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Abstract

The implications of the relativistic space-time structure for a physical description by quan-
tum mechanical wave-functions are investigated. On the basis of a detailed analysis of Bell’s
concept of local causality, which is violated in quantum theory, we argue that this is a sub-
tle, as well as an important effort. A central requirement appearing in relativistic quantum
mechanics, namely local commutativity, is analyzed in detail and possible justifications
are given and discussed. The complexity of the implications of wave function reduction
in connection with Minkowski space-time are illustrated by a quantum mechanical mea-
surement procedure which was proposed by Aharonov and Albert. This procedure and its
relativistic implications are explicitly analyzed and discussed in terms of state evolution.
This analysis shows that the usual notion of state evolution fails in relativistic quantum
theory. Two possible solutions of this problem are given. In particular, it is shown that
also a theory with a distinguished foliation of space-time into space-like leafs – accounting
for nonlocality – makes the right predictions for the Aharonov-Albert experiment. We will
repeatedly encounter that an analysis of the wave-function alone does not suffice to answer
the question of relativistic compatibility of the theory, but that the actual events in space
time, which are predicted and described by the theory, are crucial. Relativistic versions of
quantum mechanical theories which precisely describe actual processes in space-time are
briefly described and discussed in the appendix.

∗Mathematisches Institut, LMU München, christian.beck@math.lmu.de
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Clarification & Notation

Clarification & Notation

Space-Time

Minkowski space-time, denoted by M , is R4 endowed with the Minkowski metric gµν , where
our choice of signature is (1,−1,−1,−1). Pairs of events x, y ∈ M are said to be space-like
separated if xµyµ < 0 and time-like separated if xµyµ > 0. Two non intersecting space-time
regions A and B are said to be space-like (time-like) separated if each space-time point x ∈ A
is space-like (time-like) separated with respect to each space-time point in y ∈ B. The absolute
(causal) future of some space-time point x, denoted by F (x), is the set of all points y ∈ M
for which xµyµ > 0 and x0 < y0 (since the time-order of time-like separated events is Lorentz
invariant this set is also invariant under Lorentz transformations). F (x) is the interior of the
forward light-cone of event x. In contrast the absolute (causal) past of x, denoted by P(x), is
the set of points y ∈M for which also xµyµ > 0 but x0 > y0. This (also Lorentz invariant) set
is given by the interior of the backward light-cone of x.

Operators & Values

To avoid confusion within the calculations I will distinguish between some physical quantity
A , its corresponding selfadjoint operator Â (acting on Hilbertspace) and its actual (“measured“)
value α̃, where necessary. This is done by clapping operators a hat on and indicating actual
values appropriately (where necessary). Physical quantities and their generic (variable) values
are not distinguished in such a way, the meaning of the symbols should be clear from the context
in this case.

Wave Equations

All wave-functions appearing within this work are assumed to be solutions of Lorentz invari-
ant equations, like the Dirac equation (nonetheless I will sometimes refer to the corresponding
unitary evolution, e.g. generated by the Dirac-Hamiltonian, as Schrödinger-evolution). Negative-
energy-states will not be considered here. In addition we assume that all relevant length-scales
(e.g. the scales of interaction of particles with some device) are much larger than the Compton-
wavelength of the involved particles, such that we can neglect particle creation and annihilation
effects. The Planck constant ~ and the velocity of light c are set equal to one.

Spin

Considerations will be often illustrated by considering spin-1
2
-particles. Since the only aim is

to shed some light on delicate conceptual implications of wave-function collapse and quantum
nonlocality in a relativistic framework I will omit to deal with transformation properties of the
corresponding wave-functions under Lorentz transformations. Ghirardi argued [31, 32] that this
can be justified by exchanging the spin with some physical quantity which has an analog un-
derlying mathematical description, but which is a scalar under Lorentz transformations, like the
isospin. Nevertheless I will use the terminology of spin and describe corresponding measurement
situations in which devices like Stern-Gerlach magnets are involved.



Clarification & Notation

The mathematical description in brief is the following: Consider some particle with a degree
of freedom which is described by the elements of a two-dimensional Hilbertspace HS. Further
this degree of freedom is associated with three non-commuting self-adjoint operators acting on
HS (and describing the measurement statistics of various associated experiments) which we
shall denote by σ̂x, σ̂y and σ̂z. These operators obey the algebra σ̂xiσ̂xj = δij1HS + iεijkσ̂xk
(i.e. they are (essentially) the infinitesimal generators of group SU(2)) and we shall call them
spin-operators. Each operator has eigenvalues ±1. Let us denote the eigenstates of σ̂z (which
will be most used in calculations) in the following way

σ̂z |↑〉 = + |↑〉 and σ̂z |↓〉 = − |↓〉 , (1)

(i.e. in spectral representation we have σ̂z =|↑〉〈↑| − |↓〉〈↓|). The eigenstates of the remaining
two operators are denoted analogously, only with indicated x and y, respectively, i.e.

σ̂x |↑〉x = + |↑〉x and σ̂x |↓〉x = − |↓〉x
σ̂y |↑〉y = + |↑〉y and σ̂y |↓〉y = − |↓〉y

(2)

From this, appropriate basis transformations can be calculated: Denote σ̂ := (σ̂x, σ̂y, σ̂z) and
consider the unit-vector u ∈ R3 which is characterized by the polar angles θ and ϕ. Then the
eigenvectors of the operator σ̂u := u · σ̂ expanded in the eigenbasis of σ̂z read

|↑〉u = cos
θ

2
e−i

ϕ
2 |↑〉+ sin

θ

2
ei
ϕ
2 |↓〉 with σ̂u |↑〉u = + |↑〉u

|↓〉u = − sin
θ

2
e−i

ϕ
2 |↑〉+ cos

θ

2
ei
ϕ
2 |↓〉 with σ̂u |↓〉u = − |↓〉u

(3)

The complete Hilbertspace is the tensor-product (the product-space) of HS with the Hilbert-
space related to the other degrees of freedom (in particular the spatial ones) of the particle under
consideration. But we will ignore other degrees of freedom in calculations dealing with spin.

Most of the illustrative examples will concern a two-particle spin-1
2
-system with the four-

dimensional Hilbertspace HS = HS1 ⊗ HS2 . If appropriate we will use as the orthonormal

basis of HS either the common eigenstates of the commuting operators σ̂
(1)
z ≡ σ̂

(1)
z ⊗ 1HS2

and

σ̂
(2)
z ≡ 1HS1

⊗ σ̂(2)
z given by

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 (4)

(where we denote | ab〉 :=| a〉(1)⊗ | b〉(2)) or the common eigenstates of the commuting operators

σ̂totz = σ̂
(1)
z + σ̂

(2)
z and (σ̂tot)2 = (σ̂totx )2 + (σ̂toty )2 + (σ̂totz )2 given by

|↑↑〉 , | Ψ+〉 :=
1√
2

(|↑↓〉+ |↓↑〉) , |↓↓〉 and | Ψ−〉 :=
1√
2

(|↑↓〉− |↓↑〉) . (5)

The latter state | Ψ−〉 is the singlet state which obeys (σ̂tot)2 | Ψ−〉 = 0. It will be of some
importance for our considerations that it is the only element of HS which is a common eigenstate
of the non-commuting operators σ̂totx , σ̂toty and σ̂totz (with eigenvalue zero in each case).



Clarification & Notation

EPR

A crucial gedankenexperiment to illustrate our considerations will be Bohm’s version of the
EPR-experiment [15] (EPRB). It is about a system of two spatially separated spin-1

2
-particles

in the singlet state | Ψ−〉, which – at some time – are exposed to inhomogeneous magnetic
fields, respectively. The fields are caused by Stern-Gerlach magnets (SGMs). If not stated
otherwise the SGMs are both to be thought of as oriented in the z-direction. Consequently, if the
system is in an eigenstate of σ̂

(i)
z , particle(i) is deflected upwards by SGM(i) if the corresponding

eigenvalue is +1 and downwards if the eigenvalue is −1. By measuring the position of the
respective particle afterwards, the z-component of its spin (or the respective component if the
SGM is in a different orientation) is determined. Whenever there is no risk of misunderstanding
the subsequent position measurement will not be mentioned explicitly and the interaction of
particle(i) with SGM(i) will be called a measurement of the respective component of the spin of
that particle. But when it might serve to gain more clarity this measurement will be decomposed
into the unitary interaction with the (external) magnetic field of the SGM and a subsequent
position measurement (e.g. the particle hits a photographic plate).

Pictures

Sometimes EPRB-like situations will be illustrated in space-time diagrams. In these pictures
the SGMs are only indicated at the time of interaction with the respective particles, the source
only at the time of emission, and their world-lines are not sketched. The deflections of the
particles at the SGMs are indicated symbolically, so the particles’ world-lines after the passage
of the SGMs are not to be taken literally. But also the world-lines of the particles prior to
the interactions with the SGMs are rather symbolically: For example all inferred findings will
be also valid for the relativistic collapse-theory rGRWf [61] (see chapter 4.1.1 in which it is
appropriate to say that (in the vast majority of cases) there are no particles at all in the space-
time region laying between the event of particle emission (from some particle source) and the
events of interaction with the SGMs.



1 Introduction

1.1 Relativistic Quantum Theory: The Meaning of “Relativistic”

Relativity principle, invariance of physical laws under Lorentz-/Poincare-transformations, causal-
ity, covariance of physical description, micro-causality, macro-causality, impossibility of faster
than light signaling, locality, impossibility of superluminal matter-/energy-transport, no pre-
ferred Lorentz-frame of reference, local causality, physical description without resorting to con-
cepts related to simultaneity, no extra structures on Minkowski space-time apart from the
Lorentz-metric...

The requirements a certain theory has to fulfill in order to deserve the label “relativistic
theory”2 are formulated in a variety of different expressions, some of which are tautologically
equivalent, some of which manifest their logical connections or equivalence after some deductive
reasoning and some of which need disambiguation. Indeed, all these notions of “relativistic” turn
out to be (more or less) equivalent if we take Einsteins conception of causal structures connecting
different parts of the physical universe as a basis, i.e. that all causal connections between spatially
separated objects of physical description must be conveyed by something which propagates in
space (a continuous chain of cause and effect), like it is without question the case for ordinary
physical interactions3.

Quantum Theory

But if we are concerned with quantum theory and take the consequences of physical descrip-
tion by a wave-function, living not on physical but on configurational space, seriously – and
Bell’s theorem suggests that we have to – these things become extraordinarily subtle. Then it is
not true anymore that the above requirements of relativity are all equivalent and it is possible,
and indeed necessary, to construct theories which conform to some of them but not to others.
Therefore, one could say that there are different “degrees of compatibility with relativity”. And
if one follows the discussions and investigations about that issue it becomes indeed a bit unclear
what the true notion of “relativistic” is, to be set in stone.

2Within this work I will confine myself to the subject of special relativity and that is the sense in which I use

the term “relativistic”. But a huge part of the reasoning within these lines has also implications for analogous

issues, if it is applied to general relativistic space-time (with appropriate substitutions of respective terms and

concepts).
3This assertion is a little bit sloppy. Indeed one can only deduce the existence of an invariant (not necessarily

maximal) velocity from the relativity principle (see e.g. [55]) and for the actual equivalence of the above “rela-

tivistic requirements“, Einsteins causal conception must be supplemented, e.g. by the requirement that causes

must precede their effects in directed causal processes (with appropriate definition of a directed causal process –

I will come to this later). For a detailed discussion on e.g. superluminal signals within a relativistic theory see

[43].

1



1.2 Relativistic Quantum Theory: The Meaning of Events

1.2 Relativistic Quantum Theory: The Meaning of Events

In reasoning about quantum mechanics within a special relativistic realm it becomes also very
striking that one has to specify what the events in space-time actually are, which are predicted
and described by the theory: We will encounter that different answers to this question will
yield very different relativistic properties of the theory, especially very different “degrees of
compatibility” of quantum theory with relativistic space-time structure.

There is an ongoing arduous debate in quantum mechanics about the nature and conceptual
status of these events. Apart from speculative sophistications about the nature (or non-nature)
of reality within such discussions, we should at least regard the positions of pointers (and the
readouts on computer screens etc.) in laboratories as somehow objectively occurring “events in
space-time“ predicted by quantum theory: If the theory shall provide predictions for possible
human perceptions (e.g. in the laboratory) there must be objects in the theory which correspond
to objects of possible sensual perceptions which are confined to space-time. John Bell [9] called
these objects of the theory local beables and various authors introduced the concept of primitive
ontology [4, 27, 28, 64, 5] to comprise these elements of the theory.

Primitive Ontology

The epithet ”primitive“ expresses the correspondence of these objects of the theory to the
”primitive objects” which fill the world of our perceptions: the stuff pointers, tables, chairs and
trees are made of, i.e.matter. It is controversial, for example, if it is adequate to give the wave-
function ontological status in quantum theory but (without entering this discussion here) there
might be arguments which are applicable to justify such an interpretation of the wave-function.
However, the pure wave-function as a function on configuration space cannot immediately be
regarded as a kind of “field” on physical space and therefore (although it might be part of the
ontology of the theory) it cannot be part of the primitive ontology. And further – as I will
argue in detail – within a relativistic theory one cannot create the primitive ontology out of
the wave-function in a naive way (i.e. without an substantial amount of additional structure)
without creating inconsistency.

Thus, for our interest here this is the crucial starting point: In order to gain predictions for
events occurring in physical space out of an abstract mathematical description by a function
Ψ(x1, ..., xN , t) living on configurational space4 R3N , a mechanism must be specified which maps
this level of mathematical description onto the level of physical predictions for events occurring
in R3.

Measurement Problem

In textbooks quantum mechanics such a mechanism is usually given by some primitive on-
tology of measurement events which enters into the basic formulation of the theory (forcing –
in addition to the linear, deterministic unitary Schrödinger evolution – as a second dynamical
principle the wave-function to undergo a nonlinear, stochastic dynamics) together with Born’s
probability rule as the probabilistic prediction for these primitive measurement events: the physi-
cal prediction given by the theory. It is well known and extensively discussed in the corresponding

4More appropriate: a function Ψ(x1, t1, ..., xN , tN ) living on configuational space-time MN within every

precise relativistic many-particle-theory with a wave-function.

2



1.2 Relativistic Quantum Theory: The Meaning of Events

literature that this ontology of measurement events is far too vague as to serve as a basic ingre-
dient of the theory’s formulation without creating inconsistencies: The concept breaks down as
soon as we require the particles, the measurement device consists of, to be guided by the laws
of quantum theory, too5. For further arguments and discussions on that issue I would like to
refer the reader to the mentioned literature (especially Schrödinger [52] as the ingenious starting
point and Bell [9] as a big highlight of these discussions) and leave it here by citing a phrase (a
phrase, it is worth to think about more than a few minutes...) from the first sides of a famous
quantum mechanics textbook:

“...Thus quantum mechanics occupies a very unusual place among physical the-
ories: it contains classical mechanics as a limiting case, yet at the same time it
requires this limiting case for its own formulation...” [41].

With John Bell I see two considerable types of candidate theories to avoid these conceptual
inconsistencies without departing (to much) from the predictions of quantum-mechanics:

i) Either we stick to the desire to construct the primitive ontology exclusively out of the
wave-function. Then we have to give a precise law for its evolution which accounts also for the
nonlinear part (in addition to the Schrödinger-evolution) without resorting to vague concepts like
“measurement”. And once we have this, we have to give a law for physical events in space-time
(the primitive ontology) into which only the wave-function enters as a free variable.

ii) Or we start with some (reasonable) primitive ontology and find a law, which determines
the time evolution of this variable by the wave-function in such a way, that the predictions of
quantum theory can be deduced (preferably simple) from its dynamics.

GRW

Theories of candidate theory type i) are the so called collapse theories or dynamical reduction
models. The first attempt in this direction was presented by Ghirardi, Rimini and Weber [36]
(GRW ) in 1986 and such theories have been developed further until now. They incorporate the
stochastic reduction process of the wave-function into the basic formulation of the theory in a

5There is a widespread belief that a dynamical mechanism already contained in standard quantum mechanics

– namely decoherence – is sufficient to solve this puzzle. I do not doubt that decoherence is essential to explain

why quantum interference effects do not show up on macroscopic scales. But that is not the problem here. The

point is that – and that is perhaps the right place to use Bohr’s and Heisenberg’s terminology – decoherence

processes do not yield “transitions form the potential to the actual”: If we apply no fundamental dynamics to the

wave-function but the linear Schrödinger evolution, superpositions will evolve to superpositions, no matter if we

ignore the (dynamically relevant) environment in the appropriate way (i.e. by tracing it out). If we admit (and

we should) that description by statistical mixtures cannot be the fundamental description, i.e. that any physical

system has a wave-function if we only make it big enough (e.g. by including the environment), linearity with its

grievous consequences is inescapable (irrespective if we do not know the big wave-function explicitly, of course).

To cut a long story short: We cannot deduce a fundamental nonlinear stochastic dynamics from a fundamental

linear deterministic dynamics by simply ignoring a part of the system (in the appropriate way).

3



1.2 Relativistic Quantum Theory: The Meaning of Events

precise way by supplementing the deterministic linear Schrödinger equation by some well defined
stochastic nonlinear evolution process of the wave-function.

For our purpose it is important to mention here, that the GRW-theory was designed first just
to give a precise account of wave-function dynamics (including wave-function collapse) without
the need of resorting to some vague ontology of measurements, but no attempt was made to
give a new precise connection of the wave-function to physical events, i.e. to give a primitive
ontology beyond Born’s rule. But without such a precise connection between the function on
configuration space and events occurring in physical space there remains some vagueness in the
theory, such that e.g. relativistic properties of the theory remain unclear: I will present different
primitive ontologies for the non relativistic GRW theory which are empirically equivalent, i.e.
which yield Born’s probability rule, but which have enormously different degrees of compatibility
with relativistic space-time structure and thus, as we will see, have very different potential for a
relativistic upgrade.

The first proposal for a primitive ontology for the GRW theory was given by John Bell [8],
which is called the flash-ontology by some authors [4, 61, 64, 62, 65]. By supplementing GRW
with the flash ontology Bell set the stage for the first (to my knowledge and in my opinion)
thoroughly relativistic quantum theory which reconciles quantum nonlocality with relativistic
space-time without the need of intrinsic space-time structures beside the Lorentz-metric and
which at the same time shares the full physical relevance of quantum theory6. The formulation
of this theory on the basis of Bell’s proposal was given by Roderich Tumulka in 2006 [61] and I
will illustrate and discuss this model in more detail in the appendix.

Bohmian Mechanics

Theories of candidate theory type ii) are misleadingly often called “hidden variable theo-
ries”. The most manifest and full-blown (in the non-relativistic case) theory of this type is the
Bohmian theory (called Bohmian mechanics, Bohm-deBroglie theory or pilot-wave theory) where
the primitive ontology is given by positions of particles. The theory provides a law, the guiding
equation, into which the wave-function enters to generate a vector-field on the particles configu-
ration space which provides the particle dynamics. In the non-relativistic case everything is fine:
The theory is clear, transparent and, if you like it, also beautiful and it yields the whole machin-
ery of standard quantum-mechanics, the description of measurements, the operator formalism
and so on. And it justifies the statistical interpretation, without conceptual ambiguity.

It is remarkable, that the theory does not need a second wave-function-dynamics besides
the Schrödinger-evolution. It turns out naturally as a pure fact of simple analysis [27] that as
soon as the different branches of a superposition of the wave-function can no longer interfere
(e.g. by decoherence), the branch which actually guides the configuration will stay the only
dynamically relevant branch – for all practical purposes forever. This branch is called the ef-
fective wave-function and the process of emergence of an effective wave-function the effective
collapse, expressing the correspondence to the collapsed wave-function and wave-function col-
lapse of orthodox quantum mechanics, respectively. But there is actually no need for a true

6There are also other proposals which account for nonlocality without violating or supplementing relativistic

space-time structure, but they are either rather toy-models (e.g. [24]) or have no potential for reasonable physical

predictions [37] and thus are just artificial models with conceptual but without physical relevance.
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1.2 Relativistic Quantum Theory: The Meaning of Events

wave-function-collapse (and apart from collapse, in a theory about particles which are there,
which always have definite positions in space, it is clear right from the start that we do not have
to count on ambiguity).

But when we try to lift the theory with more than one particle to Minkowski space-time,
things get a bit delicate: the nonlocality of the non-relativistic guiding law for the particles
implies that the velocity of one particle at some instant of time depends in general on the
positions of the other particles at that time; and “distinct spatial positions at the same instant
of time“ is not a Lorentz invariant statement. Thus, it is not possible to simply lift the law for
the particle dynamics from configuration space R3N to configuration space-time MN without
finding a mechanism which connects some space-time point (the position and proper time of the
particle whose velocity we intend to calculate) with N − 1 other space-time points (positions
and proper times of the N − 1 other particles). And currently it seems that the only way such a
mechanism could be given without destroying the predictive power of the theory, is to employ a
distinguished structure of Minkowski space-time, namely a foliation of space-time into space-like
leafs with absolute physical significance, i.e. different foliations yield different particle velocities
and thus different physical theories.

I will analyze such models in more detail in the appendix, but let me anticipate a few remarks:
It might sound like a gross violation of relativity to make usage of such an intrinsic foliation of
space-time, because it might suggest that a reintroduction of (generalized) absolute time and
simultaneity was performed through the back door. But to interpret the foliation as absolute
time is more a subjective decision: Introduction of simultaneity in space-time induces a foliation
(into space-like simultaneity slices) but the inversion of that argument is not justified in any
case. The space-like leafs in this theory, for example, have absolutely nothing to do with – and
can not be used for – synchronization of clocks and the like [44]. The physical arena of the
theory is still relativistic space-time, which is not touched, and the foliation is only employed
to account for the nonlocal correlations of particles. Thus the foliation is phenomenologically
only relevant for subtle physical processes which are based on quantum nonlocality (and it is
irrelevant as soon as e.g. decoherence creates effective product wave-functions) while the whole
phenomenology of special relativity survives. Also it turns out that the statistical predictions
of quantum theory (i.e. Born’s rule) are independent of the foliation and that the shape of the
leafs cannot be determined by any physical experiment.

It is also important to note, that the formal covariance of the theory need not to be touched
and that the distinguished structure need not to be added as an extra element to the theory:
The foliation can be given by a covariant law into which only quantities enter, that are inherent
in the theory right from the start. For example, we will see in the appendix that distinguished
foliations are already inherent in the covariant wave-function (actually in every theory with a
wave-function) such that the dynamics of the particles can be completely determined by the
wave-function. No extra structure is to be added to the theory then.

