}y^{\frac{1}{3}}$.

- (a) Finden Sie zwei unterschiedliche Lösungen $\varphi(x)$ mit der selben Anfangsbedingung $\varphi(0) = 0$.
- (b) Sei $G = \mathbb{R} \times (1,2)$. Begründen Sie, warum die Differentialgleichung für jede Anfangsbedingung $\varphi(x_0) = y_0$ mit $(x_0, y_0) \in G$ eine eindeutige Lösung in G besitzt.