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Abstract. These are notes for an online mini course �at� Peking University that I gave in spring 2021.
After an informal introduction to ∞-categories, we de�ne algebraic K-theory of a ring and the motivic
unstable and stable ∞-categories of a scheme. We construct the spectrum KGL and show that it represents
algebraic K-theory. We de�ne the slice �ltration and hence construct the motivic spectrum HZ and the
motivic �ltration on algebraic K-theory. After stating without any indication of proofs the fundamental
theorems of motivic cohomology, we illustrate the use of the slice �ltration by computing the p-adic algebraic
K-theory of �elds containing enough roots of unity.
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1. ∞-categories and algebraic K-theory

1.1. The world of ∞-categories. We attempt to describe the concept of an ∞-category, without giving
an actual de�nition. While this seems unsatisfying, we feel forced to do this due to time constraints. For a
much more thorough introduction, see [Lur09].

Let C be an ∞-category and X,Y ∈ C be objects. Then there is a space of maps MapC(X,Y ).1 Given a
third object Z, there is a homotopy class of composition maps MapC(X,Y ) ×MapC(Y, Z) → MapC(X,Z).
The homotopy category hC is a 1-category, by which we mean a category in the usual sense. Its objects are
the same as those of C, and HomhC(X,Y ) = π0MapC(X,Y ). We also write [X,Y ]C := HomhC(X,Y ). The
composition in hC is induced by the composition maps of C; in particular composition in C is associative up
to homotopy and so on.

Given an ∞-category C and objects X,Y ∈ C, by a morphism X → Y we mean a point of MapC(X,Y ).
A morphisms is called an equivalence if it determines an isomorphism between X and Y in hC.

Here are some examples of ∞-categories:2

Example 1.1. If C is a 1-category, then we may view C as an∞-category with MapC(X,Y ) the discrete space
HomC(X,Y ). The homotopy category hC is just C viewed as a 1-category again.

Example 1.2. The∞-category Spc of spaces has as objects the CW complexes (or Kan complexes, if we wish)
and as morphism spaces the function complexes (i.e. in the case of CW complexes the sets of continuous
maps with the compact-open topology, perhaps replaced by a weakly equivalent CW complex, or in case
of Kan complexes just mapping simplicial sets). Then hSpc is the homotopy category of spaces, i.e. CW
complexes (respectively Kan complexes) with (simplicial) homotopy classes of maps as Hom sets.

Example 1.3. The ∞-category Cat∞ of ∞-categories.

Date: March 15, 2021.
1By a space we may mean a CW complex or a Kan complex, depending on one's taste.
2Since we have not given an actual de�nition of ∞-category, we also cannot rigorously construct the examples.

1



2 TOM BACHMANN

Example 1.4. If C is an ∞-category and C0 is a collection of objects, we can form the full subcategory C0,
with MapC0(X,Y ) = MapC(X,Y ).

1.1.1. Functor categories. Given ∞-categories C,D, there exists an ∞-category Fun(C,D) of (∞-)functors
from C to D. Again we do not de�ne what an ∞-functor means, but try to describe them by some of their
properties. Firstly, if C,D are 1-categories viewed as∞-categories, then Fun(C,D) is itself a 1-category viewed
as an ∞-category, namely the usual category of functors (with morphisms the natural transformations).
Secondly, there is a map hFun(C,D)→ Fun(hC,hD).3 Thus an ∞-functor consists of a functor between the
homotopy categories in the usual sense, but with some additional data.

Warning 1.5. The amount of �additional data� is, in general, in�nite, and it is, in general, very hard to write
down ∞-functors directly.

Nonetheless some properties of functor categories generalize from the case of 1-categories to∞-categories:

Example 1.6. Given a morphism α : F → G in Fun(C,D), α is an equivalence if and only if the image of
α in Fun(hC,hD) is. In other words, this happens if and only if for every object X ∈ C, the morphism
αX : F (X)→ G(X) is an equivalence in D.