Remark

I would like to mention here that I am convinced that the relevance of this investigation does
not depend on the fact, whether the reader shares my strong confidence that the above mentioned
two theory types are the only considerable ways to escape the measurement problem. This thesis

5



1.3 Relativistic Quantum Theory: Quantum Field Theory (QFT)

is concerned with general analysis of wave-functions and state reduction within a relativistic
theory. And for a main part there is no reference to the choice, whether orthodox quantum
mechanics with a vague ontology of measurements is applied or, say, GRW with a precise ontology
and a precise description of wave-function reduction – although we will repeatedly encounter
problems which cannot be solved if the former choice is made. In the appendix I give a brief
description and analysis of relativistic GRW-type theories and relativistic Bohmian mechanics,
which shall highlight the relativistic relevance of the choice of a primitive ontology, but at the
same time shall give insights into the general issue of relativistic quantum theory (independent
on the choice of a version).

1.3 Relativistic Quantum Theory: Quantum Field Theory (QFT)

One last introductory remark on why these questions and reasoning cannot be found in any QFT-
textbook (apart from some few lines on local commutativity discussed in chapter 2.2), although
QFT is said to be the relativistic version of quantum theory and enormously successful in making
good predictions. The reason is that QFT is a relativistic theory only from a pragmatic point of
view. The transition amplitudes, and thereby probability distributions predicted by the theory,
are Lorentz invariant, but the underlying states are not.

The non-Lorentz invariance of state evolution is due to the wave-function reduction-process,
which is a little bit hidden in QFT: The square of the Lorentz invariant transition amplitude
yields the probability for the collapse of the initial state, time evolved by the S-matrix, onto
some given final state, caused by appropriate measurement (e.g. particle detectors in a particle
accelerator). The apriori non Lorentz invariance of this process and possible ways to make it
Lorentz invariant will be a central part of the reasoning within these lines.

For the unitary part of the time evolution, formalisms developed in the early years of QED
(until the forties of the 19’th century) by Dirac [23], Tomonaga [60], Schwinger [54] and others
will prove appropriate for our purpose. We will resort to these formalisms in section 3.6.
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2 Causality

The aim of this chapter is twofold:
First it shall contribute to clarify terms and underlying concepts associated with ”causality”

and “locality” in the physics literature. Such terms are often used in different contexts and with
different meanings. In particular I will highlight Bell’s very lucid approach.

Second it shall emphasize that we somehow have to take the wave-function and the con-
sequences of physical description by a wave-function seriously, namely nonlocality. This can
be seen as preparation for chapter 3, where implications of Minkowski space-time structure for
wave-function dynamics and resulting nonlocality are analyzed.

Remark: Local commutativity (see section 2.2) is sometimes called micro-causality. In con-
nection with dispersion relations, the requirement that an effect must not precede its cause is
sometimes called macro-causality (the reaction of the system to some perturbation must not
precede the perturbation).

2.1 Einsteins Principle of Contiguity and Bells Concept of Local

Causality

Einstein

In his correspondence with Max Born, Einstein wrote:

If one asks what, irrespective of quantum mechanics, is characteristic of the world
of ideas of physics, one is first of all struck by the following: the concepts of physics
relate to a real outside world, that is, ideas are established relating to things such
as bodies, fields, etc., which claim “real existence“ that is independent of the per-
ceiving subject – ideas which, on the other hand, have been brought into as secure
a relationship as possible with the sense data. It is further characteristic of these
physical objects that they are thought of as arranged in a space-time continuum. An
essential aspect of this arrangement of things in physics is that they lay claim, at a
certain time, to an existence independent of one another, provided these objects “are
situated in different parts of space“. Unless one makes this kind of assumption about
the independence of the existence (the ”being-thus”) of objects which are far apart
from one another in space – which stems in the first place from everyday thinking
– physical thinking in the familiar sense would not be possible. It is also hard to
see any way of formulating and testing the laws of physics unless one makes a clear
distinction of this kind... The following idea characterizes the relative independence
of objects (A and B) far apart in space: external influence on A has no direct in-
fluence on B; this is known as the “principle of contiguity”... If this axiom were to
be completely abolished, the idea of the existence of (quasi-) enclosed systems, and
thereby the postulation of laws which can be empirically checked in the accepted
sense, would become impossible. ([17] pp. 170-71)

7



2.1 Einsteins Principle of Contiguity and Bells Concept of Local Causality

Einstein expresses here his strong conviction that a cause and its direct effect must always
concur spatially. The pictorial translation “principle of contiguity” is due to Born, the literally
translation of Einsteins expression would be ”principle of local action“.

Let us analyze the implications for some given physical theory due to one assertion within
this quote, which leaves room for interpretation and which is well suited to clarify concepts and
to make some disambiguation: “external influence7 on A has no direct influence on B”. This is
true and false at the same time in quantum mechanics:

A) What does it mean to condition on external influence on A in order to calculate predictions
for B? Does it mean just to condition on the presence of an external field, for example, or does
it mean to condition on the actual influence of the field on A? This makes a big difference in
quantum mechanics. If we condition on the fact that one of the two particles of a singlet-pair
passed a Stern-Gerlach magnet (SGM) or if we condition on the actual process which occurred
to that particle – e.g. the particle passed the SGM and was deflected upwards (e.g. was found
in the upper region afterwards) – will yield completely different probability distributions for
possible measurements on the other singlet-particle.

B) What does direct influence on B mean? Does it mean that an experimenter is able to infer
information about whether such influence occurred or not by performing experiments on B or
does it mean that what might happen with B is somehow directly determined by the influence?
This makes also a big difference in quantum theory. If one of the two singlet-particles passes
a SGM and hits a detector afterwards in the upper region, the other particle is immediately
determined to be deflected downwards by a second SGM (with same orientation as the first
one). But according to local commutativity (which will be analyzed in the next section) of the
corresponding two spin operators, an experimenter at the second SGM has no possibility to
infer information about the question, whether the first particle actually passed the SGM or not;
even from the relative frequencies of an ensemble of such processes no such information can be
inferred.

It is already clear from the above quote (“the independence of the existence (the ”being-thus”)
of objects“) that Einstein left no doubt that his idea of independence of spatially separated
systems is about what actually happens (”what there is”) in the respective regions. Here are
two (of many) more examples:

7External influence can be given by measurements performed on A or by the imposition of “external fields“

on A, i.e. by coupling some degree of freedom of A unitarily to some (variable) parameter in the equations of

motion. This parameter in turn is not considered to be determined by some equation but by the choice of the

theoretician (or experimenter) and variation of this parameter produces variations of predictions for A (see also

the discussion on ”controllability” in chapter 2.2.1). Although in a complete physical description there might be

no external influence at all, we can justify the consideration of such “free parameters“ by the requirement that

there are physical processes which occur independent of one another but then produce correlations, such that we

can arbitrarily choose one such process and then calculate its effects on the other one. This is deeply related to

the requirement that ”nature should not be conspiratorial“ in some sense, which is discussed for the case of the

EPRB-experiment at the end of this section in more detail.

8



2.1 Einsteins Principle of Contiguity and Bells Concept of Local Causality

...what is present in B should somehow have an existence independent of what is
present in A.8 [39]

or elsewhere

The real situation (state) of system S2 is independent of what is done with system
S1, which is spatially separated from the former.9 [39]

The principle which Einstein hold sacred was not something like: i) “The pure fact of external
influence on A (regardless of its actual effect on A) has no observable influence on B“, which
indeed would be consistent with quantum theory, but rather: ii) ”What actually happens with
A does not change anything actual for B” which is not in accord with the description given by
quantum mechanics.

Einstein always insisted enthusiastically (see [39]), based on his strong confidence that as-
sertion ii) should not be touched, that the description given by quantum mechanics cannot be
the whole story. The most famous account (although not the one with the most clarity) of this
argument is the celebrated EPR-paper [30], where assertion ii) is also tacitly assumed:

[...] since at the time of measurement the two systems can no longer interact, no
real change can take place in the second system in consequence of anything that may
be done to the first system. This is, of course, merely a statement of what is meant
by the absence of an interaction between the two systems. [30]

Bell

John Bell introduced the notion “principle of local causality” (also simply called locality)
to grasp Einsteins idea. He analyzed this principle in detail over decades and formalized it
attentively in order to have a formal criterion whether a given theory is in accord with it or not
(with quantum theory in the back of his mind). In his 1990-article La nouvelle cuisine [9], Bell
presents one of his most transparent formalizations of this principle and I would like to sketch
briefly the central line of thought of this nice article 10.

Bell establishes the principle of local causality by first phrasing it in an intuitive way as a
principle of contiguity:

The direct causes (and effects) of events are near by, and even the indirect causes
(and effects) are no further away than permitted by the velocity of light. [9]

I.e. causes of an event are constrained to lie in its past light-cone and effects of an event to lie
in its future light-cone. Now comes an ingenious step of rephrasing the content of this assertion
not as a criterion for a locally causal “reality“, but merely as a criterion, which an arbitrary
theory has to fulfill in order to be locally causal:

8Here the objects A and B are replaced by corresponding spatial regions A and B.
9This Einstein quote serves Bell as a motivation to write down separability condition 12 in his famous paper

“On the Einstein-Podolsky-rosen paradox” [9].
10See also [48] and [47] for a very nice and clear illustration of Bell’s argumentation.
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2.1 Einsteins Principle of Contiguity and Bells Concept of Local Causality

A theory is said to be locally causal if the probabilities attached to values of
local beables in a space-time region 1 are unaltered by specification of values of local
beables in a space-like separated region 2, when what happens in the backward light-
cone of 1 is already sufficiently specified, for example by a full specification of local
beables in a space-time region 3. [9] (see figure 1)

Figure 1
Bell’s concept of local causality: Events in space-time region 1 are independent of events

in some space-like separated space-time region 2 if conditioned on a sufficient specification of

events in space-time region 3. The latter ”shields of“ completely space-time region 1 from the

intersection of the past light-cones of regions 1 and 2, where common causes for events in 1

and 2 may lie. Such common causes might be responsible for correlations between events in 1

and 2, but in a locally causal theory these correlations vanish by conditioning on a sufficient

specification of events in region 3.

Some remarks:
First note that this is a criterion for some candidate theory to be locally causal which makes no

more reference to rather intuitive concepts like “cause” and ”effect”. Every expression within this
criterion has a precise counterpart in an arbitrary reasonable physical theory (in a deterministic
theory all probabilities are zero or one) where, as described above, the local beables are the
elements of the theory which correspond to events occurring in physical space which are predicted
and described by the theory, e.g. pointers in the laboratory.

Space-time region 3 – which “shields of“ space-time region 1 from the intersection of its past
light-cone with the past light-cone of 2 – is necessary, because events in space-like separated
regions can be correlated by time-like causal chains originating from events in the intersection
of their backward light-cones: If I know that I have just one glove in my pocket while I left
the other one at home – but I do not know which one – the probability that the glove at home
(GAH) is the right one (R) will be

P(GAH = R) =
1

2
. (6)

10



2.1 Einsteins Principle of Contiguity and Bells Concept of Local Causality

On the other hand, if I look into my pocket and find the glove in my pocket (GIMP ) to be the
right one, this probability undergoes an immediate change:

P(GAH = R | GIMP = R) = 0 . (7)

This is of course not at all a violation of local causality if within my theory the ”state“ (hand-
edness) of the glove at home is not determined by the look into my pocket but only by its past
light-cone. Thus if we have a sufficient specification λ of local beables in the past light cone of
the glove left at home at the time we are interested in its handedness (e.g. the shape of the glove
at home before that time) the state of the glove in my pocket becomes redundant:

P(GAH = R | GIMP = R, λ) = P(GAH = R | λ) = 0 . (8)

Thus – returning to intuitive language – Bell’s locality-condition is essentially this: Cor-
relations between spatially separated events can be explained by common causes lying in the
intersection of their past-light-cones11.

Now we are in a position to analyze an actual experiment from the point of view of an
arbitrary theory which conforms with the principle of local causality as formalized above. In
anticipation of Bell’s theorem we shall analyze Bohm’s version of the EPR-experiment (EPRB)
(figure 2): Consider a pair of spin-1

2
particles – Particle(1) and Particle(2) – prepared in the

singlet state

| Ψ−〉 :=
1√
2

(|↑↓〉− |↓↑〉) , (9)

which some time after the preparation pass Stern-Gerlach-magnets SGM(1) and SGM(2), re-
spectively, in spatially separated regions. Suppose SGM(1) can be rotated by angles ϑ(1) and
SGM(2) by angles ϕ(2) from some given parallel orientation. Let λ be a sufficient specification
(in the above sense) of the local beables of the theory in the space-time region indicated in figure
2 and let us further denote by σ(1), σ(2) ∈ ±1 the respective results of this process corresponding
to spin up (+1) or spin down (-1) of the spin-component corresponding to the actual angles,
which can be read off e.g. from spots on a photographic plate behind the SGMs.

Now, according to the above criterion for every locally causal theory – given λ – the result
on one side of the experimental setup is statistically independent of whatever might happen on
the other side, i.e with the input variables defined above we can state that in a locally causal
theory

PΨ−(σ(1) | ϑ(1), ϕ(2), σ
(2), λ) = PΨ−(σ(1) | ϑ(1), λ) (10)

as well as

11This is a little bit sloppy: There is actually a subtle difference between this statement and the concept we

developed so far: This statement (which corresponds to Bell’s earlier formulations of his concept) means that

space-like separated events are independent if it is conditioned on events lying in their common past. In contrast,

in the concept we developed so far the independence is due to conditioning on events in space-time region 3.

There are exceptional physical situation in which this makes a difference, and it turns out that our dynamical

concept of local causality (the one from La Nouvelle Cuisine) is a bit weaker than the assertion that correlations

can be explained by common causes. But this subtle distinction is not relevant for all conclusions we shall derive

here.
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2.1 Einsteins Principle of Contiguity and Bells Concept of Local Causality

Figure 2
Analysis of the EPRB-experiment from the viewpoint of a locally causal theory: A

pair of singlet particles is emitted from some source, the particles are spatially separated and

then some particular component of the one particle spins is measured at the SGMs, respectively.

In a locally causal theory a specification λ of events in the indicated space-time region can be

given, such that the outcome of one of the measurements is independent both, of the outcome

as well as of the actual angle of the SGM on the other wing of the experiment.

PΨ−(σ(2) | ϕ(2), ϑ(1), σ
(1), λ) = PΨ−(σ(2) | ϕ(2), λ) (11)

must hold12. From this we can calculate the famous separability condition (with the basic rules of
probability calculus), which is thus a mathematical result of any locally causal theory describing
the EPRB-experiment:

PΨ−(σ(1), σ(2) | ϑ(1), ϕ(2), λ) = PΨ−(σ(1) | σ(2), ϑ(1), ϕ(2), λ)× PΨ−(σ(2) | ϑ(1), ϕ(2), λ)

= PΨ−(σ(1) | ϑ(1), λ)× PΨ−(σ(2) | ϕ(2), λ) .
(12)

Separability condition (12) is the starting point for the derivation of Bell’s inequality. Many
misunderstandings about this condition – especially concerning the role of the parameter λ
– originate from the fact that Bell’s own reasoning is not well comprehended. Many authors
claim that this condition assumes ”the existence of hidden variables“, “determinism”, ”realism”,
”counter-factual definiteness,“... which can be refuted one by one by simply following attentively
Bell’s own argumentation (see e.g. [43, 48, 47]).

12As two different kinds of quantities enter into conditions (10) and (11) (namely the angles as ”free” parameters

and the outcomes), they can actually be seen as a conjunction of two different conditions (see Jarrett [40]), which

where called ”parameter-independence” and ”outcome-independence” by Abner Shimony [56]. For example the

violation of Bell’s inequality is due to a violation of parameter-independence in Bohmian mechanics and due

to a violation of outcome-independence in GRW; and there is an ongoing debate about the relevance of this

decomposition [43, 22, 48]. But without question a violation of each condition is a violation of Bell’s local

causality, so we shall not enter into this discussion here.
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2.1 Einsteins Principle of Contiguity and Bells Concept of Local Causality

Misunderstandings might partly have historical reasons: EPR inferred from quantum formal-
ism and tacitly assumed locality that physical description by a wave-function must be completed
by additional deterministic variables, restoring locality. The consideration of such variables (to-
gether with the opposed intrinsic nonlocality of Bohm’s theory) is indeed the motivation of
Bell’s formalization of the principle of local causality: Can the predictions of quantum mechan-
ics be confirmed by a theory, which contains EPR-like additional local beables λ restoring local
causality in the sense of its defining principle? And Bell’s inequality then shows that this is not
the case. But in the formulation of the local causality condition as well as in the separability
condition and Bell’s inequality deduced from it, there is no reference at all to hidden variables13.
These conditions must hold for any theory, which is able to explain correlations of spatially
separated events by common causes (lying in the intersection of their backward-light-cones).
And if these expressions turn out to be wrong, no such explanation is possible. λ stands for
all the local objects provided by the investigated candidate theory corresponding to events in
space-time region 3, which matter for calculating the above probabilities. And “in ordinary
quantum mechanics there just is nothing but the wave-function for calculating probabilities.
There is then no question of making the result on one side redundant on the other by more fully
specifying events in some space-time region 3. We have a violation of local causality” [9] (p.241).

The remaining step then is to deduce an empirically verifiable or falsifiable prediction from
condition (12). This prediction is the celebrated Bell inequality (one of its versions).

No Conspiracies

It should be mentioned that besides local causality (separability) a second condition enters
into the derivation of the inequality: We have to require that there is a sort of free choice of
angles at the SGMs, namely free with respect to λ. For example two (deterministic) random
number-generators choose one of three possible orientations of the SGMs, respectively, shortly
before the particles pass, and the probability distribution of the angles produced by some random
number-generator should not be correlated with the distribution of local beables λ in space-time
region 3 which are relevant for the dynamics of the singlet particles

P(λ | ϑ(1), ϕ(2)) = P(λ) . (13)

This is indeed a very reasonable assumption, for it simply expresses the requirement that the
physics of the macroscopic device (with random number-generator or experimenter included)
shall be independent of the physics of the singlet-particles before these two systems got into
contact (see also footnote 7 on “external influence” and the discussion on “controllability” in
chapter 2.2.1). Although λ may specify local beables in the backward light-cone of the event of
adjustment of an angle, we would expect that theoretically possible correlations between local
beables influencing the dynamics of the random number generator (choosing the angle) and local
beables λ influencing the dynamics of the particles, will be for all practical purposes completely
suppressed, e.g. by interactions of these two systems with the environment.

13David Mermin wrote “[t]o those for whom nonlocality is anathema, Bell’s theorem finally spells the death of

the hidden-variables program” [45]. This quote obviously shows that Mermin did not appreciate the central line

of thought of EPR and Bell: “My own first paper on this subject ... starts with a summary of the EPR argument

from locality to deterministic hidden variables. But the commentators have almost universally reported that it

begins with deterministic hidden variables.“ [9]
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2.1 Einsteins Principle of Contiguity and Bells Concept of Local Causality

This requirement, that parameters of some device can be chosen freely before interaction with
some system, is often labeled with the reasonable phrase that ”nature should not be conspiratorial
(or super-deterministic)“. And besides the above thermodynamic justification, there are two
more arguments in support of this requirement:

First, it is worth noting that the experiments not only show an arbitrary violation of Bell’s
inequality but coincide impressively good with the predictions of quantum theory which violates
local causality (10) and (11) but conforms with “no conspiracies”.

And moreover, only the assumption that conspiratorial correlations in the sense of a violation
of (13) do not occur in nature, lays the groundwork for reasonable experimental physics:

In any scientific experiment in which two or more variables are supposed to be
randomly selected, one can always conjecture that some factor in the overlap of
the backward light cones has controlled the presumably random choices. But, we
maintain, skepticism of this sort will essentially dismiss all results of scientific ex-
perimentation. Unless we proceed under the assumption that hidden conspiracies
of this sort do not occur, we have abandoned in advance the whole enterprise of
discovering the laws of nature by experimentation. (Shimony, Clauser and Horn in
“An Exchange on Local Beables” [57])

The Inequality

The derivation of one of the versions of the inequality is then standard and can be found in
many articles and quantum mechanics textbooks. The straight forward line of argumentation
emerges from the question: Suppose we explain the perfect (anti-)correlations of the measured
two particle spins in the EPRB-experiment for the case of coinciding SGM-angles by common
causes; is this pattern of explanation able to describe the spin-correlations for different settings
of the SGM-angles? The “predicted answer“ by quantum theory is “NO“, and the experiments
support the predictions of quantum theory14 – given condition (13) is valid.

Summary

Now let us summarize the facts: Bell gave a criterion to judge whether some arbitrarily given
candidate theory is locally causal. From this criterion the separability condition (12) follows im-
mediately for the EPRB-setup. This condition together with condition (13) that “nature is not
conspiratorial“ yields some empirically testable prediction (Bell’s inequality). Standard quan-
tum mechanics, as well as Bohmian mechanics and GRW, violates the local causality condition
and Bell’s inequality. Experiments also show a violation of Bell’s inequality [6] and the outcomes
coincide very well with the predictions of quantum theory. Because Bell’s locality criterion is
a condition to check some given theory to be locally causal, the empirical violation of Bell’s
inequality means that no locally causal theory can make the right predictions for outcomes of

14It is also possible to infer Bell’s inequality without directly referring to Bell’s formalization of local causality

(and thereby without explicitly introducing some specification λ) but by just assuming the (pre-)existence of

random-variables for the outcomes of the EPRB-experiment for various orientations of the SGMs. Then the

violation of locality through a violation of the inequality is very obvious right from the start. See e.g. [29, 43]

and for a very nice and transparent illustration [21].
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a given experiment which are actually observed in the laboratories (if we take a non conspir-
atorial nature for granted). Thus nature can not be described satisfactory by a locally causal
framework, i.e. nature is non-local. And the impressive coincidence of experimental data with
the predictions of quantum theory strongly suggest, that we somehow have to take the element
of quantum theory serious, in which quantum nonlocality is encoded – namely the wave-function
on configuration space.

2.2 Local Commutativity and the Term Causality in Relativistic

Quantum Theory

In contemporary physics the term “causality” caught on to describe a property of some given
theory, which is – as I will argue – actually not very well covered by this term. In quantum
theory the “requirement of causality” (in QFT even more misleadingly also called ”locality”) is
usually expressed by the mathematical requirement that self-adjoint operators, corresponding
to measurements at space-like separation, should commute15. And a straight forward physical
consequence is that quantum nonlocality provides no strategies for an experimenter to inform
another experimenter, space-like separated from the former, about any local actions she per-
formed on a quantum system, i.e. it is not possible to “send superluminal signals” by “external
influence”. The “pure fact of measurement“ in a space-time region A does not change the local
probabilities of a measurement which is performed in space-like separated region B.

Now, it seems that vague and anthropocentric expressions like ”measurement”, ”external
influence” and ”impossibility of sending superluminal signals/information” make the physical
content of this requirement. This vagueness together with the claim of providing the funda-
mental causal structure of a theory might instigate us to investigate the implications of local
commutativity more closely. Bell had similar concerns:

Could it be that causal structure is something like a ’thermodynamic’ approx-
imation, where the notions ’measurement’ and ’external field’ become legitimate
approximations? Maybe that is part of the story, but I do not think it can be all.
Local commutativity does not for me have a thermodynamic air about it. It is a
challenge now to couple it with sharp internal concepts, rather than vague external
ones. [9]

I will try to make a step in this direction in section 2.2.3. I will use the concept of primi-
tive ontology to give a surprisingly simple argument, why we should take local commutativity
serious, in order to maintain a kind of ontological consistency within a relativistic framework.
Since the starting point of the argument is commutativity of operators, and operator-formalism
is measurement-formalism in quantum theory, I will have to start with considering quantum-
measurement and to identify the primitive ontology with positions of pointers (for example).
But nevertheless the conclusion will be transparent and the argument is less anthropocentric
than the standard argument (for example it makes no use of the concept of controllability which
is crucial for the standard argument). And we have available theories, like Bohmian mechanics
or GRW, in which the operator-measurement-formalism of quantum theory can be derived and

15In QFT a famous consequence of this requirement (for bilinear forms in the field-operators) is the celebrated

’spin statistics theorem’.
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2.2 Local Commutativity and the Term Causality in Relativistic Quantum Theory

understood from an underlying precise physical description. But the task remains, to bring this
argument down to the fundamental level of the theory, where we do not need pointer positions
to identify the primitive ontology; and then to examine if it indeed provides contributions to
constitute the causal structure of the theory.

But first let me illustrate the standard line of argument which bases on the presumed im-
possibility of superluminal signals and then discuss briefly relativistic implications of the latter
in section 2.2.2.

2.2.1 Local Commutativity, Signals & Controllability

Commutativity

The mathematical fact that two self-adjoint operators (corresponding to quantum measure-
ments) acting on some given Hilbertspace H commute, implies that the projection valued mea-
sures (PVM’s), related to the operators by the spectral theorem, yield joint probability distri-
butions for the outcomes of the two measurements. This is the key to understand why local
commutativity excludes strategies to utilize the nonlocality of quantum measurement for super-
luminal signaling:

Consider a quantum-mechanical system with wave-function Ψ ∈ H and two space-like sep-
arated space-time regions A and B. Now suppose a quantum measurement is performed in
each of this regions, where in A the physical quantity A is measured and the statistics of this
measurement is described by the self-adjoint operator (acting on H)

Â =
∑
α

`α∑
i=1

α | ϕ(i)
α 〉〈ϕ(i)

α | (14)

with eigenvalues α and eigenvectors | ϕ(i)
α 〉 (the index `α indicates the degree of degeneracy of

eigenvalue α) and analogously in B the quantity B is measured, described by the operator

B̂ =
∑
β

`β∑
j=1

β | χ(j)
β 〉〈χ

(j)
β | . (15)

Let us suppose now that [Â, B̂] = 0.

Denote by Pα :=
∑`α

i=1 | ϕ
(i)
α 〉〈ϕ(i)

α | and by Pβ :=
∑`β

j=1 | χ
(j)
β 〉〈χ

(j)
β | the projection operators

onto the eigenspace of Â belonging to eigenvalue α and onto the eigenspace of B̂ belonging to β,
respectively. Then we can write the probability of some outcome, say α′, of the A -measurement
as
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PΨ(A = α′) = 〈Ψ | Pα′ | Ψ〉 = 〈Ψ | 1HPα′ | Ψ〉
∑
β Pβ=1H

= 〈Ψ |
[∑

β

Pβ
]
Pα′ | Ψ〉

=
∑
β

〈Ψ | PβPα′ | Ψ〉
P2
β=Pβ
=

∑
β

〈Ψ | PβPβPα′ | Ψ〉
[Pβ ,Pα]=0

=
∑
β

〈Ψ | PβPα′Pβ | Ψ〉

=
∑
β

[
〈Ψ | PβPα′Pβ | Ψ〉
〈Ψ | Pβ | Ψ〉

]
× 〈Ψ | Pβ | Ψ〉 =

∑
β

PΨ(A = α′ | B = β)× PΨ(B = β)

=
∑
β

PΨ({A = α′} ∩ {B = β})

(16)

where we have used standard properties of the spectral decompositions (completeness, projector
property), the linearity of the scalar-product and the commutativity of projectors Pα and Pβ,

which follows from [Â, B̂] = 0 by the spectral theorem. Thus we have a joint probability
distribution for the outcomes of the two measurements.

On the other hand, in order to calculate the conditional probability of outcome α′ of the A -
measurement for the case that the B-measurement was already performed, without specification
of the actual outcome, we have to average over all possible results of the latter experiment:

PΨ(A = α′ | B was measured in B) =
∑
β

PΨ(A = α′ | B = β)× PΨ(B = β) (17)

which is obviously identical to the probability of the unconditioned measurement (16).

=⇒ PΨ(A = α′ | B was measured in B) = PΨ(A = α′) (18)

It follows immediately from (18) that also variation of parameters of the device (e.g. a
rotation of some SGM) at B does not change the local probabilities at A – given that we do
not care about the actual influence of the B-device, of course. This is due to the fact that two
different configurations of the B-device yield both the same conditioned probability distribution
at A which is according to (18) equal to the unconditioned distribution there.

All this does by no means mean that measurement-like events in the side-cone of a mea-
surement event do not change the probabilities of outcomes of the latter – given a sufficient
specification of events in its past light cone – i.e. it does not mean that Bell’s local causality is
recovered. This would be the case if and only if

PΨ(A = α′) = PΨ(A = α′ | B = β) ∀β (19)

which is violated in quantum theory in general.

For example, in the EPRB-setup the two spin-measurements of the singlet particles are in the
side-light-cone of one another if the setup is arranged in the true sense of the gedankenexperi-
ment, and the two spin-operators corresponding to the two wings of the experiment, respectively,
should indeed commute. But the fact that one of the measurements yields say “z-spin-up” forces
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the probability of the measurement-outcome: “z-spin-up” of the second particle to jump from 1
2

to zero

PΨ−(σ(2)
z = +1) =

1

2
6= 0 = PΨ−(σ(2)

z = +1 | σ(1)
z = +1) . (20)

And Bell’s theorem rules out all patterns of explanation of this perfect (anti-)correlations
which draw upon events which lie in the intersection of the past light cones of the two measure-
ments.

But still the “pure fact of measurement” (i.e. if we do not condition on one specific outcome
but just on the fact that the first measurement occurred) does not change these local probabilities
(as it should be already clear from (18)):

PΨ−(σ(2)
z = +1 | measurement of σ(1)

z ) =
∑

σ
(1)
z =±1

PΨ−(σ(2)
z = +1 | σ(1)

z )× PΨ−(σ(1)
z )

=
∑

σ
(1)
z =±1

PΨ−({σ(2)
z = +1} ∩ {σ(1)

z }) = | 〈Ψ− |↑↑〉 |2 + | 〈Ψ− |↓↑〉 |2

= 〈Ψ− |
[
(|↑〉〈↑|)(1) ⊗ (|↑〉〈↑|)(2)

]
| Ψ−〉+ 〈Ψ− |

[
(|↓〉〈↓|)(1) ⊗ (|↑〉〈↑|)(2)

]
| Ψ−〉

= 〈Ψ− |
[(

(|↑〉〈↑|)(1) + (|↓〉〈↓|)(1)
)
⊗ (|↑〉〈↑|)(2)

]
| Ψ−〉 = 〈Ψ− |

[
1H1 ⊗ (|↑〉〈↑|)(2)

]
| Ψ−〉

= PΨ−(σ(2)
z = +1) =

1

2

(21)

Similar calculations can be found in different versions in various papers and textbooks, usually
labeled by “impossibility of superluminal signaling”.

Signals

To make this notion transparent it is necessary to give a transparent account of the notion
of a signal. In physics literature transmission of signals is sometimes characterized by energy or
matter transmission. Since the utilization of quantum nonlocality for faster-than-light signaling
(if it was possible) would in general not be related to such processes, I will pick up Maudlin’s
very general definition of a signal [43] (which is also not necessarily related to energy or matter
transport), which goes like this: A signal is a physical process which can be decomposed into two
correlated parts: a controllable and an observable part.

The notions “controllable” and “observable” do not necessarily relate to human decisions and
perceptions (respectively) in the physical world but (as explained above) rather “controllable”
stands for some free parameter in the equations of the theory whose variation produces variation
of predictions, which then stand for the observable part of the process. The justification of such
free parameters was discussed at the end of chapter 2.1 and in footnote 7.
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Controllability

So far, we have encountered two possible controllable processes provided by quantum theory:

i) The choice of the theoretician (experimenter) to apply either measurement formalism or
unitary state evolution (to perform the measurement or not).

ii) The choice of the theoretician (experimenter) to vary an operator associated with a mea-
surement (to vary the actual configuration of the measurement device).

And we have found that such controllable actions do not change local probabilities for mea-
surement events at space-like separation, if the actual result of these actions is ignored (18). This
kind of controllable operations bases on the nonlinear time-evolution-principle of wave-function
collapse. Quantum formalism actually provides a third possibility of controllable external influ-
ence based on unitary time evolution:

iii) The choice of the theoretician (experimenter) to vary some parameter called ”external
field”, which couples to some variable of the system in the equations of motion (to vary some
part of the configuration of some device interacting with the system16):

So let us briefly check whether local commutativity also serves to leave local probabilities of
outcomes of measurement-events in A invariant under controllable influence in B in the sense of
iii). For this we couple an external field to a degree of freedom of the system associated to the
physical quantity B. The coupling is described by an interaction-Hamiltonian of the form

Hint = k̃B̂ , (22)

where k̃ contains functions associated with the external field (coupling constant, time depen-
dence...). Since the operators Â and B̂ commute, we can find a basis inH of common eigenstates,
which we will denote by {| α, β, i〉}, where the index i indicates possible degeneration, if Â and
B̂ do not form a complete set. Then we can decompose an arbitrary incoming wave-function
| Ψin〉 into a superposition of these states

| Ψin〉 =
∑
α,β,i

cαβi | α, β, i〉 (23)

with coefficients cαβi.
After interaction with the external field the wave-function will be

16What is the actual difference between the measuring-device of i) and ii) and the interacting device of iii)?

Ordinary quantum mechanics has no answer to that question, for the measurement-device is part of its axiomatic

formulation, and a description of measurement process can not be inferred from fundamental interaction by

fundamental postulates, but an extraordinary “dynamics of measurement“ is itself a postulate. This is the root

of the shifty split [9] between ordinary interaction (as a part of the unitary evolution) and measurement (causing

collapse), which is vague and arbitrary.
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| Ψout〉 = e−ikB̂ | Ψin〉 =
∑
α,β,i

cαβie
−ikβ | α, β, i〉 , (24)

where now k =
∫
k̃dt.

Then, with the projector Pα′ :=
∑

β,i | α′, β, i〉〈α′, β, i | onto the eigenspace of Â belonging
to eigenvalue α′, the probability of the A -measurement to yield α′ is

PΨin(A = α′ | external field in B) = PΨout(A = α′) = 〈Ψout | Pα′ | Ψout〉

=

(∑
α,β,i

c̄αβie
ikβ〈α, β, i |

)
Pα′
(∑
α̃,β̃,̃i

cα̃β̃ĩe
−ikβ̃ | α̃, β̃, ĩ〉

)

=

(∑
α,β,i

c̄αβie
ikβ〈α, β, i |

)(∑
β̃,̃i

cα′β̃ĩe
−ikβ̃ | α′, β̃, ĩ〉

)
=
∑
β,i

| cα′βi |2= PΨin(A = α′)

(25)

where we have used orthogonality of the eigenvectors. Thus with local commutativity, which is
crucial for this result, also the imposition of external fields in B does not change local probabilities
of measurement-outcomes in A.

Now, given an actual wave-function, the outcomes of quantum-measurements are notoriously
uncontrollable, even in deterministic Bohmian mechanics [27]. The only means of controllability
in quantum theory arise from either of the three operations discussed: i) performing measure-
ments or not, ii) variation of measurement settings or iii) imposition of external fields. The
actual effect of operations i) and ii) remains uncontrollable and operation iii) does not change
the relevant predictions anyway, given local commutativity. Thus, with local commutativity,
controllable operations performed in B do not change the ”observable“ probabilities (relative
frequencies) of measurement-events in A, i.e. quantum measurement provides no strategies to
send signals faster than light :

P(A = α | controllable operations performed in B) = P(A = α) (26)

where it is not conditioned on the actual effect of the controllable operations. In the following I
will refer to condition (26) as ”no signaling“ condition.

But did God invent this “causality” (local commutativity) just to prevent us from sending
faster-than-light messages while nonlocal causal structures lie at the heart of the dynamics
governing the world, or is there a more fundamental meaning? Does local commutativity provide
serious contribution to the reconciliation of the space-time structure of special relativity with
quantum nonlocality?

I will propose a somewhat unusual view on local commutativity which might be appropriate
to reveal such contribution in section 2.2.3. But first, let me briefly discuss the (a bit anthro-
pocentric) more common argument in support of local commutativity, which bases on the just
discussed prohibition of superluminal signaling in order to preclude backwards-in-time causation
and alleged resulting paradoxes.
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2.2.2 Faster-than-Light Signals & Backwards-in-Time Causation

It is often said that special relativity excludes superluminal signals. This is not true, from
relativity principle only follows the existence of an invariant – but not necessarily of a maximal
velocity [55, 43]. Tim Maudlin gives an extensive account of possible physical processes with
signals faster than light, without touching relativistic space-time structure and the relativity
principle (see chapter 4 in [43]). Even tachyons can be easily implemented in a relativistic theory,
i.e. even superluminal matter transport does not contradict relativity in principle (chapter 3 in
[43]).

More serious concerns arise from the directedness of signals. It is important to recognize that
the definition of a signal, as given above, defines a directed causal process, for the controllable
cause and the observable effect are well defined in each case and cannot being exchanged with
one another in general. And if now a signal in the above sense could be “superluminal”, i.e if
cause and effect would lay in space-like separated space-time regions, there would always exist
Lorentz-frames in which this signal travels backwards in time, i.e in which the effect would
precede its cause. This would contradict very much the way in which we perceive the temporal
structure of causality in the everyday life and, preferably, I would tend to avoid such rather
strange elements in a physical theory, too. But at the end of the day I see neither physical nor
logical necessity to do so.

Various authors have indeed reasonable concerns about the logical implications of backwards-
in-time causation. These concerns arise from the possibility of creating paradoxes – basing on
causal loops – if we once allow for such kind of causality. If signals could be received in the side
light-cone of the event of transmission, a closed causal chain might be constructed, e.g. between
three space-time points A, B and C in figure 3.

Suppose I make an appointment with my friend: if he receives a signal he in turn will
immediately send a signal back but if I receive a signal I will omit to send a signal. Then we
separate and occupy different positions in space (see figure 3). Then, at space-time point A
(time t3), I send a signal to my friend which he receives at B (time t2) in the side light-cone
of A. And he in turn immediately sends a signal back which I receive at C (time t1) prior to
A which induces me to omit to send the signal at A. This is a contradiction as it seems to be
contradictory in general that an event could be in its own range of causal influence.

But there is one flaw in the argument, for it presupposes controllability of the device (which
is used for signaling) at space-time points A and B. And it is rather obvious that the basis of
the use of the concept “controllability“ we worked out and worked with so far, does not work for
closed causal chains in general. We justified a ”freedom of choice” of the device settings within
the procedure of calculating predictions for the devices’ effect on the system. This freedom
was compatible with physical description, even within a deterministic theory. We argued that
device and system should be considered as independent physical systems before interaction and
tacitly assumed no further fundamental constraints to be imposed by the theory on the device
settings. But in the end, in a complete description the physics of the device should also be part
of the physics described by the theory. And from the point of view of a theory which allows
for closed causal chains, inconsistent loops as described above should not emerge as solutions
of the theories equations if the dynamics of the theory is well defined. In such a case it might
not be conspiratorial anymore to have restrictions to the device settings. Wheeler and Feynman
[66] gave an example of a theory, in which backwards causation is a fundamental part of the
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Figure 3
Causal Loop: If it was possible to send signals faster than light, i.e. in the side light-cone,

paradoxes might be constructed. Suppose that I make an appointment with my friend: If he

receives a signal from me at B, he will immediately send a signal back to space-time point C.

If I receive a signal at C, I will omit to send a signal at A. Hence, if I send a signal from A to

B I will omit to send a Signal from A to B.

dynamics and – following from that – in which events are in their own range of causal influence.
In the chapter “The Paradox of Advanced Actions“ they gave a paradoxical example analogous
to the one I gave in the last paragraph and analyzed it carefully from the point of view of the
theory they proposed. And it turned out that everything paradoxical vanishes as soon as the
whole closed story is continuously described by the theory.

Thus a theory with a well defined dynamics can allow for backwards causation and no in-
consistency should emerge. Of course, we might get into serious trouble if we allow for real
metaphysical external influence on physical systems – like me and my friend having a metaphys-
ical free-will-choice to send superluminal signals or not. I do not want to reject the possibility
of an existence of something like ”metaphysical free-will” here. But for reasons of humility I
plead in favor of avoiding the usage of free-will as justification of physical laws, and to look for
physical alternatives instead.

2.2.3 A Meaning of Local Commutativity: Ontological Consistency

Here is now an argument why a violation of local commutativity would indeed have rogue and
inconsistent consequences, which does not stick ultimately to the concept of controllability. To
see this consider again an experiment consisting of two measurements performed on a quantum
mechanical system at space-like separation and suppose the self-adjoint operators associated
with these measurements do not commute – we have seen above that this is a quantum me-
chanical formalization of “possibility of superluminal signaling”. Assume further that the first
measurement, e.g. of the physical quantity A , takes place in space-time region A around time
t1 in the laboratory frame and the corresponding operator is Â given by equation (14). Corre-
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spondingly B is measured in B at time t2 > t1 with corresponding operator B̂ given by equation
(15).

If, before the A -measurement, the system is prepared, say in the Â-eigenstate | ϕ(̃i)
α̃ 〉, the

outcome of this measurement will be α̃ with certainty, e.g. there might be a pointer which points
on the number α̃. And if this procedure is performed on an ensemble of identically prepared
systems (in the above sense) all the pointers will point on α̃ after this sequence of experiments
(there might be pairs (t1, t2)i, one for each experiment).

Since the space-time regions A and B are space-like separated we can find a Lorentz-frame
of reference in which the A -measurement takes place at time t′1 and the B-measurement at
time t′2, but now t′2 < t′1 (for each experiment) and we can describe this ensemble of quantum
mechanical processes from this point of view. In this frame the B-measurements will precede
the A -measurements (respectively). And because [Â, B̂] 6= 0 the B-measurements will destroy

the ingoing states | ϕ
′ (̃i)
α̃ 〉 (where the prime indicates the Lorentz transformation of the state)

and produce a superposition ∑
α,i

cα,i | ϕ
′(i)
α 〉 , (27)

where in general cα,i 6= 0, also for α 6= α̃ (and i 6= ĩ). Thus in this frame in our ensemble of
experiments there will be cases in which the pointer points on numbers α 6= α̃ in the (subsequent)
A -measurement.

Apparently – given space-like separated measurements with associated non-commuting oper-
ators – the distribution of matter of some pointers would transform under a change of Lorentz-
frame into distributions of matter of the pointers which are not the Lorentz-transform of the
former distributions. Experimenters in the respective Lorentz-frames would not experience the
respective Lorentz-transformed reality but a completely different reality.

We can look at it this way: This inconsistency emerges from the fact that in a reasonable
physical theory the primitive ontology should be unique in some sense. In special relativity
a ruler transforms into the same ruler in a different frame; although its shape might change
according to Lorentz-contraction, every space-time point (as a Lorentz invariant locus in M )
associated with the ruler in one frame transforms into a space-time point associated with that
ruler in another frame. And the same holds for pointers or any other distribution of matter, i.e.
for the primitive ontology. We will call the requirement that distributions of matter in different
Lorentz frames are the respective Lorentz transformed distributions of one another ontological
consistency.

Indeed, if Minkowski space-time structure is taken for granted, it is even technically impossible
to construct non-commuting observables which correspond to measurements in space-like sepa-
rated regions: there exists also always a frame in which t1 = t2 and we all know that quantum
theory excludes simultaneous measurements described by non-commuting operators.

In the following we will be concerned with measurement strategies for nonlocal physical quan-
tities encoded in entangled wave-functions, and there it is a subtle business to identify the
measurements which do not raise problems in a relativistic context. For example we will see,
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that for two spatially separated spin-1
2

particles each component of the total spin can be mea-
sured at a well defined time (in one frame) by purely local interactions without violating “no
signaling“-condition (26), but the (square of the) total spin cannot. Both are nonlocal quanti-
ties of the composite system and the relativistic and quantum mechanical implications for the
possibility or impossibility of such procedures are not obvious.

2.2.4 Intermezzo: Relativistic Restrictions to the Set of Observables

Consider the following scenario [2, 20, 32]: A pair of spin-1
2
-particles is prepared in the state

| Ψprep〉 =|↑↑〉 (28)

and subsequently the particles get spatially separated (far apart from each other). Now suppose
it would be possible to measure the square of the total spin

(σtot)2 = (σ(1) + σ(2))2 (29)

of this system at a well defined instant of time t0 (in some frame 17). The state |↑↑〉 is an
eigenstate of the operator (σ̂tot)2 which describes the statistics of this kind of measurement and
this implies (according to the rules of quantum theory) that the measurement does not disturb
the state of the system. Thus if we perform a measurement of the z-component of the spin of
particle(1) σ

(1)
z right after the (σtot)2-measurement – say at time t0 + ε – it would yield the value

+1 with certainty, the value -1 had probability zero.

Figure 4
If it was possible to measure the total (square of the) spin of a two particle spin-1

2 -system at

some well defined instant of time, controllable local operations in one space-time region (the

one belonging to particle(2)) could be detectable in a space-like separated region (belonging to

particle(1)), i.e the possibility of such a kind of measurement would give rise to violations of

no-signaling condition (26).

Now imagine we made an appointment with our friend before preparation: We will accom-
pany particle(1) and he particle(2). If he is than in a good mood shortly before the (σtot)2-
measurement (say at time t0 − ε), he will stay passive but if his mood is rather bad he will
push the on-button of some magnetic device, which than interacts with particle(2) and flips the

17Obviously this measurement requires local interactions of both spatially separated particles with some mea-

surement device. And to require both interactions to happen at the same instant of time t0 implies simultaneity

of space-like separated events, which of course means the choice of a particular Lorentz-frame.