Example 1.7. We have Fun(∗, C) ' C, where ∗ denotes the terminal 1-category, viewed as an ∞-category
(which is in fact the terminal ∞-category).

1.1.2. Limits and colimits. The language of ∞-categories is essentially the same as that of 1-categories, just
interpreted in a di�erent class of objects.4 Using the fragment of the language of ∞-categories introduced
above, we can formulate most of the usual concepts from category theory.

Example 1.8 (initial objects). An object X ∈ C is called initial if for all Y ∈ C we have MapC(X,Y ) ' ∗. In
particular, X is initial as an object of hC.

For the next example, we need the following preparation. Given ∞-categories C,D, there is a functor

D → Fun(C,D) which sends an object d ∈ D to the functor d∗ : C → ∗ d−→ D.5

Example 1.9 (colimits). Given a functor F : C → D, by a colimit of F we mean an object d ∈ D together
with a morphism α : F → d∗ in Fun(C,D) such that for every object X ∈ D, the composite

MapD(d,X)→ MapFun(C,D)(d
∗, X∗)

α◦−−→ MapFun(C,D)(F,X
∗)

is an equivalence of spaces.

Exercise 1.1. Show that a colimit of F , if it exists, is determined up to an equivalence which is unique up
to homotopy.6

Warning 1.10. In general, a colimit in C is very di�erent from a colimit in hC.

Remark 1.11. If C,D are 1-categories, then the above notion of colimit recovers the usual one.

Example 1.12 (limits). Limits can be de�ned completely analogously, reversing some appropriate arrows.

Example 1.13 (products). If C is the 1-category with two objects and no non-identity morphisms (viewed
as an ∞-category), then limits over C are called (binary) products. One may show that Fun(C,D) ' D ×D
(via evaluation at the two objects). Thus a product of two objects X,Y ∈ D consists explicitly of an
object P ∈ D together with morphisms P → X,P → Y such that for any Z ∈ D we have MapD(Z,P ) '
MapD(Z,X)×MapD(Z, Y ) (via the canonical map).

The following example is instructive to illuminate Warning 1.10.

Example 1.14 (pushouts). Let C be the 1-category • ← • → •. Colimits over C are called pushouts.

Unravelling the de�nitions, one �nds the following: given objects X,Y, Z ∈ D and morphisms Y
α←− X β−→ Z,

in order to specify a pushout of this span we have to produce an object P ∈ D, morphisms f : Y → P, g :

3Which is usually not an equivalence unless D is a 1-category.
4See [Cis19] for (many) more details about this idea.
5To rigorously construct this, we may use that hCat∞ is cartesian closed, with Fun right adjoint to the cartesian product.
6In fact much more is true: the space of possible colimits is contractible.
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Z → P , as well as a homotopy fα
H' gβ ∈ MapC(X,P ). In other words, H witnesses commutativity of the

following diagram

X
α−−−−→ Y

β

y f

y
Z

g−−−−→ P.

This data has to satisfy the following condition: given another object P ′, the canonical map

MapC(P
′, P )→ MapC(Y, P

′)×MapC(X,P ′) MapC(Z,P
′)

is an equivalence, where the right hand side means the homotopy pullback of spaces. This homotopy pullback
can be made explicit as follows: it is the space of triples {f ′, g′, H ′} of maps f ′ : Y → P ′, g′ : Z → P ′ and

homotopies f ′α
H′' g′β.

1.2. Commutative monoids. Let C be an ∞-category with �nite products.

De�nition 1.15. We denote by CMon(C) ⊂ Fun(Fin∗, C) the full subcategory on those functorsM : Fin∗ →
C such that for all n ≥ 0, the map M(n)→M(1)n, induced by the n pointed maps

n = {∗, 1, . . . , n} → 1

with �ber over ∗ of size n, is an equivalence. We call M(1) ∈ C the underlying object, which we often also
denote by just M .

Example 1.16. We get M(0) 'M(1)0 ' ∗, the terminal object of C.