24



2.2 Local Commutativity and the Term Causality in Relativistic Quantum Theory

z-component of its spin to -1 (see figure 4). Thus if our friend is in black mood at t0 − ε, the
incoming state of the (σtot)2-measurement will be

| Ψin〉 =|↑↓〉 (30)

which is not an eigenstate of the operator (σ̂tot)2 anymore, but rather a linear-combination of
the eigenstates

| Ψ±〉 :=
1√
2

(|↑↓〉± |↓↑〉) . (31)

The measurement would then disrupt the incoming state and produce one of these two eigen-
states (with probability 1

2
, respectively). The probability to measure σ

(1)
z = −1 for particle(1)

at time t0 + ε would not be zero anymore but 1
2
. Thus if we find the value of the z-component of

the spin of particle(1) to be -1 at time t0 + ε we immediately know that our friend has pushed
the button and that we have to worry about his bad mental condition (if this value is +1 we
cannot infer any information about our friend, of course). Obviously some local operation onto
particle(2) caused a sudden jump of the local probability of finding the z-component of the spin
of particle(1) to be -1 from zero to 1

2
. Note that we may chose ε arbitrarily small in principle!

Thus we have a violation of ”no signaling“ condition (26):

(σtot)2-measurement at time t0 =⇒

PΨprep
t0+ε (σ(1)

z = −1 | friend pushed a button near particle(2) at time t0 − ε) =
1

2

6= 0 = PΨprep
t0+ε (σ(1)

z = −1) .

(32)

Indeed, if it was possible to measure (σtot)2 within a time interval smaller than ∆T = ∆X
c

,
where ∆X is the distance of the two particles at the time of measurement, it would be possible
to send signals faster than light.

Ontological Consistency: Now, we have seen that the possibility of measuring the square
of the total spin at some well defined instant of time, would violate the requirement of excluding
superluminal signals. We encountered in the previous section, that this requirement is closely
related with a maybe somewhat better justified requirement, namely ontological consistency.
But it seems to be not that simple in this case to construct ontological contradictions out of
the possibility of such measurements. We cannot simply transform the above scenario into a
different frame, to see ontological inconsistency appearing18.

Such a scenario requires local interactions of both particles with some devices. In the ex-
plicit quantum mechanical construction of such a process, operators are associated with these
interactions (we will explicitly construct an analogous measurement procedure in chapter 3.3).
And the violation of condition (26) here, means that the operations performed on particle(1)

18Suppose the story is described in a frame, in which our σ
(1)
z -measurement at particle(1) is prior to the spin-flip

of particle(2). In this frame both interactions pertaining to the (σtot)2-measurement do not occur simultaneously

anymore, and – as we will see in chapter 3.3 – we can expect in general, that even an eigenstate of the operator

(σ̂tot)2 will be disturbed in the intermediate time between the two interactions. Thus even if the incoming state

of the first interaction of the (σtot)2-measurement at particle(1) is |↑↑〉, it is not contradictory to have a pointer

at the σ
(1)
z -measurement device, pointing on the value -1 directly afterwards.
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and on particle(2) disturb one another, i.e. the operators associated with these operations do not
commute (in calculation (16) additional interference terms would appear if the projectors failed
to commute, such that the ”joint probability property” and thus the ”no signaling” property
(26) would be destroyed). Thus we can claim that such a procedure should be impossible if rel-
ativistic space-time is taken for granted and ontological consistency in the sense of the previous
chapter is required.

It seems that there are certain restrictions to the set of physical quantities which can be
measured at a well defined time within relativistic quantum mechanics. The consideration of
such restrictions set the stage for a detailed investigation of the implications which Minkowski
space-time has for wave-function collapse. Such investigations will be addressed in the following
sections.
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3 Relativistic State Description

3.1 Landau & Peierls

In 1931 Lew Landau and Rudolf Peierls [42] suggested a kind of relativistic precondition for
quantum theory in the realm of relativity: there should be certain restrictions to the set of mea-
surable physical quantities which are not obvious in the non-relativistic case. But the reasoning
of Landau and Peierls suggested also tacitly the necessity to face ambiguities of wave-function
collapse in a relativistic theory.

To follow their thought consider a one-particle system which is prepared with some initial
wave-function Ψ having support localized in some spatial region A (see figure 5). At some time
t0 the momentum of the particle is measured and found to have the value p. After the mea-
surement the wave-function will be a (non-normalizable) eigenstate of the momentum operator
(in the idealized case) with eigenvalue p. The support of this wave-function is spread all over
space. Thus the probability of finding the particle (by means of a position measurement) in
some spatial region B, far far apart from A, jumps at time t0 from zero to some finite value.
This obviously means that according to quantum theory the described procedure yields a non
vanishing probability that the particle is shifted from A to B with superluminal velocity (indeed
the velocity would be infinite because the jump of the probability occurs at some definite instant
of time t0).

Figure 5
Localized State → Momentum Measurement: Suppose a localized one particle state

was prepared by a position measurement about space-time region A, where the shaded region

indicates the support of the wave-function. If it was possible to measure the momentum of

this particle at some well defined instant of time t = t0, there would be finite probability of

finding the particle any desired distance far apart from A shortly after the detection about A.

Therefore, the probability of moving the particle with superluminal velocity would be nonzero.

Such reasoning motivated Landau and Peierls to infer relativistic restrictions to the set of
quantum-mechanical observables. They argued that in order to prevent the theory to provide a
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mechanism for superluminal matter transport (or in the general case for arbitrary superluminal
signaling) the above described procedure should be impossible, i.e. it should be impossible to
measure the momentum of a particle at some well defined instant of time.

They further generalized this requirement in the following way: If a measurement “produces“
a wave-function with support of spatial extension ∆X, the time ∆T of interaction between
system and the measurement device should be restricted by19

∆T &
∆X

c
. (33)

However a closer look shows that condition (33) is not justified in this general form (with
“no signaling“ taken as the basis of justification) and further that it is indeed not consistent
with the predictions of quantum mechanics: Following David Albert and Yakir Aharonov we
will encounter quantum mechanical measurement strategies which give rise to violations of (33),
i.e. we will construct explicitly the description of a quantum measurement for which ∆X is
arbitrarily big and ∆T arbitrarily small. But nonetheless this kind of measurement consists of
purely local interactions between system and device and it does not give rise to violations of ”no
signaling“-condition (26).

3.2 Hellwig & Kraus

Consider now again a one-particle system with initial wave-function Ψ having support extended
in space (e.g. some momentum eigenstate). Suppose at time t0 a position measurement is
carried out detecting the particle, say, at x = 0. This measurement induces a collapse of the
wave-function along the t = t0 hyperplane in space-time (see figure 6a): Subsequent detection of
that particle by another detector far apart from the position detected in the first measurement
must have probability zero.

Transformed into a different Lorentz-frame, say K ′ this scenario looks quite different: The
t′ = const hyperplane through the space-time point of detection is not the same hyperplane
anymore as in the un-primed frame K (figure 6b). If we require the non-existence of a distin-
guished Lorentz-frame the probability of finding the particle above the t′ = const hyperplane of
K ′ (far apart from the point of detection) in a subsequent measurement must also vanish. And
if we iterate this argument to cover all possible frames of reference we find that the probability
of finding the particle anywhere forward to the surface of the backward light-cone of space-time
point (t0, 0) must be zero.

Such reasoning is the content of a paper by Felix Bloch [12]. Instigated by that paper Karl-
Eberhard Hellwig and Karl Kraus [38] proposed a covariant law for wave-function collapse20:
Since every light-cone is a Lorentz invariant locus in M (a light-cone transforms into itself under
Lorentz transformations) they proposed wave-function collapse to occur along the backward light-
cone of each measurement event.

19This restriction combined with the usual uncertainty principle led Landau an Peierls to propose a new

relativistic uncertainty principle: ∆p∆T & ~
c

20Hellwig and Kraus actually proposed their model for local field observables in local QFT, but the model is

in straight analogy to a consideration of common local quantum mechanical observables as done by Bloch and

within this lines.
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Figure 6
Spread State → Position Measurement: a) Consider an initial one particle wave-function

with widely spread spatial support (shaded region), e.g. a momentum eigenstate. At time

t = t0 a position measurement is performed and the particle is found, say at x = 0. b) From

the viewpoint of a different Lorentz-frame, the constant time hyperplane containing the event

of detection is distinct from the t = t0 hyperplane. Hence, if the wave-function collapses

instantaneously in each frame, we have to account for two distinct state histories, which are

apparently not the Lorentz-transform of one another. Has the wave-function non-vanishing

support at space-time point q?

Figure 7
Hellwig-Kraus reductions for multiple local measurements: Local measurements of

physical quantities A , B and C are performed in the indicated space-time regions. According

to the proposal of Hellwig and Kraus the respective reduced states are to be taken forward

to the backward light-cone of the respective measurements. In these regions the initial wave-

function | Ψin〉 is projected (and renormalized) onto the subspace of Hilbertspace corresponding

to the respective measurement outcomes. The projectors are denoted by Pi.
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3.2 Hellwig & Kraus

Local commutativity than guaranties the right and unique joint probability distributions,
when sets of partly space-like separated local measurements are described by the Hellwig-Kraus
formalism (see figure 7):

Suppose local measurements of physical quantities A , B and C are performed in the in-
dicated space-time regions of figure 7, where the region belonging to the A -measurement is
space-like separated with respect to the region belonging to the B-measurement. Then the
collapsed wave-function due to the A -measurement is to be taken in the part of space-time,
forward to the surface of the past light-cone of the respective space-time region; and the same
holds for the B-measurement. The collapsed wave-function is in each case proportional to the
projection of the initial wave-function | Ψin〉 onto some eigenspace (e.g. corresponding to eigen-
value/outcome α′) of the corresponding operator. Then, according to local commutativity of
these operators and according to joint-probability-calculation (16), the outcome statistics of the
B-measurement, for an ensemble of such scenarios, is unaltered by the fact of wave-function
collapse according to the A -measurement, and vice versa. Secondly, local commutativity of
the corresponding operators and the resulting commutativity of the related projectors (spectral
theorem), guaranties that the lack of a definite time order between the A and B measurement
raises no problems to calculate a definite resulting wave-function of these two processes. Thus
the local measurement of physical quantity C (in the indicated space-time region) has a unique
initial wave-function. So far so good...

But apart from some oddities21 the formalism proves a failure as soon as measurements of
physical quantities are considered, which are intrinsically encoded in nonlocal entangled wave-
functions: Consider for example once again the EPRB-setup with simultaneous measurements
of σ

(1)
z and σ

(2)
z at (or directly behind) the two SGMs, respectively, at some time t0 (see figure

8). Now suppose it would be possible to perform a measurement-procedure arbitrarily short
before that time (say at time t0 − ε), which verifies that the total spin of the two particles is
zero: σtotx = σtoty = σtotz = 0. This is true for the singlet state

σ̂totx | Ψ−〉 = σ̂toty | Ψ−〉 = σ̂totz | Ψ−〉 = 0 , (34)

but neither for the state |↑↓〉 nor for |↓↑〉 (indeed in each of the latter two states it is even
not possible to assign definite values to all three components of the total spin22). But in the
Hellwig-Kraus picture one of the latter two states is already realized in all space-time regions
which are crossed by the constant-time t0 − ε slice.

Such a measurement-scheme was explicitly constructed by Yakir Aharanov and David Albert
[1, 2] (and later in a more realistic version by Gian-Carlo Ghirardi [32]) and thereby the Hellwig-
Kraus proposal is refuted. But before we come to this scheme one last remark on the Hellwig-
Kraus formalism.

21The Hellwig-Kraus picture has the strange teleological feature that the history of the wave-function within the

future light-cone of some event (say the big bang) is somehow determined in advance by ”measurement-events”

in the future. Also a strange and nontransparent kind of nonlocality is involved here: The above description

justifies the right quantum mechanical statistics for ensembles of measurements, but it is not clear to me how e.g.

the perfect (anti-)correlations in each single run of the EPRB-experiment find such justification (contemplate on

figure 8 and do not care about the Aharanov-Albert experiment at t0 − ε).
22The impossibility of such assignments is actually a basic content of no-go theorems like the one of Kochen

and Specker and also of Bell’s theorem. Such view on these theorems is usually expressed by a requirement of

“contextuality“ for variables like spin.
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3.2 Hellwig & Kraus

Figure 8
Contradiction: EPRB-experiment at time t = t0 with Hellwig-Kraus reductions and an

Aharanov-Albert procedure performed at time t = t0 − ε shortly before the one particle spin

measurements of the EPRB-experiment. According to the Hellwig-Kraus proposal the wave-

function is already reduced all along the t = t0 − ε hyperplane. This is contradictory to the

possibility of verifying σtotx = σtoty = σtotz = 0 as a consequence of the initial singlet state at this

time.

Wave-Function as a Functional on the Set of Space-Time Points

It was pointed out by Tumulka [65] that Hellwig and Kraus actually (and tacitly) proposed
to take the wave-function as a functional on the set of points of space-time:

Denote by F (x) the (absolute) future of space-time point x (as formalized at the very
beginning). Now consider the set of space-time points {X1, X2, ..., XN} where measurements
of physical quantities AXi (i ∈ {1, ..., N}) are performed and which shall thus be taken as the
vertices of Hellwig-Kraus reductions. The outcome of measurement i of quantity AXi at point Xi

shall be denoted by αi and the projector onto the corresponding subspace Hαi of Hilbertspace
H by Pαi . The ”initial” wave-function (to be taken in the area of space-time where all past
light-cones of the points Xi intersect) is denoted by | Ψin〉.

Then we can associate a Hellwig-Kraus wave-function | ψx〉 with every space-time point x
by23

| ψx〉 =

( ∏̃
i:Xi /∈F (x)

Pαi
)
| Ψin〉∥∥∥( ∏̃

i:Xi /∈F (x)
Pαi
)
| Ψin〉

∥∥∥ ∈ H , (35)

where the tilde on the product shall indicate a (partial) “chronological order” of the factors:
whenever Xi ∈ F (Xj) the projector Pαj acts on the wave-function first, i.e. Pαj stands to the

23The space-time index x ∈ R4 is not to be confused with the argument of the wave-function (in position

representation), which still lives on configuration space(-time), of course.
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3.3 Aharanov & Albert

right of Pαi . If Xi ∈ F (x) the corresponding projector Pαi is left out of the product.
But it turns out that a much more accurate description of wave-functions in a theory with

Minkowski space-time background is to define them as functionals on the set of space-like hyper-
surfaces of M . In the case of unitarily evolving wave-functions this was already realized in 1946
by Tomonaga [60] (see also Schwinger [54]). But also – and in particular – when sets of partially
space-like separated measurements (or better and more general: collapse events) are considered,
a transparent Lorentz invariant description of wave-function evolution can be built that way
[3, 61, 65]. We will derive such a description in section 3.6 and apply it within the framework of
a complete Lorentz invariant (but non-local) theory of wave-function collapse in section 4.1.1.

But first let us investigate the mentioned measurement strategy proposed by Aharonov and
Albert.

3.3 Aharanov & Albert

Preliminary Remarks

The result of the procedure proposed by Aharonov and Albert [1, 2], which we shall develop
and investigate now, will be (at least) the following: Suppose a two-particle spin-1

2
-system is

in the singlet state | Ψ−〉; then suitable designed simultaneous (and arbitrarily short) local
interactions of the singlet-particles with some probe system will enable us to verify that all
three components of the total spin of the singlet particles are zero. In addition the procedure
constitutes a non-demolition measurement24 and it will leave the singlet-state untouched.

Because of the non-demolition property and the fact that the condition σtotx = σtoty = σtotz = 0 is
a necessary and sufficient condition for the singlet-state, the authors speak of “state verification
of the singlet-state at some well defined instant of time”. Since we will encounter possible subtle
circumstances under which despite the right pointer positions at the end of this procedure it will
be difficult to conclude that the system is in that state (see chapter 3.7), I will try to be careful
when using such expressions.

Also the authors and others use often the phrase “nonlocal measurement by purely local inter-
actions” [20] or “local measurement of non-local observables“ [32]. I am ok with this formulation
but it seems to me that they need some disambiguation: For example the total (classical) mo-
mentum of two spatially separated flying stones is simply the sum of the respective momenta and
if we (classically) measure the momentum of each stone and combine the results we have per-
formed a measurement of the nonlocal property “total momentum” of the system “two stones“.

24A non-demolition measurement [18, 19]) is at the end of the day an ideal projective quantum-measurement,

i.e. one which leaves the state in an eigenstate of the operator corresponding to the measurement. Most realistic

measurements are not of that kind, since e.g. particles are absorbed by detectors during measurement. The

necessary and sufficient condition for a measurement of physical quantity q to be non-demolition is that [H , q̂] |
Ψ〉 = 0 holds, where H is the joint Hamiltonian of measuring device (e.g. probe particle) and object under study,

q̂ is the self-adjoint operator associated with quantity q and | Ψ〉 is the initial wave-function (the usually applied

condition [H , q̂] = 0 is only sufficient, not necessary for a quantum non-demolition measurement).
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3.3 Aharanov & Albert

The case we shall investigate in a moment will be similar in some sense, but the stones are now
singlet particles and the measured quantity is the total spin; and there appears an important
conceptual difference: This system is not separable (in contrast to the stones), i.e. we cannot
simply measure all three components of the spin of each particle (that is indeed impossible at
some well defined instant of time and performed in a row it would destroy the singlet state)
and sum them up. The phrase ”nonlocal measurement” or ”measurement of a nonlocal observ-
able” here shall capture exactly this distinctive feature: It provides a strategy to get access to
a physical quantity which is intrinsically encoded in an entangled nonlocal wave-function and
which cannot be reduced to the composition of local properties of the two particles. It might be
interesting to anticipate already, that in the procedure we will construct now, the readout on one
wing of the experiment will provide no relevant information whatsoever about the spin-1

2
-system,

only the composition of both results carries real physical meaning (in contrast to the stones...).

The procedure is a bit artificial, since the probe-system needs to be prepared in a non-
normalizable state, a state of the kind considered by Einstein, Podolsky and Rosen in their
famous paper [30] (see footnote 25). But that is no big deficiency, since the conceptual implica-
tions of the result do not depend on artificial states. Essentially the same indirect measurement,
only with normalizable probe-particle states (where each has three degrees of freedom), has been
constructed by Ghirardi [32].

Step I: σ
(j)
z -measurement

Consider a system of two spin-1/2-particles (j) (j=1,2) and for now suppose the particles

are in one of the common eigenstates of the operators σ̂
(j)
z . First we design a non-demolition

measurement of the z-component of the Spin σ
(j)
z of either of the particles. Think of the inter-

action with the measuring device as a (unitary) interaction between particle(j) with some probe
particle (indirect measurement) which immediately after this interaction interacts again with
some macroscopic apparatus in a specific way to yield the definite outcome of the measurement
(position of a pointer...). The quantity of the probe to be measured will be πj, which is the
canonically conjugate (generalized) momentum of some internal variable qj of the probe. qj shall
couple to the z-component of the spin of particle(j). Thus the interaction will be described by
a Hamiltonian of the following form:

H int

j = fj(t) q̂jσ̂
(j)
z , j ∈ {1, 2} ; [q̂j, π̂j] = i (36)

where fj(t) ∼ f̃j(t) ·1{[t(j)1 ,t
(j)
2 ]}(t) (with indicator-function 1{∆}(t) of interval ∆ and an arbitrary

(bounded) function f̃j(t) ) is a function which describes the time dependence and strength of the

interaction; it has non-vanishing values only within the (arbitrarily short) time interval [t
(j)
1 , t

(j)
2 ].

π̂j is the self-adjoint operator corresponding to the physical quantity πj. We assume that the
free part of the Hamiltonian Hj = H free

j +H int
j does not contain operators which do not commute

with π̂j, q̂j or σ̂
(j)
z , or at least that we can neglect the free dynamics (with these requirements

the non-demolition measurement admittedly might have some contrived air about it).
In the Heisenberg-picture the time evolution of the operator π̂j is then given by

∂π̂j
∂t

=
1

i
[π̂j,Hj] = −fj(t)σ̂(j)

z (37)
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and for σ̂
(j)
z we have the desired non-demolition property

∂σ̂
(j)
z

∂t
=

1

i
[σ̂(j)
z ,Hj] = 0 . (38)

Now we can easily integrate Heisenberg-equation (37) and solve it for σ̂
(j)
z . Therefore, given

actual values π̃j (of the quantity πj corresponding to the operator π̂j) at some time t < t
(j)
1

(given by preparation) and at some time t > t
(j)
2 (given by measurement), we obtain the value

of the z-component of the spin of particle(j):

σ(j)
z =

πj(t < t
(j)
1 )− πj(t > t

(j)
2 )∫ t(j)2

t
(j)
1

dtfj(t)
. (39)

Step II: σ
(tot)
z -measurement

Let‘s now combine the two devices. The quantity we are interested in now is the z-component
of the total spin σtotz = σ

(1)
z + σ

(2)
z . Within this chapter we set t

(1)
i ≡ t

(2)
i := ti, i = 1, 2 and

f1(t) = f2(t) := f(t), i.e. the two interactions of the spin-1
2
-particles with the probe-particles

have the same time-dependence and strength. As “laboratory-frame“ we have obviously chosen
a Lorentz-frame in which the two measurements are performed simultaneously. The Hamiltonian
now reads

H = H1 + H2 . (40)

And here comes the trick: In order to ”detect” the actual value of σtotz we bring the two
probes together before the interaction with the spin-1

2
-particles at some time t0 < t1 and prepare

them in an (entangled) state in which the q’s and π’s take values such that25

q1(t0)− q2(t0) = 0 and π1(t0) + π2(t0) = 0 . (41)

If now after the interactions described by (36) and (40) at some time t > t2 the actual values π̃1

and π̃2 of the generalized momenta are measured, equation (39) yields the value for σtotz :

σtotz = σ(1)
z + σ(2)

z = − π̃1(t > t2) + π̃2(t > t2)∫ t2
t1
dtf(t)

. (42)

Thus, finding the values of π1 and π2 after the interaction (by subsequent measurements of the
two probes-particles) reveals the value of the total z-spin of the spin-1

2
-system (when combined

later).
Note that (as already mentioned) either of the measured values π̃j alone does not provide

any information about the total z-spin or about the z-spin of either of the two spin-1
2
-particles:

25Equations (41) might look a bit strange at first glance but they correspond exactly to a preparation of the

probe in a kind of state which was discussed in detail by Einstein, Podolski and Rosen in the famous EPR-paper:

The (non-normalizable) state Ψ(x1, x2) =
∫
dpei(x1−x2+x0)p, for which the values of position and momentum

must fulfill constraints i) x2 = x1 + x0 and ii) p1 = −p2.
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According to (39) (for the latter) it would be necessary to have the value of πj(t < t1) (before
the measurement) available to infer such information. But at this time the value of q1 − q2 is
already fixed to be zero and π̂j does not commute with q̂1 − q̂2, such that it is impossible to fix
some value of πj(t < t1). Only the combined measured values from both wings of the experiment
can reveal something about the spin-1

2
-system.

If now the initial wave-function is the singlet state | Ψ−〉 the above procedure will leave the
system in that state, for the non-demolition property [H , σ̂totz ] = 0 is valid and | Ψ−〉 is an
eigenstate of σ̂totz .

Step III: Verification of σtotx = σtoty = σtotz = 0

Suppose the spin-1
2
-system is in the singlet state | Ψ−〉. Now we can extend the above

procedure straight forwardly to get access to the other two components of the total spin.
We need three pairs of probe-particles, say one with conjugated variables qxj and πxj associated

with σ
(j)
x , one with conjugated variables qyj and πyj associated with σ

(j)
y and one with conjugated

variables qzj and πzj associated with σ
(j)
z (”associated” means that the q’s couple to the σ’s in the

sense of (36)). These variables should be prepared in initial-states analogous to (41), i.e. states
determined by values which fulfill:

qx1 (t0)− qx2 (t0) = qy1(t0)− qy2(t0) = qz1(t0)− qz2(t0) = 0 (43)

and

πx1 (t0) + πx2 (t0) = πy1(t0) + πy2(t0) = πz1(t0) + πz2(t0) = 0 . (44)

That this leads to a non-demolition measurement and that it leaves the singlet-state untouched is
heuristically easy to see: | Ψ−〉 is an common eigenstate of each of the operators σ̂totx , σ̂toty as well
as σ̂totz (with eigenvalue zero in each case), such that each procedure alone (corresponding to one
pair of interactions) leaves the singlet state undisturbed. Now we can simply perform the three
pairs of interaction in a row (each will preserve the singlet state) and make the intermediate time
arbitrarily short, such that in the limit of vanishing intermediate time we have a simultaneous
measurement of σtotx , σtoty and σtotz (with outcome zero in each case) which preserves the singlet
state.

More rigorously we can observe that

∂

∂t
q̂xij =

1

i
[q̂xij ,H ] = 0, xi = x, y, z ; j = 1, 2 (45)

and therefore we can use the constraints (43) to modify the corresponding operators in the
interaction Hamiltonian

H int = f(t) ·
3∑
i=1

(
q̂xi1 σ̂

(1)
xi

+ q̂xi2 σ̂
(2)
xi

)
=

f(t) ·
3∑
i=1

1

2

(
(q̂xi1 + q̂xi2 ) · (σ̂(1)

xi
+ σ̂(2)

xi
) + (q̂xi1 − q̂

xi
2 ) · (σ̂(1)

xi
− σ̂(2)

xi
)
)

(43)
=

f(t) ·
3∑
i=1

1

2

(
(q̂xi1 + q̂xi2 ) · (σ̂(1)

xi
+ σ̂(2)

xi
)
)

=

f(t)

2

(
(q̂x1 + q̂x2 ) · σ̂totx + (q̂y1 + q̂y2) · σ̂toty + (q̂z1 + q̂z2) · σ̂totz

)
.

(46)
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Now (given that the free part of the Hamiltonian contains no “bad“ operators) with (46) and
with the help of the commutator-relations

[σ̂totxi , σ̂
tot
xj

] =
i

2
εijkσ̂

tot
xk

(47)

it is easy to see that

[σ̂totx ,H ] | Ψ−〉 = [σ̂toty ,H ] | Ψ−〉 = [σ̂totz ,H ] | Ψ−〉 = 0 . (48)

Thus, given an initial singlet state, interaction (46) gives rise to a non-demolition measurement
of all three components of the total spin σtot. When the π’s are measured after the interaction,
the actual values π̃xij will yield

σtotxi = − π̃
xi
1 (t > t2) + π̃xi2 (t > t2)∫ t2

t1
dtf(t)

= 0 (49)

for all three components xi = x, y, z.

3.4 The Aharonov-Albert Procedure on M

State Description

In order to see how the Aharonov-Albert measurement looks like from the viewpoint of a
different Lorentz-frame we have to develop the description in the Schrödinger-picture first: Let
us go back to the σtotz -measurement (and drop again the index z at the π’s and q’s) and consider
the state of the combined probe-singlet system living on Hilbertspace

H = HS1 ⊗HS2 ⊗HP1 ⊗HP2 . (50)

HPi denotes the Hilbertspace of probe-particle(i) and HSi
∼= C2 is the spin part of the Hilbert-

space of singlet-particle(i) (as argued at the very beginning we neglect the spatial L2-part of the
singlet particles’ Hilbertspace and pretend to consider particles on classical trajectories, which
– at this stage – does not matter for the results we shall derive).

The Probe

Let us define the operators

q̂− := q̂1 − q̂2 and π̂+ := π̂1 + π̂2 . (51)

acting on HP = HP1⊗HP2 . Since these operators commute we can find a basis of HP consisting
of joint eigenstates of q̂− and π̂+. Let us denote these states by | q−; π+〉 defined by

q̂− | q−; π+〉 = q− | q−; π+〉 and π̂+ | q−; π+〉 = π+ | q−; π+〉 . (52)
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In this notation the initial-state of the probe defined by conditions (41) can be written as

| Φ0〉 =| q− = 0;π+ = 0〉 . (53)

Another useful representation will be given by the joint eigenstates of the commuting operators
π̂1 and π̂2: | π1; π2〉 defined by

π̂1 | π1; π2〉 = π1 | π1; π2〉 and π̂2 | π1; π2〉 = π2 | π1; π2〉 . (54)

With the help of this representation we will be able to calculate the effect of unitary time-
evolution operators due to interaction Hamiltonians of the form (36).

Armed with this machinery we can write the initial state of the probe a bit more complicated
as

| Φ0〉 =

∫
dπ1

∫
dπ2 | π1; π2〉〈π1; π2 | q− = 0;π+ = 0〉 (55)

with the following selection rule for the matrix-elements appearing in the evolution:

〈π1; π2 | q− = 0;π+ = 0〉 = 0 for π1 + π2 6= 0 . (56)

Time-Evolution

Since [H (t),H (t′)] = 0 the unitary time-evolution generated by interaction-Hamiltonian
(36) will act on the state by the operation

Uj = e−iFj q̂j σ̂
(j)
z (57)

for times t > t
(j)
2 , where Fj :=

∫ t(j)2

t
(j)
1

fj(t)dt. In the following f1(t) = f2(t) will not be true

anymore, but we shall set F1 = F2 =: F .
Since the time-interval of interaction ε = t

(j)
2 − t

(j)
1 may be chosen arbitrarily small, we will

pretend in the following that such interactions take place at some well defined instant of time,
e.g. at time tα.

A helpful relation for evaluating the effect of time-evolution operators as considered above,
is the fact, that one variable out of a pair of canonically conjugated variables is the generator
of translations with respect to the other one, respectively: For eigenstates | π〉 corresponding to
eigenvalue π of some operator π̂ we have

[q̂, π̂] = i =⇒ e±iξq̂ | π〉 =| π ± ξ〉 . (58)

Time-displaced Interactions

As in a different frame the two interactions of the probe with the singlet-particles (and
the subsequent measurement of the generalized momenta of the probe-particles) will not be
simultaneous anymore we shall now describe the measurement with time-displaced interactions
as illustrated in figure 9. Primary we are interested in the state between time t3 of measurement of
probe-particle(2) (after interaction with singlet-particle(2) ) and time t4 of interaction of probe-
particle(1) with singlet-particle(1). The initial state of the complete system after preparation
(i.e. for times t1 < t < t2) is the product wave-function
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Figure 9
The Aharonov-Albert procedure with time displaced interactions

| Ψin〉 =| Ψ(t1<t<t2)〉 =| Φ0〉⊗ | Ψ−〉 ∈ H . (59)

According to (57) the interaction H int
2 given by (36) will transform this state into

| Ψ(t2<t<t3)〉 = U2 | Ψin〉 =
1√
2

(
e−iF q̂2σ̂

(2)
z | Φ0〉⊗ |↑↓〉 − e−iF q̂2σ̂

(2)
z | Φ0〉⊗ |↓↑〉

)
=

1√
2

(∫
dπ1

∫
dπ2 e

iF q̂2 | π1; π2〉〈π1; π2 | q− = 0;π+ = 0〉⊗ |↑↓〉−∫
dπ1

∫
dπ2 e

−iF q̂2 | π1; π2〉〈π1; π2 | q− = 0;π+ = 0〉⊗ |↓↑〉
)

(58)
=

1√
2

(∫
dπ1

∫
dπ2 | π1; π2 + F 〉〈π1; π2 | q− = 0;π+ = 0〉⊗ |↑↓〉−∫

dπ1

∫
dπ2 | π1; π2 − F 〉〈π1; π2 | q− = 0;π+ = 0〉⊗ |↓↑〉

)
(60)

and with substitution of integration-variables we can write this as

| Ψ(t2<t<t3)〉 =
1√
2

(∫
dπ1

∫
dπ2 | π1; π2〉〈π1; π2 − F | q− = 0;π+ = 0〉⊗ |↑↓〉−∫

dπ1

∫
dπ2 | π1; π2〉〈π1; π2 + F | q− = 0;π+ = 0〉⊗ |↓↑〉

) (61)

Now at time t3 a measurement of probe-quantity π2 is performed (see figure 9) and the readout
might be the value π̃2. If we project the state (61) onto the state | π̃2〉 ∈ HP2 we find with
the help of selection rule (56) and correct normalization the state of the remaining particles of
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interest | Ψ(t3<t<t4)〉 ∈ HS1 ⊗HS2 ⊗HP1 to be

| Ψ(t3<t<t4)〉 =
1√
2

(
| π1 = −π̃2 + F 〉⊗ |↑↓〉− | π1 = −π̃2 − F 〉⊗ |↓↑〉

)
. (62)

Obviously the singlet-system is not in the singlet state in the intermediate time between the
interactions, but in an entangled state with the probe!

At time t4 then singlet-particle(1) interacts with probe-particle(1) and the resulting state
will be

| Ψt4<t<t5〉 = U1 | Ψ(t3<t<t4)〉 =

1√
2

(
e−iF q̂1 | π1 = −π̃2 + F 〉⊗ |↑↓〉 − eiF q̂1 | π1 = −π̃2 − F 〉⊗ |↓↑〉

)
=

1√
2

(
|↑↓〉− |↓↑〉

)
⊗ | π1 = −π̃2〉 =

| Ψ−〉⊗ | π1 = −π̃2〉

(63)

Thus when at time t5 the generalized momentum of probe-particle(1) is measured it will be
found to have the value π1 = −π̃2; and therefore with (42) the experimenter has found that
σtotz = 0. The resulting state for times t > t5 (or actually t > t4) is the singlet-state again.
But the measurement does not leave the singlet state untouched anymore: The singlet-state
is disturbed in the intermediate time interval t2 < t < t4 between the interactions with the
probe. During that interval the actual state is characterized by entanglement between the two
spin-1

2
-particles and the probe.

Again this procedure can be combined with analogous procedures for the other two compo-
nents of the total spin and the finding will be the same: Between the relevant interactions the
state will be disturbed and entangled with the probe, the readout of the probe measurements
will yield that σtotz = σtotx = σtoty = 0 and after the interactions the spin-1

2
-particles will be in the

singlet state again (see [20]).

Relativity

Let us relate now these calculations to the title of this section. As mentioned already, in some
Lorentz-transform of the Aharonov-Albert measurement-scenario of section 3.3 the simultaneous
interactions will not be simultaneous anymore. So except from the fact that we did not consider
Lorentz-transformed states, the just investigated process (displayed in figure 9) corresponds to
the Lorentz-transformed process of section 3.3 (with respect to some particular frame). If the
reader is afraid of possible conceptual relevance of the transformed states, she should notice that
we (theoretically) can also perform this procedure with states, which do not transform under
Lorentz transformations, e.g. by exchanging the singlet spin-1

2
-system with a corresponding

singlet isospin-1
2
-system [31, 32].

Thus we can literally translate the relevant features of our finding for the Aharonov-Albert
procedure for time-displaced interactions to some Lorentz-transform of the original procedure
of section 3.3. In particular in a different Lorentz-frame the relevant simultaneous interactions
will not be simultaneous anymore, the singlet-state will be disturbed in the intermediate time
range and the out-coming state will be the singlet-state again.
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3.5 Suggestion: No Single Covariant State History

In the following two sections we shall infer some consequences from the possibility of “non-local
measurements” of the kind we have investigated in the last sections, for theories which claim to
get along without employing distinguished space-like structures on Minkowski space-time.

In the case of such theories (which apparently have a high degree of relativistic compatibility)
some simultaneity-slice (t = const) in the laboratory frame – in which the pairs of interactions
of the Aharonov-Albert procedure are simultaneous – has the same physical significance as
any other space-like hyper-surface. We can assign a wave-function to each simultaneity-slice
within this frame (as we can assign a wave-function to each space-like hyper-surface) and the
instantaneous26 verification of σtotx = σtoty = σtotz = 0 for the total spin of the two-particle spin-1

2
-

system can indeed be seen as a state-verification of the singlet state (which is uniquely determined
by these relations), at least on the simultaneity-slices of the laboratory-frame subsequent to the
interactions. This fact opens the door for a special kind of continuous measurement, which is
called “monitoring of the state history” and which is extensively discussed by Aharonov and
Albert. I will now give a survey of this issue and then discuss the consequences.

Monitoring

The monitoring procedure is simply the successive performance of one and the same non-
demolition measurement, which will (according to the non-demolition property) yield the same
outcome in every run. The intermediate time between to runs of the experiment can be chosen
arbitrarily short, in principle. Thus, the succession of “photographs of the singlet state” (in the
sense described in the last paragraph) turn into a film of the (not very thrilling) story of the
singlet state in the limit of vanishing intermediate time.

Monitoring in Different frames

Now suppose at some time t = t0 the z-component of the spin of particle(2) is measured
(e.g. at some SGM) and found to have the value -1. This means that the singlet state | Ψ−〉
collapses at time t = t0 and the resulting state will be |↑↓〉. If the history of the singlet state
is monitored, the collapse along the t = t0-hyperplane (at least at the two relevant (distinct)
points laying on it, which is sufficient) of the “laboratory frame“ K can be recorded in principle27

(see figure 10 a)). If the state history is not monitored in frame K, but in another frame K ′,
the collapse can be recorded in that frame, say along the t′ = t′0-hyperplane, which crosses the
measurement-event and which is different from the t = t0-hyperplane as illustrated in figure 10
b). If we compare these two histories, this means in particular that there is a region in which

26The term “instantaneous“ is very important here: We will see in section 3.7 that the right pointer-positions

at the end of the Aharonov-Albert experiment (i.e. π̃xi
1 = −π̃xi

2 ) do not allow to conclude in general, that the

system is in the singlet state subsequent to the measurement, if the pairs of interactions are not simultaneous.

This holds also for theories without distinguished space-like structures on space-time. In theories with a preferred

foliation even instantaneous verification of σtot = 0 does not allow such conclusion.
27There is a certain uncertainty in recording the collapse, for there is non-vanishing probability to produce

the singlet state again out of the state |↑↓〉 and thereby get the right pointer positions, i.e. σtot = 0. But of

conceptual relevance is only the fact, that it is possible in principle to record the collapse non-locally and it is

not essential that the recording might fail sometimes.
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Figure 10
Inconsistent State Histories I: a) Collapse of the singlet state from the viewpoint of

Lorentz-frame K. b) The hyperplane along which the wave-function collapses in frame K ′

(again from the viewpoint of frame K). In each frame the state history can be monitored in

principle, but the two state histories are not consistent with each other.

particle(1) is already in the collapsed state |↑↓〉 according to the state history which might be
monitored in the K-frame, whereas it is still in the singlet state | Ψ−〉 according to the history
which might be recorded in frame K ′.

According to the type of theory we are considering right now there is no distinguishing
structure on space-time which prefers one of the two respective contradicting state histories
with respect to the other one. So the urgent question arises what might happen if the state
history is monitored in both frames at once.

Monitoring in Different Frames at Once

Heuristically it is easy to see that this is actually impossible: Consider one run of the
Aharonov-Albert experiment performed in frame K ′ from the viewpoint of frame K (figure
11). For simplicity consider only the σtotz -measurement performed in K ′ (in case of the whole
σtot measurement the entangled state would only be more complicated and the result is essen-
tially the same), such that we can make use of the detailed analysis we made in the last chapter.
As encountered there, the two interactions of the probe-particles with the spin-1

2
-particles are

not simultaneous in K and the singlet state is disturbed in the intermediate time interval be-
tween the interactions. During that time the wave-function is an entangled state of system and
probe, given by (62). If now the Aharonov-Albert procedure (consider now the full procedure
given by interaction-Hamiltonian (46)) is performed also in K within that time interval (see
figure 11), non-demolition conditions (48) will not be fulfilled anymore for the initial state of

that measurement: If for example the commutator [σ̂toty ,H ]
(46)&(47)∼ a · σ̂totx + b · σ̂totz (where a
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Figure 11
Disturbance: The Aharonov-Albert experiment performed in frame K ′ disturbs the singlet

state in frame K. In the latter frame the wave-function is entangled with the K ′-probe-particles

in the intermediate time (shaded region) between the interactions of the spin-1
2 -particles with

the primed probe particles. A second Aharonov-Albert experiment performed in K will not be

a non-demolition measurement in the disturbed state anymore. Hence, the singlet-state history

cannot be monitored in two different Lorentz-frames at once. [For simplicity we consider only

the σtotz -measurement in K ′ (two primed probe particles), but the full procedure in K given by

Hamiltonian (46) (six probe particles).]

and b contain operators belonging to the probe-system of frame K) acts on state (62), the result
will not be zero anymore:

[σ̂toty ,H ] | Ψ(t3<t<t4)〉 ∼(
a · σ̂totx + b · σ̂totz

) 1√
2

(
| π′1 = −π̃′2 + F 〉⊗ |↑↓〉− | π′1 = −π̃′2 − F 〉⊗ |↓↑〉

)
=

a√
2

(
| π′1 = −π̃′2 + F 〉 ⊗ σ̂totx |↑↓〉− | π′1 = −π̃′2 − F 〉 ⊗ σ̂totx |↓↑〉

)
(3) with ϕ=0,θ=π

2=

a√
2

(
| π′1 = −π̃′2 + F 〉 ⊗ σ̂totx

(
|↑↑〉x− |↓↑〉x+ |↑↓〉x− |↓↓〉x

)
−

| π′1 = −π̃′2 − F 〉 ⊗ σ̂totx
(
|↑↑〉x+ |↓↑〉x− |↑↓〉x− |↓↓〉x

))
=

2a√
2

(
| π′1 = −π̃′2 + F 〉 ⊗

(
|↑↑〉x+ |↓↓〉x

)
− | π′1 = −π̃′2 − F 〉 ⊗

(
|↑↑〉x+ |↓↓〉x

))
=

√
2a
(
| π′1 = −π̃′2 + F 〉− | π′1 = −π̃′2 − F 〉

)
⊗
(
|↑↑〉x+ |↓↓〉x

)
6= 0 ,

(64)

where the primed π’s are the generalized momenta of the probe-particles belonging to the mea-
surement in the primed frame.

This suggests that it is indeed not possible to monitor the state history in two different
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frames at once: The measurements performed in two different frames at once would disturb one
another and thereby destroy the singlet state. If the state evolution corresponding to the scheme
depicted in figure 11 is explicitly calculated (which is a bit more extensive, but straight forward)
the destruction of the singlet state (in general, i.e. apart from some finite probability of “no
destruction”) appears explicitly, of course.

Thus the problem we are faced with is the following: If we want to omit the utilization of
distinguished intrinsic space-time structures in order to explain (theoretically) possible experi-
mental results (see section 3.7) we have to account for respective contradicting state histories,
where each can be verified experimentally in principle, but not both at once.

Illustration of the Problem

In order to highlight this point in a picturesque way, let me give one last simple example [3]:
Consider a one-particle wave-function, where the potential in the Hamiltonian allows only non-
vanishing Ψ within three small (but still bigger than the Compton-wavelength) distinct regions
regions of space, say near the points x1, x2 and x3, respectively (see figure 12). Suppose now
it would be possible to monitor the state history of this state.

Figure 12
Inconsistent State Histories II: State history of a particle whose initial wave-function has

support only in three spatial regions about the locations x1, x2 and x3. At time t1 some

particle-detector at x1 yields a negative result and collapses the wave-function; at time t2
the same happens at x2. This state history is not consistent with the state history from the

viewpoint of the indicated primed frame.

Say at some time t = t1 in the depicted frame K a particle detector crosses the region around
x1 and the detection is negative such that the support of the wave-function vanishes at x1. The
same goes for the region around x2 at time t = t2 > t1, where (t1,x1) is supposed to be space-like
with respect to (t2,x2). Thus we can find some frame K ′ in which the wave-function around
x2 vanishes prior to the vanishing of the wave-function around x1, i.e in which the Lorentz-
transformed (negative) measurement-events (t′1,x1

′) and (t′2,x2
′) fulfill t′2 < t′1 (also indicated

in figure 12).
Let us denote by | xi〉 the wave-function with support only in a small region around xi.

Then the state-history which might be monitored in K would look like (for simplicity let us
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drop the normalization)

| Ψ(t<t1)〉 =| x1〉+ | x2〉+ | x3〉 (65)

| Ψ(t1<t<t2)〉 =| x2〉+ | x3〉 (66)

| Ψ(t>t3)〉 =| x3〉 . (67)

On the other hand, monitored in K ′ the story would look like

| Φ(t′<t′2)〉 =| x1
′〉+ | x2

′〉+ | x3
′〉 (68)

| Φ(t′2<t
′<t′1)〉 =| x1

′〉+ | x3
′〉 (69)

| Φ(t′>t′1)〉 =| x3
′〉 . (70)

Observe that “the system will realize the state“ | x2〉+ | x3〉 sometime within its history in
K but apparently the Lorentz-transform of that state never appears in the history which might
be monitored in K ′. And the same goes the other way around for the state | x1

′〉+ | x3
′〉 which

appears in the state history in K ′ but the transformed state never appears in K.
To begin with, this strongly suggests a violation of fundamental principles of relativity

(Lorentz invariance of the state history). And of course, the theoretical description alone sug-
gests such violation, regardless of whether the histories can be monitored experimentally. But
the (theoretical) possibility of monitoring inconsistent histories of non-local states experimen-
tally (as we have extensively argued for the singlet state) highlights the necessity of reasoning
a little bit deeper, whether a description can be given, which reconciles the (experimentally
well confirmed) non-local action at a distance of quantum theory with the (experimentally well
confirmed) relativistic space-time structure.