Example 1.17. Given M ∈ CMon(C), we get a canonical map

M(1)×M(1) 'M(2)→M(1)

called addition, induced by the map {∗, 1, 2} → {∗, 1} sending 1, 2 to 1 and ∗ to ∗.

Exercise 1.2. If C is a 1-category, then CMon(C) is a 1-category, equivalent to the usual category of
commutative monoids in C.

Let M ∈ CMon(Spc). Composing with the functor π0 : Spc → Set we obtain a commutative monoid
π0M in the usual sense.

De�nition 1.18. M ∈ CMon(Spc) is called grouplike if π0M is a grouplike commutative monoid in the
usual sense. Denote by CMon(Spc)gp ⊂ CMon(Spc) the full subcategory on grouplike monoids. By a
group-completion of M we mean Mgp ∈ CMon(Spc)gp together with a map X → Xgp such that for any
Z ∈ CMon(Spc)gp we have MapCMon(Spc)(M,Z) ' MapCMon(Spc)(M

gp, Z).

As usual, Mgp is unique in an appropriate sense.

Exercise 1.3. Show that π0(Mgp) ' π0(M)gp. You may use the following fact: if C′ ⊂ C is a full subcategory,
then Fun(D, C′)→ Fun(D, C) is fully faithful (i.e. induces equivalences on mapping spaces).

Theorem 1.19 (McDu��Segal). Let M ∈ CMon(Spc). Then Mgp exists and

H∗(M
gp) ' H∗(M)[π0(M)−1],

where by the right hand side we mean the localization with respect to the Pontryagin ring structure.

Warning 1.20. We usually do not have π∗(M
gp) ' π∗(M)[π0(M)−1].

To use the group completion theorem from above, the following fact is very helpful.

Proposition 1.21. If α : X → Y is a morphism of commutative, grouplike H-spaces (i.e. a morphism in
CMon(hSpc)gp) then α is an equivalence if and only if H∗(α) is an isomorphism.
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1.3. Algebraic K-theory of rings. Let C be a symmetric monoidal 1-category. For X ∈ Fin∗ put X
′ =

X \ {∗}. Given α : X → Y ∈ Fin∗, we would like to de�ne

α⊗ : CX
′
→ CY

′

via

α⊗({cx}x∈X′) = {⊗x∈f−1(y)cx}y∈Y ′ .
To make sense of this, we have to choose a way of ordering and associating the tensor product. The axioms of
a symmetric monoidal category ensure that the resulting object is well-de�ned up to canonical isomorphism,
but unfortunately it is not in general well-de�ned �on the nose�. Thus in order to de�ne α⊗ we would have
to make arbitrary choices, which would mean that α⊗β⊗ 6= (αβ)⊗.

7 We can avoid this issue as follows.

Construction 1.22. We build a functor C⊗ : Fin∗ → Cat1 as follows. An object of C⊗(X) consists of

an object {cx} ∈ CX
′
together with the following extra data: for every f : X → Y ∈ Fin∗ a choice

f∗⊗({cx}) ∈ CY
′
. The morphisms are just the morphisms in CX′ . Given α : X → Y ∈ Fin∗, de�ne

α⊗ : C⊗(X)→ C⊗(Y ) by sending an object as above to α∗⊗({cx}) with the evident extra data.

One may check that the axioms of a symmetric monoidal category imply that this is a well-de�ned functor,
and in fact an element of CMon(Cat1). In particular α⊗β⊗ = (αβ)⊗ now holds �on the nose�.

The �classifying space� or �nerve� construction yields an ∞-functor

B : Gpd1 → Spc,

where Gpd1 ⊂ Cat1 denotes the full subcategory of groupoids (categories in which every morphism is in-
vertible). Given a symmetric monoidal category C, we have C⊗ ∈ CMon(Cat1) ⊂ Fun(Fin∗, Cat1). We can
compose with the functor

Cat1 → Gpd1,D 7→ D'

discarding the non-invertible morphisms and then with the nerve B to obtain a functor

BC⊗,' : Fin∗ → Spc.

This is still a commutative monoid.

De�nition 1.23. Let R be a (possibly non-commutative) ring. We denote by Proj(R) the category of
�nitely generated projective (left) R-modules, viewed as a symmetric monoidal category for the direct sum
operation ⊕. The K-theory space of R is

K(R) = (BProj(R)⊗,')gp ∈ CMon(Spc).

The algebraic K-theory groups of R are

Ki(R) = πiK(R).

1.4. Further exercises.

Exercise 1.4. Let k be a �eld (or more generally local ring). Show that K0(k) = Z.

Exercise 1.5. Let M ∈ CMon(Spc) and m ∈M . Construct a map

tel(m) := colim(M
+m−−→M

+m−−→ . . . )→Mgp.

Exercise 1.6. There exists a commutative monoid

B =
∐
n≥0

BUn ∈ CMon(Spc),

where BUn denotes the classifying space of the topological group Un of n×n unitary matrices. Pick m ∈ BU1.

(a) Show that tel(m) ' Z×BU , where U = colimn Un is the in�nite unitary group.
(b) Show that Z×BU is a commutative H-space.
(c) Deduce that Bgp ' Z×BU .8

7This holds up to canonical isomorphism again.
8The space Bgp is known as the complex K-theory space. It should not be confused with K(C).
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2. Unstable motivic homotopy theory

2.1. Presheaves and adjoint functors.

Warning 2.1 (size issues). A plethora of problems arise out of the well-known conundrum that there is no
�set of all sets�. These problems are �technical�, in the sense that they are not usually relevant unless we
are asking unreasonable questions. For this reason we shall mostly ignore them in these notes. Nonetheless:
look twice before crossing the street, and ensure all your mathematics is determined by a small amount of
data!

2.1.1. Presheaves.

Theorem 2.2. Let C,D, E be ∞-categories. Assume that E has colimits (respectively limits) of shape D.
Then so does Fun(C, E), and for any X ∈ C, the functor evX : Fun(C, E)→ E preserves them.

De�nition 2.3. If C is an ∞-category, we denote by P(C) := Fun(Cop,Spc) the category of (space-valued)
presheaves on C.9

One may show that Spc has all limits and colimits, so by Theorem 2.2 the same is true for presheaf
categories.

Remark 2.4. It is possible to show that the Yoneda lemma holds in the usual way: there is an embedding
C → P(C) sending c ∈ C to the representable presheaf Rc = MapC(−, c), and for F ∈ P(C) we have
MapP(C)(Rc, F ) ' F(c).

2.1.2. Adjoint functors. Let R : D → C be a functor of ∞-categories. Consider the ∞-category

E = Fun(C,D)×Fun(D,D) Fun([1],Fun(D,D))×Fun(D,D) {id},

where the limit is formed in Cat∞, the map Fun(C,D)→ Fun(D,D) is composition with R and the two maps
Fun([1],Fun(D,D))→ Fun(D,D) are evaluation at 0 and 1, respectively. In other words this is the category
of pairs (L : C → D, α : LR→ idD). Denote by E0 ⊂ E the full subcategory on those pairs (L,α) such that
for every object X ∈ C, Y ∈ D the composite

MapC(X,RY )
L−→ MapC(LX,LRY )

αY ◦−−−→ Map(LX, Y )

is an equivalence.

De�nition 2.5 (adjoints). By a left adjoint of R we mean an object of E0.

This seems highly non-unique, but it is not:

Proposition 2.6. The ∞-category E0 is either empty or equivalent to the terminal ∞-category ∗. In par-
ticular, any two left adjoints are equivalent, in an essentially unique way.

There is a similar de�nition of right adjoints.

2.1.3. Aside: presentability and the adjoint functor theorem. It may be a good idea to skip this section on
�rst reading. In order to construct∞-functors, a very helpful tool is an existence criterion for adjoints known
as the adjoint functor theorem. We sketch the idea here.