Conclusion

The above examples have shown that it is not possible in general to assign a single Lorentz
invariant state history to a quantum mechanical system if we are adamant in avoiding the
utilization of preferred structures of space-time. Therefore we have two possibilities at hand to
come to a reconciliatory solution:

Either we develop a consistent description of state evolution which also accounts for the
possible coexistence of inconsistent state histories in different frames. This implies to assign some
strange and unfamiliar properties to the wave-function and its evolution; in particular ontological
interpretation of the wave-function (as something which is there...) becomes impossible. Its
status must be reduced then to a purely nomological object (a part of the law which describes
the dynamics of the primitive ontology). We shall call such state description Solution I which
will be developed in the next chapter.

Or we employ distinguished space-like structures to accounts for the non-local connections
of space-like separated events inherent in quantum theory. We shall work out in section 3.7 that
such a solution (which I’ll call Solution II ) is indeed well designed to solve the problem we are
faced with.
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3.6 Solution I : Wave-Functionals & Collapse Along Arbitrary Space-

Like Hypersurfaces

After their first two papers [1, 2] on that issue, in which Aharonov and Albert investigated the
problems (without finding a solution) we have developed so far, they proposed a new kind of
state description in a third paper [3], which is appropriate to account for wave-function collapse
in Minkowski space-time in an unambiguous and Lorentz invariant way. In 2006 – apparently
independent of the investigations of Aharonov and Albert – Roderich Tumulka developed essen-
tially the same relativistic description of wave-function collapse in order to define a relativistic
law for the dynamics of the primitive ontology in a relativistic collapse model [61].

The key is to treat wave-functions as functionals on the set of space-like hyper-surfaces of
space-time. An appropriate dynamics has to be developed, such that ”collapse causing events“
enter the description in a transparent, Lorentz invariant and consistent way. But before we come
to collapse let us briefly develop an appropriate description for unitary time-evolution.

No Collapse: Unitary Evolution

Aharonov and Albert [3] used the formalism developed by Tomonaga [60] to account for
unitary time evolution. In Tumulka’s relativistic GRW model [61] the underlying equation is the
multi-time Dirac-equation [23] such that it seems natural there to go a somewhat more direct
way. But the result will be essentially the same: Unitary time evolution is generalized, such that
the wave-function can be treated as a functional on the set of space-like hyper-surfaces. The
description enables us to calculate the wave-function associated with some arbitrary space-like
hyper-surface Σ, given some ”initial” wave-function associated with another arbitrary space-like
hyper-surface Σ0, and given that no events causing wave-function reduction (like measurement
events) lie in the space-time volume enclosed by Σ0 and Σ.

Tomonaga [60]: In order to build up the “quantum theory of wave fields“ on a basis which
does not rely on the choice of a particular frame of reference, Tomonaga generalized the de-
scription of time evolution of the wave-function Ψ. The time evolution is generated by some
Hamilton density H (x) (the interaction part in the interaction picture). By this time evolution
the wave-function is a function of an absolute time Ψ = Ψ(t). Motivated by Dirac’s multi time
theory [23], Tomonaga generalized Ψ – as a function of t – to a functional Ψ[t(x)] of functions
t(x) which constitute arbitrary space-like hypersurfaces on space-time.

Consider an arbitrary function t̃ : R3 → R of space with the only constraint that each pair of
space-time points x = (t,x) and y = (s,y) with the properties t = t̃(x) and s = t̃(y) is space-like
separated28. t̃(x) was called “local time“ by Stueckelberg [59]. We shall call the graph (t̃(x),x)
of such a function a space-like leaf Σ on space-time. Now consider the functional Ψ[t̃(x)] which
is a solution to the (infinitely many) variational equations

i
δ

δt̃(x0)
Ψ[t̃(x)] = H Ψ[t̃(x)] , (71)

28To be exact, we have to require in addition the correct transformation under Lorentz transformations for t̃ ,

i.e. it transforms such that (t̃(x),x) is a Lorentz-vector.
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where the local Hamilton-density operator H = H (x) is restricted to the subset of space-time
given by t = t̃(x). The functional derivative δ

δt̃(x)
is defined in the following way

δΨ[t̃(x)]

δt̃(x0)
= lim

ε→0
V0→0

Ψ[t̃(x) + εfx0(x)]−Ψ[t̃(x)]∫
εfx0(x) d3x

, (72)

where the test-function fx0(x) deviates from zero only in a small three-dimensional domain V0

about x0.

Figure 13
Small variation of space-like leaf Σ about space-time point x

(72) can be also written more compactly: Let Σ be the space-like leaf given by the graph of
t = t̃(x) and thus write Ψ[t̃(x)] =: Ψ[Σ]. Further suppose Σ′ is a hyper-surface which deviates
form Σ only by some small space-time volume ∆ωx (a small world lying between Σ and Σ′, as
Tomonaga puts it) about space-time point x (see figure 13). Then variation (72) can be written
as

δΨ[Σ]

δΣx

= lim
Σ→Σ′

Ψ[Σ′]−Ψ[Σ]

∆ωx
(73)

and therefore our generalized Schrödinger equation (71) as

i
δ

δΣx

Ψ[Σ] = H (x)Ψ[Σ] . (74)

Now, the Tomonaga-form (74) is integrable if and only if [H (x),H (x′)] = 0 for all pairs of
space-time points x, x′ lying on Σ [60] (roughly said, this ensures that the unitary evolution
resulting from (74) is unique, i.e. that we get a unique wave-function on space-like leaf Σ,
although we might decompose the evolution from ”initial-leaf” Σ0 to Σ into different sequences
of infinitesimal variations). The commutation of the local Hamilton-densities is ensured by the
requirement that the leafs Σ are space-like hyper-surfaces.

Tumulka: Let us consider now the unitary wave-function dynamics for N non-interacting
Dirac-particles and develop an appropriate description on arbitrary space-like leafs Σ. Let us
start with the one-particle Dirac equation

iγµ(∂µ − ieAµ)ψ = mψ , (75)

with electromagnetic vector-potential Aµ(x), particle charge e, particle mass m and the Dirac-
matrices γµ . Now consider a space-like leaf Σ on space-time on which we define the Hilbertspace
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HΣ = L2(Σ) ⊗ C4 given by the set of square-integrable C4-valued functions ψ : Σ → C4 on Σ,
with ∫

Σ

ψ†(x)γ0γµnµ(x)ψ(x)d3x <∞ , (76)

with the running variable x ∈ Σ, the future directed unit normal vector nµ(x) on Σ at x (where
“unit vector“ means nµ(x)nµ(x) = 1), the volume measure d3x generated by the Riemannian
metric on Σ and the adjoint spinor ψ†(x). Observe that γ0γµnµ(x) is positive definite for every
future oriented time-like 4-vector nµ(x), that ψ → ψ̄ := ψ†γ0 is a Lorentz invariant operation
(in contrast to ψ → ψ†) and that γµnµ(x) heuristically picks out the “time-component“ (with
respect to Σ at x) of the four-vector γµ, i.e.: if we consider the Lorentz-frame in which nµ(x)
is the unit normal vector parallel to the time axis (i.e. nµ = (1, 0, 0, 0) in that frame), than
γµnµ(x) = γ0. Finally the scalar product on HΣ is given by

〈ϕ | ψ〉Σ =

∫
Σ

ϕ̄(x)γµnµ(x)ψ(x)d3x . (77)

Then the (one-particle) Dirac-equation (75) generates a unitary transformation UΣ
Σ′ : HΣ → HΣ′

between the Hilbertspaces associated with two arbitrary distinct space-like hyper-surfaces Σ and
Σ′. The crucial unitarity is due to the validity of the continuity-equation

∂µjµ(x) =: ∂µ
(
ψ̄(x)γµψ(x)

)
= 0 (78)

which follows from (75). The rigorous proofs of existence and properties of HΣ and UΣ
Σ′ can be

found in [65]. In particular the unitary operators fulfill UΣ2
Σ3
UΣ1

Σ2
= UΣ1

Σ3
and UΣ

Σ = 1HΣ

The remaining step is then to generalize this description to N-particle states. To do so
consider the multi-time N-particle wave-function ψ(x1, ..., xN) on MN , which is solution to the
N equations29

iγµk (∂k,µ − iekAk,µ)ψ = mkψ ; k = 1, ..., N . (79)

Here ∂k,µ is the four-derivative with respect to xk, ek and mk the charge and mass of particle
k, Ak,µ(x) an external electromagnetic potential acting on particle k and the Dirac-matrices γµk
associated with particle k are defined by γµk := 1HS1

⊗ ... ⊗ 1HSk−1
⊗ γµ ⊗ 1HSk+1

⊗ ... ⊗ 1HSN
(where HSj is the appropriate spin space associated with particle j).

In analogy with the above construction for the one-particle case let us consider again an
arbitrary space-like hyper-surface Σ ⊂ M and build now ΣN ⊂ MN . Then the Hilbertspace
HΣN = L2(ΣN) ⊗ C4N of square-integrable C4N -valued functions ψ : ΣN → C4N on ΣN (with
the obvious generalizations of (76) and (77)) is simply the tensor product of the one-particle
Hilbertspaces.

29One problem of multi-time equations like (79) is that there is at least no obvious way to implement interaction

between the particles, for an interaction potential of the form V (x1, ...,xN , t) is not consistent with multi-

time formalism (and moreover such interaction would destroy the commutativity of the one-particle interaction-

Hamiltonians, which is needed to ensure the integrability of the multi-time equations). But this does not harm

our conceptual considerations here since wave-functions stay entangled in the absence of interaction and thus we

have all we need to investigate quantum nonlocality in a relativistic context. The implementation of interaction

is a different story.
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An important feature of both approaches is that in order to calculate local values, which we can
assign to the wave-function at some space-time point, we are free to choose any desired space-like
leaf containing that point to evaluate the wave-function. For example in case of a one-particle
wave-function the value of the wave-function ψ(x0) at space-time point x0 is independent of the
space-like hyper-surface (containing x0) the wave-function is associated with, i.e. if x0 ∈ Σ ∩ Σ′

we have30

ψΣ(x0) = ψΣ′(x0) . (80)

When we include collapse of the wave-function now, the crucial novelty will be, that such ”hyper-
surface-independence“ no longer holds; and this fact has far reaching conceptual consequences.

Collapse

In order to find out how wave-function collapse is to be implemented in a Lorentz invariant
and consistent way, let us consider again a picturesque example of wave-function collapse in
the simple case of a one-particle wave-function (figure 14): As above a particle is prepared and
equipped with a Hamiltonian, such that the support of the wave-function is constrained to stay
in distinct small spatial regions; now, say, we have two such regions around positions x1 and
x2. At time t = t0 a (non-demolition) position measurement is performed in the region around
x1 and the particle is found there (but not absorbed from a detector). Thus we might have the
following state-history:

| Ψ(t<t0)〉 =
1√
2

(| x1〉+ | x2〉) (81)

| Ψ(t>t0)〉 =| x1〉 (82)

Now we apply our conjecture that each space-like hyper-surface has to be on an equal footing,
say, to the hyperplanes Σ and Ξ in figure 14, which might be simultaneity slices in two different
frames. Observe, that Σ defines a ”simultaneous instant of time” in some frame after the position
measurement , while Ξ defines a ”simultaneous instant of time” prior to that measurement in
another frame. Thus obviously we have to associate Σ with the collapsed wave-function and Ξ
with the un-collapsed one. To put it more generally: The hyper-surface Σ lies in the future of the
(measurement-) event where the collapse is centered (i.e. every future-oriented time-like curve
originating from that event crosses Σ) such that we have to assign the collapsed wave-function
to it. In contrast Ξ is prior to the ”reduction causing event” (each past-oriented time-like curve
originating from there intersects Ξ) such that we have to assign the initial state to it.

Both slices intersect in space-time point X and since we are concerned with a one-particle
wave-function we might ask how Ψ(X) looks like. But that is obviously not the right question,
since Ψ(X) has no meaning at all in this context; not until a hyper-surface is chosen on which
Ψ is evaluated. Moreover the value at X strongly depends on that choice now:∫

UΞ
ε (X)

ΨΞ(x)d3x =
1√
2
6=
∫
UΣ
ε (X)

ΨΣ(x)d3x = 0 , (83)

30In case of more-than-one-particle wave-functions we cannot assign a value to the wave-function at one space-

time point (for it is no longer a function on M , but on MN ) but an appropriate local analogue might then be

the reduced density-matrix of one of the particles and also here the above assertion holds (in the case of purely

unitary time-evolution).
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Figure 14
Towards solution: A particle with initial state 1√

2
(| x1〉+ | x2〉) is detected (but not absorbed)

at x1 at time t = t0. Consequently, the wave-function associated with hyperplane Σ vanishes

at space-time point X ∈ Σ ∩ Ξ, in contrast to the wave-function along hyperplane Ξ. Both

might be simultaneity slices in particular frames.

where U
Ξ/Σ
ε (X) is the neighborhood of X with radius ε restricted to Ξ/Σ and ε is big enough

to cover the (potential) support of the wave-function around X with U
Ξ/Σ
ε (X) . And indeed we

can put it a bit simpler by observing that

(0 6=) ΨΞ(X) 6= ΨΣ(X) (= 0) (84)

must hold for the scheme depicted in figure 14 within every theory which accounts for quantum
mechanical predictions and, at the same time, does not draw on preferred space-like structures
of space-time.

Now we are in a position to straight forwardly generalize the evolution law of wave-functions
to situations in which wave-function collapse occurs:

The state of the system is not a function of space-time [...] but, rather, [...] it
is ineluctably a functional on the set of space-like hyper-surfaces. [...] We shall
require (so as to complete, together with [the Tomonaga form (74)], the description
of the evolution of ψ from one surface to another) some covariant prescription for
the collapse within this language [...]: The state reduction occurs separately along
every space-like hyper-surface which passes through the measurement event; if one
hyper-surface is continuously deformed into another, the reduction occurs as the
hyper-surface crosses that event. [3]

This is in essence exactly the same way in which the wave-function transforms under col-
lapse in Tumulka’s relativistic rGRWf-model (see section 4.1.1): Only here, we do not need
measurement-events to formulate the reduction law, since the primitive ontology of the theory
is given by the collapse-events themselves (whose (stochastic) dynamics is precisely described
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by the theory). These events are called flashes. In the language of this theory the above law
sounds like:

How does the wave-function transform under a change of slicing of space-time [...]?
In two ways. First, some flashes may lie in the future of the new surface [...] but in
the past of the old surface [...] and vice versa; consequently, the corresponding wave-
functions differ by application of the collapse operators (respectively their inverses,
and renormalization) belonging to these flashes. Second, on top of that the wave-
function differ by the unitary Dirac propagator from one surface to the other. [61]

Or elsewhere

As we push Σ to the future, ΨΣ collapses whenever Σ crosses a flash, and evolves
deterministically in between. [62]

Observe, that this law of wave-function dynamics is as relativistic as it could be since it does
not pick out any coordinate system nor any other structures of Minkowski space-time as being
physically preferred with respect to others.

More than One Particle

So far we have considered a one-particle wave-function where everything is unsophisticated
since configuration space coincides with physical space. So let us take a brief look at an example
with more than one particle to prevent possible confusion in reasoning about these things (this
example is also briefly considered by Tumulka in [64]).

Consider again a pair of singlet-particles, where “at some time“ the world-line of particle(2)
crosses the world-line of some SGM (oriented in z-direction) and is deflected downwards (is found
in the respective region directly afterwards) (see figure 15). Thus the wave-function undergoes
a collapse

| Ψ−〉 −→|↑↓〉 (85)

and the question arises which wave-function belongs to particle(1) in some region (say, around
space-time point X) space-like separated from the measurement of the z-spin of particle(2).

Now, of course, we cannot evaluate the wave-function at some space-time point anymore, for
the two-particle wave-function (the spatial part) is no more a function of space-time. The most
appropriate analogue of the “wave-function of particle(1)” (i.e. the object which is appropriate to
describe the physics of particle(1) locally as good as possible without incorporating particle(2)) is
now the reduced density matrix, i.e. we perform the partial trace with respect to the Hilbertspace
HS2 of particle(2) onto the density matrix of the two-particle system. And with the state
description developed so far the latter density matrix (and with it the former reduced one)
depends strongly on the choice of a hyper-surface where the wave-function is evaluated:

Consider the two space-like hyper-surfaces Σ and Ξ depicted in figure 15 which are almost
identical. They only differ in a small region around the event of measurement of the z-spin of
particle(2). Then the density matrix belonging to Σ is

ρΣ =| Ψ−〉〈Ψ− | (86)
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Figure 15
Hyper-surface dependence of the reduced density-matrix: A pair of singlet particles

is prepared and spatially separated. Then the z-component of the spin of particle(2) is mea-

sured at a SGM with outcome σ
(2)
z = −1. In a Solution-I-model the reduced density matrix

corresponding to particle(1) about space-time point X ∈ Σ∩Ξ depends crucially on the choice

of hypersurface, Σ or Ξ, where the wave-function is taken, although these surfaces might be

almost identical.

and consequently the reduced density matrix of particle(1)

ρΣ
red(1) =

1

2

(
(|↑〉〈↑|)(1) + (|↓〉〈↓|)(1)

)
=

1

2
1HS1

. (87)

On the other hand the density matrix along Ξ is

ρΞ =|↑↓〉〈↑↓| (88)

and thus
ρΞ
red(1) = (|↑〉〈↑|)(1) (89)

which obviously describes a “physical situation” very different from the one described by ρΣ
red(1).

Nevertheless, we have to attribute the same physical significance to both descriptions, as long
as we refuse to employ distinguished space-like structures of space-time which account for non-
locality.

Consequence

The most striking consequence from this reasoning is (as mentioned in the introduction) that
it excludes the possibility to create the primitive ontology directly out of the wave-function in a
naive way. If one follows discussions and incidental remarks in papers and text-books it seems
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that many physicists have in the back of their mind the idea, to identify the wave-function (in
a not clearly defined way) with matter, e.g. as a quantity which somehow generates a density
of matter. But now we encounter that such interpretation is actually impossible in relativistic
quantum theory without drawing on some preferred space-time structure, since – as we have
seen – the wave-function might vanish in some space-time regions in one frame of reference
while it has finite values there in another frame. And such behavior is unacceptable for matter
density. It would imply the same ontological inconsistency we were faced with in section 2.2.3
(as a consequence of non-commuting space-like separated operators, there): The distributions of
matter in different Lorentz-frames would not be the respective Lorentz-transformed distributions
of matter there. The world in different frames would not be the respective Lorentz-transformed
world but a completely different world.

Maybe the requirement of ontological consistency is a proper modest and indisputable
notion of relativity : Distributions of matter in one Lorentz-frame must be the respective
Lorentz-transformed distributions of matter present in other Lorentz-frames.

Finally, to make the vague conception of the interpretation of the wave-function as something
which generates a density of matter precise (i.e. to give a corresponding possible law for the
primitive ontology), let us consider the perhaps simplest way to do so: Let us begin with non-
relativistic quantum theory and think of matter as the (weighted) projection of the square of
the wave-function (to do justice to Born’s rule) from configuration space down to physical space,
i.e.:

M(x, t) =
N∑
i=1

mi

∫
d3x1...d

3xN | ψ(x1, ...,xN , t) |2 δ(x− xi) , (90)

where the weight mi is the mass associated with particle i. In other words, this model constitutes
a mass distribution by evaluating the marginal mass distribution of particle i and then summing
up all the one-particle marginal distributions.

Now, this is the first possible precise law for a primitive ontology we encounter within these
lines and it is well suited to account for Born’s probability rule (but in standard quantum theory
only if we omit to think of pointers and the like as consisting of constituents guided by the laws
of quantum theory). But it is not suitable to comply with ontological consistency if applied to
relativistic quantum theory: to see this consider for example again the scheme of the one-particle
wave-function evolution depicted in figure 14. The mass-density (90) in the one-particle case is
simply

M(x, t) =| Ψ(x, t) |2 (91)

and lifted to Minkowski space-time this law would predict matter to be found around space-
time point X in the frame in which Ξ is a simultaneity slice (indeed half of the matter of the
considered system in the direct spatial neighborhood of that point), but no matter around X in
the frame in which Σ is a simultaneity slice.

This illustrates that the desire to treat all space-like hyper-surfaces on an equal footing, leads
to the conclusion that the wave-function cannot enter into the primitive ontology in a naive way
(in the sense discussed so far).
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3.7 Solution II : Distinguished Foliation

In their 1981-paper Aharonov and Albert claim to infer from the possibility of the above de-
scribed measurement procedure the impossibility of wave-function collapse along preferred hyper-
surfaces:

The proposal that the reduction be taken to occur covariantly along the backward
light-cone of [the measurement event], or, indeed, that it be taken to occur along any
hyper-surface other than t = 0 [which corresponds e.g. to t = t0 in figure 8], will fail
... , since it cannot account for the results of nonlocal measurements of the kind we
have described here.

I have argued in chapter 3.2 that this kind of measurement indeed refutes backward light-cone
reductions as proposed by Hellwig and Kraus. But it is a different business to take the collapse
to occur along fixed (space-like) hyper-surfaces (which, unlike the Hellwig-Kraus surfaces, do
not depend on measurements and might constitute a unique foliation of space-time). Hence, we
should take a closer look on such a proposal.

Figure 16
Distinguished Foliation: The Aharonov-Albert experiment performed in the depicted frame

where the relevant pairs of interactions are simultaneous. A possible distinguished foliation of

space-time into space-like leafs is indicated and the collapse is supposed to occur along these

leafs. Of particular interest is the collapse along the leaf Σ5 according to the measurement of

the z-component of singlet-particle(2).

At first glance it seems indeed to be a natural conclusion of the Aharonov-Albert procedure
to exclude the existence of a preferred foliation: Consider the scheme which we already used to
refute the Hellwig-Kraus proposal, depicted in figure 16: The EPRB-setup is supplemented by
an Aharonov-Albert experiment shortly before the interactions at the SGMs and the subsequent
position-measurements which are separately resolved now. Without loss of generality assume
that the outcome is σ

(1)
z = +1 and σ

(2)
z = −1. Further we consider the whole procedure, i.e.
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3.7 Solution II : Distinguished Foliation

the readouts π̃i, with i = 1, 2 indicated in figure 16 stand for three pairs of values (belonging to
σtotx , σtoty and σtotz , respectively).

The equal-time hyperplanes of the laboratory-frame (the x− t frame depicted here) are not
indicated, but the pairs of relevant interactions (probe/singlet interactions and the interactions
with the devices) are supposed to be simultaneous in this frame. Instead, curved space-like
hyper-surfaces are indicated and we shall assume now a model in which every measurement-
event lying on one of the hyper-surfaces, collapses the wave-function all along that surface.