Certain particularly nice ∞-categories are called presentable. We will not de�ne this notion, but collect
the following properties.

Theorem 2.7. (1) Presentable categories have limits and colimits for all diagrams.
(2) Let D be a diagram of∞-categories. Suppose that all the categories are presentable, and either all the

functors preserve colimits or all the functors preserve limits. Then the category limD is presentable.
(3) Let C be an ∞-category. Then P(C) is presentable.

Example 2.8. Let C be a presentable ∞-category and Ci ⊂ C be a family of full presentable subcategories.
Then

⋂
i∈I Ci ⊂ C is a full presentable subcategory.

9We have not talked about it so far, but the ∞-category Cat∞ of ∞-categories has an involution C 7→ Cop �reversing the
arrows�.
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Example 2.9. Let E ⊂ Fun([1],Spc) =: D denote the full subcategory on those functors corresponding to
equivalences in Spc. One may show that E ' Spc, and so is presentable. Since limits in categories of
presheaves are computed sectionwise (Theorem 2.2), E → D is a functor of presentable categories preserving
limits. Now let C be a presentable ∞-category and f : X → Y a morphism in C. Evaluation at f de�nes a
functor C → Fun([1],Spc) which preserves limits. Consequently in the pullback diagram of ∞-categories

Cf −−−−→
α

Cy y
E −−−−→ Fun([1],Spc),

Cf is presentable. Unravelling the de�nitions, Cf ⊂ C is the full subcategory on those objects T such that
f∗ : MapC(Y, T )→ MapC(X,T ) is an equivalence.

For once, we need to talk about size. If κ is a regular cardinal, then there is a class of �κ-small� ∞-
categories, roughly characterized by saying that their set of objects is κ-small, and all homotopy groups of
all mapping spaces also are.

De�nition 2.10. Let κ be a regular cardinal and C an ∞-category. We call C κ-�ltered if for every κ-small
∞-categoryD and every functor F : D → C, there exists an object c ∈ C and a morphism F → c∗ ∈ Fun(D, C).

Theorem 2.11 (adjoint functor theorem). Let R : D → C be a functor of presentable categories preserving
limits and κ-�ltered colimits for some κ. Then R admits a left adjoint L.

Example 2.12. The category CMon(Spc) is presentable, being an intersection of subcategories of a presheaf
category determined by certain maps being an equivalence (see Examples 2.8 and 2.9). Its subcategory
CMon(Spc)gp is also presentable: being grouplike is the same as the shearing map

M ×M (m1,m2) 7→(m1,m1+m2)−−−−−−−−−−−−−−−→M ×M

being an equivalence. This also implies that CMon(Spc)gp → CMon(Spc) preserves limits. One may also
show using Theorem 2.13 below that the inclusion preserves κ-�ltered colimits for any κ. We deduce that
that group-completion is a functor (−)gp : CMon(Spc)→ CMon(Spc)gp.

The following fact is very useful.

Theorem 2.13. In the category Spc, �nite limits commute with κ-�ltered colimits for any κ.

Warning 2.14. An ∞-category being �nite is a very strong condition; it in particular requires that all
mapping spaces are �nite complexes. Binary products are �nite limits, equalizers are not!

2.2. Motivic spaces. Let S be a scheme. We write SmS for the category of smooth schemes of �nite type
over S.

De�nition 2.15. We call F ∈ P(SmS) A1-invariant if for every X ∈ SmS the canonical map F (X) →
F (X × A1) is an equivalence. We denote the subcategory of A1-invariant presheaves by LA1P(SmS).

It follows from the discussion in the previous section that the inclusion LA1P(SmS) ⊂ P(SmS) admits a
left adjoint, which we denote by LA1 . The subcategory of A1-invariant presheaves is closed under all limits
and colimits, those being computed sectionwise.

De�nition 2.16. Let X be a scheme. A Nisnevich square is a cartesian diagram of schemes

W −−−−→ Vy p

y
U

i−−−−→ X

where i is an open immersion, p is étale, and V ×X (U \X) ' V \W .
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De�nition 2.17. We call F ∈ P(SmS) Nisnevich local if for all X,Y ∈ SmS we have F (X q Y ) '
F (X)× F (Y ), F (∅) ' ∗ and for every Nisnevich square as above, the following square of spaces is cartesian

F (X) −−−−→ F (U)y y
F (V ) −−−−→ F (W ).

We write LNisP(SmS) ⊂ P(SmS) for the full subcategory of Nisnevich local presheaves.

As before (this time using Theorem 2.13, i.e. the commutativity of �ltered colimits and pullbacks in
spaces), the inclusion admits a left adjoint LNis.

De�nition 2.18. We call Spc(S) := LmotP(SmS) := LNisP(SmS) ∩ LA1P(SmS) the category of motivic
spaces.

Warning 2.19. If F is A1-local, LNisF need not be, and similarly if F is Nisnevich local LA1F need not be.
Thus Lmot 6= LNisLA1 and Lmot 6= LA1LNis (in general). However, it follows from general principles that
Lmot can be reached by repeating LNis and LA1 alternatingly su�ciently (in�nitely) many times.

2.2.1. A1-localization. A map f : F → G ∈ P(SmS) is called an A1-equivalence if LA1f is an equivalence.
Essentially by construction, for every X ∈ SmS the projection X × A1 → X is an A1-equivalence.

Two maps f0, f1 : F → G are called A1-homotopic if there exists H : F × A1 → G such that fi ' H ◦ is,
where is : ∗ → A1 is the inclusion at the point s.

Exercise 2.1. Show that if F ∈ P(SmS), then F × A1 → F is an equivalence. Deduce that A1-homotopy
equivalences (i.e. maps admitting an inverse up to A1-homotopy) are A1-equivalences. (You may use that
any object in a presheaf category is a colimit of representables.)

The A1-localization can be made very explicit. Write ∆ for the simplex category, i.e. the category of �nite
non-empty totally ordered sets. A skeleton is given by the objects [n] = {0, 1, 2, . . . , n}.

De�nition 2.20. The standard cosimplicial scheme is

�• : ∆→ SchS , [n] 7→ �nS ⊂ An+1
S ,

where �n is determined by the equation T0 + · · · + Tn = 1, and the structure maps are induced by partial
projections and face inclusions. (For details, see e.g. [Wei13, De�nition 11.3].)

Theorem 2.21. Let F ∈ P(SmS) and X ∈ SmS. Then

(LA1F )(X) ' colim
[n]∈∆op

F (X × �n).

2.2.2. Nisnevich localization. LNisP(SmS) is a category of sheaves. We can explain this as follows.

De�nition 2.22. Let X be a scheme and x ∈ X a point. We denote by Xh
x the (co�ltered) limit of all

pointed schemes (Y, y) with an étale map Y → X sending y to x and inducing k(y) ' k(x). (See e.g. [Sta18,
Tag 04GV] for details.) We call Xh

x the henselization of X in x.

Theorem 2.23. Suppose that dimS < ∞ and f : F → G ∈ P(SmS). Then LNisf is an equivalence if and
only if for every X ∈ SmS and x ∈ X the induced map

f(Xh
x ) : colim

(Y,y)→(X,x)
F (Y )→ colim

(Y,y)→(X,x)
G(Y ) ∈ Spc

is an equivalence.

Remark 2.24. We do not have time to discuss this, but the assumption that dimS < ∞ is important. In
the world of ∞-categories, there is more than one notion of sheaf, and only one of them (the so-called
hypersheaves) interact with stalks in the way one is used to from the world of 1-categories.
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2.3. K-theory.

Theorem 2.25. Let S be a regular noetherian scheme of �nite dimension. Then there exists K ∈ Spc(S)
such that for every a�ne scheme X = Spec(A) ∈ SmS we have K(X) ' K(A), the algebraic K-theory space
of the ring A.