As already mentioned, it seems at first glance that this leads to a contradiction: In this
picture, when probe-particle(1) interacts with singlet-particle(1), the latter is already no more
a singlet-particle. According to our model, the wave-function collapses along the surface Σ5

and the state is projected onto (|↓〉〈↓|)(2) (and renormalized), such that the singlet state should
be irreversibly destroyed at the time of interaction with probe-particle(1). How could then
this interaction (together with the interaction of probe-particle(2) ) confirm that σtotz = σtotx =
σtoty = 0? This seems to suggest that our model with a distinguished foliation contradicts the
predictions of quantum theory (as claimed by Aharonov and Albert in the above quote) and
that Solution I is the only way to reconcile wave-function reduction with Minkowski-space-time.

But there must be a flaw in the apparent contradiction for two reasons: First, there exists a
relativistic quantum mechanical model (the so called Hypersurface-Bohm-Dirac-Model [25], see
chapter 4.2.3) with particle trajectories, in which the non-local connection between the particles
(and thereby the so called effective collapse of the wave-function which is effectively the same
as the wave-function collapse in the scheme we are considering right now) is postulated to occur
along the leafs of a preferred foliation. And it has been shown [25] that this model is empirically
equivalent to quantum theory, i.e. it yields all the quantum mechanical predictions, independent
of the actual choice of foliation. Therefore it cannot be true that a model with preferred foliation
contradicts quantum mechanical predictions in principle.

Second, also a careful look onto Solution I shows that if the Aharonov-Albert procedure
contradicts a preferred foliation in principle, it must also contradict Solution I : For example, if
we transform the scenario illustrated in figure 16 (with removed foliation) into a Lorentz-frame

in which the readout of σ
(2)
z precedes the interaction of probe-particle(1) (like illustrated in figure

17) we can, according to Solution I, use the equal-time hyperplanes of this frame to define a
state-history. But this state-history is essentially identical to the state-history as defined by
the sequence of space-like leafs of the proposed distinguished foliation in figure 16. If the latter
would contradict quantum theory, then the former would, too.

Thus it seems worth calculating explicitly the time evolution for this scheme within our
”collapse-along-hyper-surfaces-of-figure-16“-model, to see that indeed everything comes out right
and that contradictions do not show up, actually.

Since we have no concrete mathematical expression for our foliation but only a qualitative
picture, we must focus on the only relevant feature defined by it: the sequence of interactions
and collapse. Apart from this sequential history the actual shape of the leafs provides no relevant
contributions to our issue here, such that in order to calculate we can simply ”make them flat“
(see figure 17a)). The resulting hyperplanes are now equal-time hyperplanes of a distinguished
frame K ′ of instantaneous collapse and we can perform the calculation within this frame (figure
17b)).

Let us start with the Aharonov-Albert procedure to measure σtotz .
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Figure 17
Flattened and transformed foliation: Since the relevant feature of the foliation in figure

16 is to define the sequence of interactions and collapses, we can disregard the detailed shape

of the leafs in order to calculate the state history corresponding to this sequence. This is done

a) by exchanging the hypersurfaces with flat hyperplanes and b) by a Lorentz-transformation

into the frame where these planes are constant time slices.

σtotz -measurement

Now the first part of the calculation of the state evolution is the same as already calculated in
chapter 3.4 (see (62)): Suppose the generalized momentum of probe-particle(2) is found to have
the value π̃2 at t′ = t′3. Then for times t′3 < t′ < t′4 the state will be the entangled wave-function

| Ψ(t′3<t
′<t′4)〉 =

1√
2

(
| π1 = −π̃2 + F 〉⊗ |↑↓〉− | π1 = −π̃2 − F 〉⊗ |↓↑〉

)
. (92)

At time t′4 particle(2) interacts with the magnetic field produced by SGM2 which makes the sup-
port of the spatial part of the wave-function (which is not considered in the calculation) splitting
up behind SGM2. Then at time t′5 a (non-demolition) position measurement of particle(2) is
performed and the branch is identified in which the particle is found. Say it is found in the lower
region (with respect to the z-axis, in which the SGM is oriented) behind the SGM, such that
the wave-function collapses onto the first term of sum (92). Thus we have

| Ψ(t′5<t
′<t′6)〉 =| π1 = −π̃2 + F 〉⊗ |↑↓〉 (93)

At time t′6 particle(1) interacts with the other probe-particle, resulting in the unitary evolution

| Ψ(t′6<t
′<t′7)〉 = U1 | Ψ(t′5<t

′<t′6)〉 = e−iFq1σ
(1)
z | π1 = −π̃2 + F 〉⊗ |↑↓〉 =

e−iFq1 | π1 = −π̃2 + F 〉⊗ |↑↓〉 =| π1 = −π̃2〉⊗ |↑↓〉
(94)
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Thus when π1 is measured at time t′7 it is found that π1 realizes the actual value π̃1 = −π̃2, i.e.
with (42)

σtotz = σ(1)
z + σ(2)

z = − π̃1 + π̃2

F
= 0 . (95)

Afterwards particle(1) is found in the upper region behind SGM1 (indicating that σ
(1)
z = +1),

of course.
All this is not at all a miracle, since the z-component of the total spin is zero in the singlet

state as well as in the state |↑↓〉, anyway. So let us check the Aharonov-Albert procedure to
measure one of the more interesting other components, say σtotx , for which that is not true
anymore.

σtotx -measurement

The initial singlet-state is symmetrical under change of basis, i.e. for our purpose we have

| Ψ−〉 =
1

2

(
|↑↓〉x− |↓↑〉x

)
(96)

as the reader can easily confirm with (3) (for ϕ = 0 and θ = π
2
).

Denote again by qxi the degree of freedom which couples to σ
(i)
x and by πxi its canonically

conjugated generalized momentum and let us adopt otherwise the notational machinery devel-
oped in chapter 3.4 and within this chapter. Also figure 17 (with π̃i replaced by π̃xi ) shall be the
blueprint for our calculation.

Consequently the initial state (right after the preparations) will be

| Ψin〉 =| Ψ(t′1<t
′<t′2)〉 =| Φ0〉⊗ | Ψ−〉 (97)

with

| Φ0〉 =| qx− = 0;πx+ = 0〉 and | Ψ−〉 =
1√
2

(
|↑↓〉x− |↓↑〉x

)
, (98)

where the meaning of qx− and πx+ is analogous to (52).
Now we can calculate the state for times t′2 < t′ < t′3 in analogy with (60) and (61):

| Ψ(t′2<t
′<t′3)〉 = Ux2 | Ψin〉 =

1√
2

(
e−iF q̂

x
2 σ̂

(2)
x | Φ0〉⊗ |↑↓〉x − e−iF q̂

x
2 σ̂

(2)
x | Φ0〉⊗ |↓↑〉x

)
=

. . . =

1√
2

(∫
dπx1

∫
dπx2 | πx1 ; πx2 〉〈πx1 ; πx2 − F | qx− = 0;πx+ = 0〉⊗ |↑↓〉x−∫

dπx1

∫
dπx2 | πx1 ; πx2 〉〈πx1 ; πx2 + F | qx− = 0;πx+ = 0〉⊗ |↓↑〉x

)
(99)

At time t′3 then πx2 is measured and the readout is π̃x2 . The new state | Ψ(t′3<t
′<t′4)〉 ∈ HS1 ⊗

HS2 ⊗HP1 is analogous to (62) and we shall immediately transform it back into the σz-basis to
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be forearmed to evaluate the effect of the subsequent σ
(2)
z -measurement:

| Ψ(t′3<t
′<t′4)〉 =

1√
2

(
| πx1 = −π̃x2 + F 〉⊗ |↑↓〉x− | πx1 = −π̃x2 − F 〉⊗ |↓↑〉x

)
=

1

2
√

2
| πx1 = −π̃x2 + F 〉 ⊗

(
− |↑↑〉− |↓↑〉+ |↑↓〉+ |↓↓〉

)
−

1

2
√

2
| πx1 = −π̃x2 − F 〉 ⊗

(
− |↑↑〉+ |↓↑〉− |↑↓〉+ |↓↓〉

)
.

(100)

Again at time t′4 SGM2 splits up the support of the spatial part of the wave-function and at

time t′5 it is found that σ
(2)
z = −1. The collapsed wave-function then will be proportional to the

projection of (100) onto (|↓〉〈↓|)(2) and with normalization we have

| Ψ(t′5<t
′<t′6)〉 =

1

2

(
| πx1 = −π̃x2 + F 〉 ⊗

(
|↑↓〉+ |↓↓〉

)
+ | πx1 = −π̃x2 − F 〉 ⊗

(
|↑↓〉− |↓↓〉

))
=

1

2

(
| πx1 = −π̃x2 + F 〉 ⊗

(
|↑↑〉x+ |↑↓〉x

)
+ | πx1 = −π̃x2 − F 〉 ⊗

(
− |↓↑〉x− |↓↓〉x

)) (101)

which again shows entanglement of the spin-1
2

particles and the probe in the intermediate time
between the interactions. At time t′6 spin-1

2
-particle(1) interacts with probe-particle(1):

| Ψ(t′6<t
′<t7)〉 = Ux1 | Ψ(t′5<t

′<t′6)〉 =

1

2
e−iF q̂

x
1 σ̂

(1)
x | πx1 = −π̃x2 + F 〉 ⊗

(
|↑↑〉x+ |↑↓〉x

)
+

1

2
e−iF q̂

x
1 σ̂

(1)
x | πx1 = −π̃x2 − F 〉 ⊗

(
− |↓↑〉x− |↓↓〉x

)
=

1

2
e−iF q̂

x
1 | πx1 = −π̃x2 + F 〉 ⊗

(
|↑↑〉x+ |↑↓〉x

)
+

1

2
e+iF q̂x1 | πx1 = −π̃x2 − F 〉 ⊗

(
− |↓↑〉x− |↓↓〉x

)
=

1

2
| πx1 = −π̃x2 〉 ⊗

(
|↑↑〉x+ |↑↓〉x− |↓↑〉x− |↓↓〉x

)
=| πx1 = −π̃x2 〉⊗ |↑↓〉

(102)

Thus the subsequent πx1 -measurement will confirm the value π̃x1 = −π̃x2 and therefore

σtotx = σ(1)
x + σ(2)

x = − π̃
x
1 + π̃x2
F

= 0 . (103)

And the measurement of σ
(1)
z at SGM1 will confirm the value +1 with certainty.

The same holds for a σtoty -measurement, of course; the calculation is in strong analogy to the
just performed calculation.

The outcomes (pointer points on value xy...) have to be the same from the viewpoint of each
Lorentz-frame, of course. Thus we can expect that the just calculated outcomes must be also
realized in the originally considered frame of simultaneous interactions (figure 16).

Now, obviously we can verify that

σtotz = σtotx = σtoty = 0 (104)
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despite the fact that the singlet state is already collapsed in one of the relevant space-time
regions.

We see that a quantum mechanical theory which postulates wave-function collapse to oc-
cur along the leafs of a preferred foliation of M into space-like hyper-surfaces makes the right
predictions for the outcomes in the case of an Aharonov-Albert experiment performed shortly be-
fore the single-particle spin-measurements of an EPRB-experiment. The apparent contradiction
vanishes as soon as the scheme is carefully analyzed.

Against State Verification Measurement

In the physics literature sometimes terms or phrases are used frequently which suggest a
self-evident and transparent meaning at first glance. Nevertheless it can be worth to take a
second look at such expressions and to give a clear account of what the might mean and what
not (as we did in the case of terms like ”causality“ or ”locality“ above). This shall be briefly
done now with the expression ”state verification measurement of the singlet state“ in connection
with the Aharonov-Albert procedure because this might prevent possible confusion.

It turns out that the question whether it is justified to conclude from the ”right pointer
positions“ subsequent to the Aharonov-Albert measurement, that the singlet state is verified, is
more subtle to answer as it seems to be:

First, if the initial state is, say, |↑↓〉 there is non-vanishing probability that the singlet-state
will be ”produced“ by the measurement and thereby the ”right pointer-positions“ (this can be
straightforwardly calculated with the tools developed so far). Thus it cannot be verified that
the particles has been in the singlet state prior to the measurement.

Second, it can also not be verified that the particles are in the singlet state subsequent
to the readout of the two probe particles, if the interaction of the spin-1

2
-particles with the

probe-particles are not simultaneous (in the considered frame). To see this consider the scheme
depicted in figure 17 b) and suppose the depicted frame is the laboratory frame. As we have
calculated (in connection with our reasoning about a possible foliation) this measurement yields
the readout which is supposed to verify the singlet state, although the system is not in that state
subsequent to the second interaction (of spin-1

2
-particle(1) with probe-particle(1)) or subsequent

to the second readout. The calculation makes no reference to a foliation, only the postulate
of instantaneous collapse is applied in the frame depicted. Therefore also in a Solution I -
model there is no justification to call the Aharonov-Albert procedure ”state verification“, if the
interactions are not simultaneous in the considered frame.

And finally, even if the interactions are simultaneous, a justification of the conclusion that the
particles are in the singlet state subsequent to the measurement (with the right pointer positions)
depends crucially on the underlaying theory: If a Solution II -model is taken as a basis the spin-
1
2
-particles depicted in figure 16 (where the interactions are supposed to occur simultaneously

in the depicted frame) for example, will not be in the singlet state subsequent to the Aharonov-
Albert measurement. Rather at the time of interaction with the probe-particles, the wave-
function which describes the physics of spin-1

2
-particle(1) is already the collapsed state (where

the collapse is caused by the subsequent measurement of the z-component of spin-1
2
-particle(2)).

But nevertheless everything comes out right, i.e. the readout of the probe measurement will
be the same as in the case of an underlying Solution I -model, according to which one can
indeed speak of a state verification measurement of the singlet state, given the interactions are
simultaneous.
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4 Appendix: Relativistic Law for the Primitive Ontology

4.1 Relativistic Collapse Models

4.1.1 A Point-Process on M & Galaxies of Events: rGRWf

GRW and the flash ontology

In brief and without entering mathematical description yet, the model proposed by Ghirardi,
Rimini and Weber [36] goes like this:

The wave-function dynamics is supposed to consist of two distinct dynamical processes:
The unitary dynamics given by the standard Schrödinger-equation together with a stochastic
jump process: In the spatial variable of each particle the wave-function is subjected to undergo a
spontaneous and random localization process (referred to as hitting by some authors) at random
times according to a Poisson process with mean frequency λ ≈ 10−16s−1. The localization
is realized in this model by multiplication with a Gaussian localization-operator with width
α ≈ 10−5cm centered at random positions. The probability density P(x̃i) that a localization
in the variable of particle(i) about spatial point x̃i occurs, is given in a way, such that there is
higher probability of localization in regions in which, according to standard quantum mechanics,
there is higher probability of finding the particle.

An analysis of this model shows that its predictions coincide very well with all currently
experimentally verified predictions of standard quantum theory31 and that it has an important
desired feature: The modified dynamics has little impact on microscopic objects (as it can
already be seen from the very small value of the mean collapse frequency) and at the same time
it destroys superpositions of different macroscopic states by some naturally arising amplification
mechanism.

Bell [8] realized another interesting feature of this model. He realized that the joint proba-
bility distribution

P
({
x̃

(j)
kj
∈ d3x

(j)
kj

at t
(j)
kj
∈ dt(j)kj

}
j=1,...,N ;kj=1,...,nj

)
(105)

of nj localizations in the variable of particle(j) centered at positions x̃
(j)
kj

at times t
(j)
kj

, respec-

tively, has a remarkable property which he calls ”relative time translation invariance“ 32: This
distribution does not change under relative time translations with respect to localizations as-
sociated with different particles if the particles do not interact. In other words, in this case,
the prediction given for (105) is invariant under time-shift t

(j)
kj
→ t

(j)
kj

+ ∆, performed for all the

times t
(j)
kj

associated with localizations of a sub-system (some of the particles) of the considered
system.

This is remarkable since it opens the door to reconcile the inherent nonlocality of this model
with the lack of an absolute time-order of space-like separated events in special relativity, if the

31But nevertheless it deviates from standard quantum mechanics, such that it might be possible one day to

decide empirically whether it makes the right predictions or not.
32Bell motivated the requirement of ”relative time translation invariance“ by the observation, that, if two

systems far apart in space are considered, the effect of small Lorentz transformations (i.e. corresponding to small

velocity) to the first order results in a relative time shift between the two systems.
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4.1 Relativistic Collapse Models

space-time points x
(j)
kj

= (t
(j)
kj
, x̃

(j)
kj

) are taken as the physical events described by the theory – if
the events where the collapses adhere to are taken to constitute the primitive ontology or local
beables of the theory. In the distribution (105) also space-like separated localization events are
correlated in general (if the underlying wave-function is entangled), nevertheless these events
are not constrained to realize some specific time-order!

From now on, we will call the localization events x
(j)
kj

flashes and a GRW-type-theory which

postulates them to constitute matter GRWf [4]. With respect to the flashes Bell argues:

So we can propose these events as the basis of the ”local beables“ of the theory.
These are mathematical counterparts in the theory to real events at definite places
and times in the real world (as distinct from the many purely mathematical con-
structions that occur in the working out of physical theories, as distinct from things
which may be real but not localized, and as distinct from the ”observables“ of other
formulations of quantum mechanics [...]. A piece of matter then is a galaxy of such
events. [8]

And the ”relative time translation invariance“ of the physical description of these events
suggests a good and clean potential for relativistic upgrade:

And I am particularly struck by the fact that the model is as Lorentz invariant
as it could be in the non-relativistic version. It takes away the ground of my fear
that any exact formulation of quantum mechanics must conflict with fundamental
Lorentz invariance. [8]

Motivated by the relative time translation invariance of the law of the flashes, Roderich
Tumulka presented an elaborated formulation of a relativistic version of GRWf in 2006. This
relativistic quantum theory is called rGRWf. It describes the (in general non-local) dynamics
of N non-interacting distinguishable Dirac-particles without using spatio-temporal tools apart
from the ones given by the Lorentz-metric gµν on R4.

The Scheme of rGRWf

The simple idea is the following: The law of the theory is a probabilistic law for events
occurring in space-time (i.e we are considering the set of all discrete subsets of space-time).

Consider nj flashes x
(j)
kj
∈ R4 associated with particle(j), where kj = 1, ..., nj and j = 1, ..., N .

We will obtain then an expression for a joint probability distribution of the
∑N

j=1 nj flashes:

P
({

x
(j)
kj
∈ d4x

(j)
kj

}
j=1,...,N ;kj=1,...,nj

)
(106)

In order to calculate these probabilities we need initial Cauchy-data, given by the so called
seed flashes together with the initial wave-function ΨΣ0 ∈ HΣN0

on some arbitrary space-like
hypersurface Σ0. The wave-function is supposed to be a solution of the multi-time Dirac-equation
(79) and the predictions of the theory will be independent of the choice of the initial surface.

The seed flashes x
(j)
0 are the last flashes before x

(j)
1 for all particles j = 1, ..., N , and they are

supposed to be given.
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4.1 Relativistic Collapse Models

Figure 18
Scheme for the calculation of the flash-history of particle(j): The initial conditions

are given by the initial wave-function, given on some arbitrary leaf Σ0, and the seed flash

x
(j)
0 . Starting from x

(j)
0 we transform the wave-function (unitarily) to the future hyperboloid

ΣH(x
(j)
0 , x

(j)
1 ) of x

(j)
0 containing the first flash x

(j)
1 . There we apply an operator associated with

a collapse at x
(j)
1 and transform the wave-function back to Σ0. Then we repeat this procedure

for the second flash x
(j)
2 with the future hyperboloid ΣH(x

(j)
1 , x

(j)
2 ) of x

(j)
1 containing x

(j)
2 and

so on...

The technical key is to consider the flash history of each particle separately (which is possible
since the collapse-operators of different particles commute) and to make use of the invariant
future-hyperboloids (see figure 18)

ΣH(x, y) = {z ∈ F (x) | (xµ − yµ)(xµ − yµ) = (xµ − zµ)(xµ − zµ)} (107)

in the following way: Starting from the seed flash x
(j)
0 of the considered particle we evolve

the initial wave-function unitarily from Σ0 to the future-hyperboloid ΣH(x
(j)
0 , x

(j)
1 ) of x

(j)
0 which

contains x
(j)
1 . There we apply an operator, associated with a collapse centered at x

(j)
1 , and

transform the wave-function back to Σ0 (we can read this also in the Heisenberg picture, where

the “collapse operator“ on ΣH(x
(j)
0 , x

(j)
1 ) is unitarily transported to Σ0 by the described scheme).

Then we repeat this procedure with the hyperboloid ΣH(x
(j)
1 , x

(j)
2 ) and so on (see figure 18). We

can iterate this until we reach x
(j)
nj and do the same for the N − 1 other particles.

With an appropriate covariant definition of the collapse-operators acting on HΣ and a rea-
sonable covariant implementation of the exponential distribution of the flashes in time we can
thereby obtain a covariant expression in order to calculate (106).

Mathematical Formulation

Let us start with finding appropriate mathematical expressions corresponding to the flash
history of one of the particles. Denote by dΣ(x, y) the distance of space-time points x, y ∈ Σ
along the surface Σ given by the infimum of all Riemannian curve lengths along Σ which connect
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4.1 Relativistic Collapse Models

x and y. We define the collapse-operator (KΣ(x))2 about point x ∈ Σ acting on HΣ (or the
extended operator on HΣN ) by

(
KΣ(x)

)2
Ψ(y) := N exp

(
−(dΣ(x, y))2

2α2

)
Ψ(y) , (108)

with the above mentioned width of the localization α and normalization constant N such that∫
Σ

(KΣ(x))2 d3x = 1 . (109)

Now let us define “conditioned“ collapse-operators K(x | y) corresponding to a flash at x ∈
ΣH(y, x) if the preceding flash occurred at y

K(x | y) := 1F (y)(x)
(
λe−

1
2
λτ(x,y)

) (
U

ΣH(y,x)
Σ0

KΣH(y,x)(x)UΣ0

ΣH(y,x)

)
. (110)

The first factor is the indicator-function of the absolute future of y and it ensures that two
different flashes of one and the same particle are always time-like with respect to each other
(otherwise the above expression and thereby the resulting probability of the corresponding flash-
history will be zero). The second factor (bracket) corresponds to the Poisson distribution of the
proper waiting time between two flashes τ(x, y) =

√
| (xµ − yµ)(xµ − yµ) | with expectation

1
λ
≈ 1016s (≈ 107 years). The remaining factor corresponds to the scheme illustrated above:

Evolve the initial wave-function unitarily from Σ0 to ΣH(y, x) by the operator UΣ0

ΣH(y,x) arising

from the multi-time Dirac equation (79), apply the (square-root of the) collapse-operator and
transform it back to Σ0. Or we read it as the collapse-operator in the Heisenberg-picture unitarily
transformed from ΣH(y, x) to Σ0, where the initial wave-function is defined.

Now we can define the flash-history operator of particle(j):

K(j)
(
x

(j)
1 , ..., x(j)

nj

)
= K

(
x(j)
nj
| x(j)

nj−1

)
K
(
x

(j)
nj−1 | x

(j)
nj−2

)
... K

(
x

(j)
1 | x

(j)
0

)
(111)

and consequently the flash-history operator of the N-particle system:

N⊗
j=1

K(j) . (112)

Now, the square of this operator constitutes a positive operator valued measure (POVM) on

M (
∑N
j=1 nj) which generates, together with the initial wave-function, the desired joint probability

distribution of the flashes:

P
({

x
(j)
kj
∈ d4x

(j)
kj

}
j=1,...,N ;kj=1,...,nj

∣∣∣ΨΣ0 ,
{
x

(j)
0

})
=

∥∥∥∥∥
N⊗
j=1

K(j)ΨΣ0

∥∥∥∥∥
2 N∏
j=1

nj∏
kj=1

d4x
(j)
kj

. (113)

This is the law of the flashes. It defines a point process on space-time. It is invariant
under change of initial-surface Σ0, given the initial wave-function is subjected to a unitary
evolution to the new surface, respectively the application of the corresponding collapse-operators
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(or their inverses) and normalizations for flashes laying between the old and the new surface33.
Consequently we did not employ any intrinsic space-time structures apart from the ones given
by the Lorentz-metric. The law is as Lorentz invariant as it could be.

But nevertheless it describes in general correlations between space-like separated events
(without drawing on common causes laying in the intersection of their past light-cones): The
joint probability distribution for space-like separated flashes does not factorize in general, since
the wave-function is not of product-form in general, but entangled. Although there is no definite
time-order between space-like separated events, such events can be causally connected within
this theory, if we call correlations, given by some law of nature, a causal connection. Obviously
such kind of causation cannot being decomposed uniquely into cause and effect.

Now, with rGRWf we have a relativistic quantum-theory which provides a precise description
of what goes on in space-time and which at the same time overcomes all the tension between
quantum nonlocality and relativistic space-time structure.

It is not able to describe particle interaction yet, this is a general problem arising from multi-
time equations, but it is able to describe physical processes with underlying entangled wave-
functions, as they would arise from interaction. Now it is a challenge to implement interaction
(maybe not by an interaction-potential but by exchange of bosons), to formulate the model for
non-distinguishable particles and to extend it to quantum field theory.

4.1.2 rGRWm and CSL

The GRW-theory describes the (linear and non-linear) evolution of the wave-function in a precise
and coherent way. In order to relate this description to the four-dimensional physical world Bell
proposed to take the ”GRW-jumps“ which ”are well localized in ordinary space” [8] as the local
beables of the theory. And in the last section we encountered that this choice allows for a
dynamics of these local beables which is intrinsically non-local and at the same time comprises
the full spirit of special relativity, if the theory is reformulated in an appropriate way.

Another possible choice would be to take the average mass density M(x, t) (e.g. given by
(90)) arising from the wave-function as the primitive ontology. Such an ontology has been
proposed by Ghirardi, Grassi and Benatti [34] for continuous spontaneous localization models
(CSL) (which will be addressed in a moment):

Therefore, we can guess that, within the context of the dynamical reduction
program, the description of the world in terms of the mass-density functionM(r) is
a good description. [34]

In the non-relativistic case a GRW-type-theory with a mass-density ontology (shorthand
GRWm) will be empirically equivalent to GRWf, as far as predictions for outcomes of measure-
ments are concerned [4] (the operator-measurement formalism can be derived in both cases the
same way). But, proceeding to relativity, our previous analysis (section 3.6) has shown that, in
contrast to the flash ontology, it seems to be impossible to implement consistently a mass-density

33There are different proposals [62] for a definition of the collapsed wave-function (or the conditional wave-

function, as Tumulka puts it) within this model, but these are rather mathematical restatements of the same

physical law.
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4.1 Relativistic Collapse Models

ontology into non-local relativistic quantum theory, if no distinguished space-like structures on
Minkowski space-time are employed (even though, there might be a possibility to do so, which
will be discussed at the end of this section).

But, of course, a relativistic version of GRWm (shorthand rGRWm) might be realized in
a Solution-II model: The integrations in (90) in order to obtain, say, M(x0, t0) is then to be
performed along the leaf of a distinguished foliation containing x = (t0,x0).

CSL (continuous spontaneous localization)

Most further developments on the issue of collapse theories overcame the jump-like character
of the original GRW theory. The main motivation for the development of such CSL-models
/citecsl has been an appropriate description of identical particles. In a CSL theory the Hamilto-
nian, as the generator of the time evolution of the wave-function, is supplemented by non-linear
terms: Gaussian stochastic processes which couple to some operator, where the usual choice
is the mass-density operator (see e.g. [7]). The model provides all desired features for wave-
function dynamics, in particular an (almost) linear dynamics for microscopic systems while the
non-linearity destroys superpositions of differently located states of macroscopic systems. But
apriori it is not clear how the wave-function relates to events in physical space-time, i.e. CSL
has apriori no primitive ontology.

Relativistic CSL: Before we come to the primitive ontology I should mention one interesting
feature of the wave-function in the proposals for relativistic CSL models. The first attempt to
get a relativistic generalization of CSL was made by Pearle [46]. The model is not completely
full-blown up to now, since it suffers from divergences. But this is rather a technical problem
which might be solved one day. Nevertheless, the model is at least well suited to analyze some
features of relativistic quantum mechanics [31, 32].

The underlying dynamical equation for the wave-function is essentially the Tomonaga form
(74) with additional stochastic terms in the generator of the evolution, such that the evolu-
tion operator has non-hermitian structure. Due to this non-hermitian character the surface-
independence of local values associated with the wave-function, like (80), is violated in principle.
This suggests that the model complies with a basic precondition in order to develop a Solution I
model, i.e. to develop a quantum theory which does not draw on a foliation or similar absolute
physical structures on relativistic space-time.

The Primitive Ontology: But, as we have argued, exactly this interesting feature of wave-
function dynamics raises problems when we try to implement a mass-density ontology in a naive
way into the theory – such an ontology for CSL was suggested by Ghirardi, Grassi and Benatti
[34] in a non-relativistic framework (see quote above). And the flash-ontology does not work for
CSL, since there are no flashes – there is no discrete point-process on space-time in CSL. And it
was crucial for the Lorentz invariant construction of rGRWf to use the invariant hyperboloids,
respectively defined by two discrete flashes associated with one and the same particle, to derive
the covariant law for the primitive ontology.

But, nevertheless, it might be possible to define a suitable primitive ontology in CSL without
drawing on an intrinsic foliation: In [31] Ghirardi proposed a “criterion for events”, which is in
some sense analogous to the criterion for the “elements of physical reality” of EPR. Ghirardi
points out that, in order to attribute “objective“ properties to some space-time point x, we
might consider two distinct surfaces on space-time: the backward light-cone Σ(x) of x and some
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4.2 No Collapse but Particle Positions and Effective Wavefunctions

space-like surface Σ0 where the ”initial“ wave-function is specified. Then we evolve the wave-
function from Σ0 to a space-like surface arbitrarily close to Σ(x) (the past light-cone itself is
not space-like), where the nonlinear dynamics essentially strikes whenever e.g. measurement-like
events are enclosed by Σ0 and Σ(x).

If now the resulting wave-function ψΣ(x) is an eigenstate of some operator Â, which is asso-
ciated with a physical quantity at x, we can attribute the corresponding eigenvalue α, as the
value of the corresponding physical quantity, to that space-time point. If this state is not an
eigenstate of the operator the local value of the corresponding physical quantity is indefinite.
This concept is frame-independent since the initial surface is arbitrary and the past light-cone
of x is the same in all frames.

But Tumulka [64] pointed out the following: In order to obtain by this scheme the only events
which really matter at the end of the day, i.e. the primitive ontology, a reasonable choice of one
of these operators is enough to have a theory which describes what actually happens in space-
time. If we take the mass-density operator at x ”all other “values” are of no relevance. They
are superfluous, as they do not influence how much matter is where, and thus do not influence
the positions of pointers or the shape of ink on a paper. They are truly hidden variables and,
indeed, can be deleted from the theory without unpleasant consequences just like the ether in
relativistic mechanics – yet unlike the particles in Bohmian mechanics.“ [64]

And in order to prevent possible ”indefiniteness” of matter at some space-time points we can
take the expectation value of the mass-density operator at x with respect to the corresponding
“past light-cone state” ψΣ(x). This might indeed constitute a reasonable rGRWm theory.

It should be mentioned that this approach is not to be confused with the backward light-cone
reductions approach of Hellwig and Kraus. In this model wave-functions still collapse along all
space-like leafs passing through a “collapse causing event“ in the sense of Solution I.

4.2 No Collapse but Particle Positions and Effective Wavefunctions

4.2.1 Bohmian Mechanics

In quantum theory the Schrödinger-equation for an N -particles wave-function ψ(q, t), where
q ∈ R3N , gives rise to a continuity equation for the probability density ρ = |ψ(q, t)|2

∂

∂t
ρ(q, t)−∇ · j(q, t) = 0 . (114)

The current j : R3N × R→ R3N is given by34

j(q, t) =
1

2mi
(ψ?∇ψ − ψ∇ψ?) =

1

m
= (ψ?∇ψ) =

|ψ|2

m
=
(
∇ψ

ψ

)
=: ρ · vψ , (115)

with the velocity field vψ : R3N × R→ R3N

vψ(q, t) =
1

m
=
(
∇ψ

ψ

)
. (116)

34For ease of notation we consider N particles with the same mass m.
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And Bohmian mechanics [13, 14] means, to treat this velocity field on configuration space as the
velocity field of an actual particle configuration Q(t)

dQ

dt
= vψ(Q, t), (117)

i.e. the trajectory of particle(j) is determined by some initial configuration and the equation

dQj

dt
=

1

m
=
(
∇jψ(Q, t)

ψ(Q, t)

)
. (118)

This defines the theory; the remaining part is only analysis of the guiding equation (118)
(together with the Schrödinger equation) and the physical consequences (see e.g. [16, 27, 28]),
some of which were mentioned in the introduction.

4.2.2 The Bohm-Dirac-Model

Bohm [16] proposed, in order to derive a relativistic version of the guiding law for Dirac particles,
to take the preserved current arising from the N -particle Dirac-equation

iγ0
k

∂ψ(q, t)

∂t
=

N∑
k=1

(
− iγk · ∂k − eγk ·A(qk, t) + eγ0

kΦ(qk, t) +m

)
ψ(q, t) (119)

to define the Bohmian velocity field

dQk

dt
=
jk(Q, t)

ρ(Q, t)
=
ψ̄ (γ0

1 ⊗ ...⊗ γk ⊗ ...⊗ γ0
N)ψ

ψ̄γ0ψ

∣∣∣∣
(Q,t)

. (120)

Here γk = (γ1
k, γ

2
k, γ

3
k), further γik is the i’th Dirac matrix acting on the spin-index of particle(k),

γ0 =
⊗N

k=1 γ
0
k, as above we set ψ̄ = ψ†γ0 and for ease of notation we consider N particles with

equal masses m, charges e and external electromagnetic potentials A and Φ.
N = 1 : But this model – as well as the one-time N -particle Dirac-equation – is Lorentz

invariant only if N = 1. Then we can write the guiding law in a covariant manner

dXµ

ds
∼ jµ = ψ̄γµψ , (121)

where s ∈ R is some scalar parametrization of the particle’s world-line Xµ(s) and jµ = (ρ, j)
is the Dirac four-current. Observe that the motion of the particle is already determined by
the time-like directions tangent to its world-line, such that the length of the vectors jµ has no
physical significance for that motion. We can reformulate the law as dXµ

ds
= αjµ with some

arbitrary scalar field α(x) or in a purely geometrical manner

dXµ

ds

∥∥∥ jµ (122)

where the symbol ‖ means ”is parallel to“.
N > 1 : For N > 1 equation (120) defines a law for the N Dirac-particles in the distinguished

frame K which is defined by the constant-time slices corresponding to the time parameter in the
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time-derivative (observe that the derivative acts on a function of N distinct position-variables
qk). In particular, as a result of the continuity equation, matter will be distributed according to
ρ = |ψ|2 along all constant-time slices of K, but in general not according to |ψ′|2 in a different
frame K ′ 35.

But, as Bohm argued, the distinguished frame must be ”hidden“ in this theory, as it is not
amenable to experimental detection: Heuristically we can argue that predictions for the results
of arbitrary measurements are inherent in distributions of matter of pointers or measurement
devices subsequent to measurements. Hence these predictions can be derived from probabilities
for positions according to a |ψ|2 distribution in the preferred frame. Since the validity of |ψ|2 dis-
tributions for macroscopic objects does not depend on a particular Lorentz frame in this theory,
predictions for these positions of pointers and devices would be the same, if the preferred frame
would be exchanged with a different one in the equations. Therefore, all kinds of measurements
will validate Born’s rule in each frame of reference and, in particular, it is not possible to detect
the distinguished frame by means of experiments. To make this argument precise requires a bit
more care (see also [16, 11, 25]).

The fact, that actual non-measured configurations might be distinct from the actual measured
configurations, can be only understood if the non-passive character of measurements in quantum
theory is appreciated.

Product Wave-functions: Indeed, in the case of product wave-functions the Bohm-Dirac
law (120) defines a Lorentz invariant dynamics for N > 1 particles, if we treat the wave-function
as a function on MN which is a solution of the multi-time Dirac-equation:

ψ(q, t1, ..., tn) =
N∏
k=1

ϕk(qk, tk) (123)

is solution of the N equations

iγµk (∂k,µ − ieAµ)ψ = mψ; k = 1, ..., N (124)

and therefore
⇒ iγµk (∂k,µ − ieAµ)ϕk = mϕk; ∀k = 1, ..., N . (125)

In this case the guiding equations are be given by

dQk

dtk
=
jk(Qk, tk)

ρ(Qk, tk)
=
ϕ̄kγkϕk
ϕ̄kγ0

kϕk

∣∣∣∣
(Qk,tk)

(126)

and this law does not depend on some particular choice of coordinates.

4.2.3 Hypersurface Bohm Dirac Models (HBDM’s)

But if we also want to account for entangled wave-functions the current

jµk (q1, t1, ..., qN , tN) = ψ̄
(
γ0

1 ⊗ ...⊗ γ
µ
k ⊗ ...⊗ γ

0
N

)
ψ (127)

35This observation reflects the fact that ”quantum-equilibrium cannot hold in all Lorentz-frames”, which has

the status of a theorem and is analyzed in [26, 11].
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arising from (124) is no longer separable. And, in order to define velocities of the N particles in
the sense of (122), we have somehow to connect the velocity of particle(k) at time tk with N − 1
four-tuples (tj,Qj) corresponding to actual points in the world-lines of the N−1 other particles.
This is done in the case of the Bohm-Dirac-model, equation (120), by the constant-time slices
defined by t1 = t2 = ... = tN = t, in which case the multi-time Dirac-equations (124) reduce to
the one-time Dirac-equation (119). We can implement this restriction to a particular frame into
the current (127) by writing γ0

k = γµknµ, where the constant four-vector field nµ(x) = nµ picks
out the zero-component of the four-vector γµ in the distinguished frame, i.e. nµ(x) = (1, 0, 0, 0)
there. In other words, nµ is the future oriented unit normal vector to the constant-time slices of
the distinguished frame.

Now we can rewrite the Bohm-Dirac law (120) in a way appropriate for generalization:
Denote

jµk = ψ̄(γν1nν)⊗ ...γ
µ
k ...⊗ (γνNnν)ψ . (128)

Then we can write the probability density arising from the Dirac-equation as ρ = jµknµ (which
is independent of k, of course) and consequently (120) as

dXµ
k

dt
=

jµk
jµknµ

, (129)

or geometrical, with some parametrization s of the world-line Xµ
k (s) of particle(k):

dXµ
k

ds

∥∥∥ jµk . (130)

It is important to note that jµk and thereby dXµ

ds
here depends on actual space-time positions Xµ

j

of all N particles in the following way: Denote by Σs the constant time slice containing Xµ
k (s)

in the preferred frame and by Xµ
j (Σs) the space-time location where the world-line of particle(j)

crosses Σs, for each particle j = 1, ..., N (i.e. Xµ
k (s) ≡ Xµ

k (Σs)). Then the value of the current
jµk depends on these crossing-locations36:

dXµ
k

ds

∣∣∣∣
s=s̃

∥∥∥ jµk

(
Xµ

1 (Σs̃), ..., X
µ
N(Σs̃)

)
. (131)

This reformulation of the Bohm-Dirac law (120) is well suited now to generalize the intrinsic
dependence on some preferred frame of reference to an intrinsic dependence on some arbitrary
foliation F of M into space-like hypersurfaces.

Given a foliation F . Then there is a one to one correspondence between F and the time-like
vector-field nµ(x), defined by the unit normal vector to the leaf Σ ∈ F containing x at x for all
x ∈M . Now define the current associated with particle(k) as

jµk = ψ̄(γν1nν)⊗ ...γ
µ
k ...⊗ (γνNnν)ψ (132)

where nµ = nµ(x) is the unit normal vector-field of F . Now consider again the world-line Xµ
k (s)

of particle(k), parametrized by some scalar parameter s and denote by Σs ∈ F the leaf of

36This dependence enters into jµk through the argument of the wave-function corresponding to the considered

actual configuration on MN and can be easily seen by comparing (131) with the equivalent formulation (120)
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the foliation containing Xµ
k (s). Also the point where the world-line of particle(j) crosses Σs is

denoted by Xµ
j (Σs) again. Then the law of motion for particle(k) is given by37

dXµ
k

ds

∣∣∣∣
s=s̃

∥∥∥ jµk

(
Xµ

1 (Σs̃), ..., X
µ
N(Σs̃)

)
. (133)

This is the equation of motion of the hypersurface-Bohm-Dirac-models [25]. They define a class
of theories, since we did not fix a particular foliation yet and distinct foliations will yield distinct
world-lines for identical initial conditions.

But nevertheless an important foliation independent property of HBDM’s can be proved [25]:
There exists a distinguished probability-measure ρψΣ

d3x1 · · · d3xN (where d3x is the volume mea-
sure arising from the Riemann metric on Σ) for the distributions of crossings Xµ

1 (Σ), ..., Xµ
N(Σ)

on the leafs Σ ∈ F of the foliation. It is generated by the wave-function on ΣN and distinguished
in the following sense: Given a distribution of crossings Xµ

1 (Σ0), ..., Xµ
N(Σ0) according to ρψΣ0

on
some leaf Σ0 ∈ F . Then the dynamics given by (133) yields world-lines of the N particles such
that the distribution of crossings Xµ

1 (Σ), ..., Xµ
N(Σ) is given by ρψΣ

, with ψΣ emerging by unitary
transformation of ψΣ0 according to (124), for all surfaces Σ ∈ F . A probability measure with
this property is called an equivariant measure and the distribution defined by it (and preserved
by the dynamics) the quantum equilibrium distribution.

This distribution is given by ρ = jµknµ (which is independent of k). In the case of a flat
foliation into constant-time hyperplanes of some frame, it reduces to ρ = ψ†ψ in the preferred
frame. The crucial property in order to proof the equivariance of ρ is the validity of the continuity
equation ∂µk jk,µ = 0 for the currents, which follows from the multi-time Dirac-equation (124).
Due to the equivariance of ρ the outcomes of quantum-measurements must confirm Born’s
probability rule in all frames of reference and it is due to this fact that the shape of the leafs of
the foliation cannot be revealed by any experimental procedure (see [25]).

4.2.4 The Foliation

Now, what is the actual benefit of a fancy curved foliation possible in a HBDM? After all, in the
Bohm-Dirac-models, in which only flat foliations are possible, all relevant physical properties
are already present, above all an equivariant probability measure. And, to begin with, the
generalization to arbitrary shapes of the space-like leafs adds no further physical contents. It
only enlarges the number of possible physical theories captured by the class of theories. But by
that it might give us more freedom to find a reasonable choice of a foliation.

The only element in the formulation of the theory which seems to conflict with the spirit of
relativity is this absolute structure on space-time – the foliation. Does the foliation still conflict
with relativity, if it is given by a covariant law? After all, there are some decorations of space-
time in our theories which are additional to the structures given by the Lorentz-metric: We
describe physical fields and distributions of mass and the like in space-time and we only require
to describe them by covariant laws. At the end of the day, maybe, the situation is somewhat
more delicate with a foliation, since it is a decoration which introduces a kind of temporal order

37The fact that jµk is time-like (or light-like) and future-directed everywhere, and therefore that each particle

world-line crosses each hypersurface Σ ∈ F exactly once, is due to the fact that γ0γµnµ is a positive operator on

C4 for every time-like, future-directed unit vector nµ ∈M .
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in space-time. But nonetheless, only in case of a complete covariant description we can speak
of a relativistic theory; however, still it might be controversial how much the theory is in accord
with the ”true spirit of relativity“.

To come to an end now, let us quickly present two proposals for a covariant foliation:

It is actually not true that there is no frame of reference which is physically distinguished
in relativistic physics: For example, as Ward Struyve suggested [58], we can choose the frame
in which the total energy, defined by the wave-function of the universe, is at rest: Consider
the average total four-momentum 〈P µ〉Ψ arising from the covariant energy momentum tensor
T µν (in the Heisenberg picture), where the average is performed with respect to the covariant
wave-function Ψ of the universe:

〈P µ〉Ψ =

∫
Σ

dσν(x)〈Ψ | T µν(x) | Ψ〉 . (134)

Here Σ is some arbitrary space-like surface and dσν(x) is the infinitesimal normal four vector
onto Σ at x ∈ Σ. Because of the continuity equation ∂µT

µν = 0 the value of the above integral
is independent of the choice of the space-like hyper-surface Σ (see e.g. [53]). 〈P µ〉Ψ is a constant
time-like four-vector [53], i.e. it defines a Lorentz-frame whose constant-time slices are orthogonal
to 〈P µ〉Ψ. This frame is defined by a thoroughly covariant law and it exists in every theory with
a wave-function in which an energy momentum tensor can be defined. Hence, if we choose the
Bohm-Dirac model (131) (HBDM is not even needed here) in which nµ = 〈P µ〉Ψ · ‖ 〈P µ〉Ψ ‖−1,
we have a covariant theory.

It is interesting to note, that the only physical variable which enters into the law for the
foliation here, is the covariant wave-function (of the universe). Therefore, ultimately, we do not
need to add additional structure to the theory. This structure is already inherent in the covariant
wave-function of the universe! Although the role this structure plays in the theory is somehow
special, it is not introduced as an extra element. And, in the end, the particle dynamics is
completely determined by the wave-function alone.

Another attractive possibility is the following: Consider the surfaces of constant time-like
distance from the big bang [64]. These space-like hypersurfaces actually do not constitute an
extra structure of space-time: They are given purely by the big bang and the relativistic metric.
If it is possible to define them as the foliation F which enters into the HBDM law (133), we
might also say that we have a relativistic Bohmian quantum theory without additional space-
time structure.
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