Remark 2.26. The space K(X) for X ∈ SmS not a�ne also has a name: it is called the Thomason�Trobaugh
K-theory of X.

Remark 2.27. The Theorem says in particular that the presheaf Spec(A) 7→ K(A) is A1-invariant (i.e.
K(A) ' K(A[t])) and satis�es Nisnevich descent. Neither of these properties is obvious from the de�nition
of K-theory that we gave. This also shows that the assumption that S be regular is important: otherwise
K-theory is not A1-invariant (in general)!

Proof. Using Example 2.12, we construct a functor F : Smop
S → Spc with F (X) = K(OX(X)). It will su�ce

to show that the canonical map F → LmotF =: K induces an equivalence on sections over a�ne schemes.
Some formal manipulations show that this is equivalent to showing that F is A1-local and Nisnevich local �on
a�ne schemes�, which translates into properties of K-theory. Namely we need to know that K(A[t]) ' K(A),
and a similar condition for Nisnevich squares. These are well-known (but highly non-trivial) properties of
the K-theory of regular rings [Wei13, Theorem V.6.3, Examples V.10.10]. �

We have presheaves of groups GLn on SmS , sending X to GLn(OX(X)). Taking the colimit, we obtain
the presheaf of groups GL. Taking classifying spaces sectionwise, one obtains BGL ∈ P(SmS)

Theorem 2.28. Assumptions as in the previous theorem. We have K ' Lmot(Z×BGL) ∈ Spc(S).

Proof. Consider the presheaf of commutative monoids

B : X 7→
∐
n≥0

BGLn(OX(X)) ∈ Fun(Smop
S ,CMon(Spc)).

Using that B(X) ' Proj(X)' if X is local, we see that K ' LmotB
gp. Let m ∈ BGL1 correspond to the

trivial line bundle. As in Exercise 1.5 we can construct a map telm(B)→ K, where

telm(B) : X 7→ telm(B(X))

is formed sectionwise. By direct computation we have telm(B) ' Z × BGL. We have thus constructed
a canonical map Z × BGL → K which we need to prove is a motivic equivalence. We shall prove that
it becomes an equivalence upon applying LNisLA1 . By Theorems 2.23 and 2.21, it is enough to prove the
following: if R is a (henselian) local ring, then

colim
n∈∆op

[Z×BGL(R[t0, . . . , tn])] ' K(R).

One may show (see Exercise 2.4) that the left hand side is a grouplike H-space (and of course so is the
right hand side), and hence by Proposition 1.21 it su�ces to prove that the map induces an isomorphism in
homology. One may also show that if X• is a ∆op-indexed diagram of spaces such that the induced maps in
homology H∗(Xn) → H∗(Xm) are all isomorphisms, then H∗ colim∆op X• ' H∗X0. The group completion
theorem 1.19 implies that H∗(Z × BGL(R)) ' H∗K(R) for any ring R such that K0(R) = Z (see Exercise
2.2). We thus conclude by A1-invariance of K(−) and Exercise 1.4. �

Theorem 2.29. Denote by Grn(Am) the Grassmannian scheme of n-planes in Am, and Grn := colimmGrn(Am).
We have LmotBGLn ' LmotGrn, and so

K ' Lmot(Z×Gr∞).

Proof. See Exercise 2.5. �

2.4. Exercises.

Exercise 2.2. Let R be a ring. Show that K(R) ' (qn≥0BGLn(R))gp if and only if K0(R) ' Z.
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Exercise 2.3. Show that the commutative diagram of schemes

A1
S \ 0 −−−−→ Sy y
S −−−−→ P1

S

becomes a pushout in Spc(S).

Exercise 2.4. Construct a natural isomorphism R∞ ⊕ R∞ ' R∞. Deduce the existence of a map a :
BGL × BGL → BGL ∈ P(SmS). Show that a is associative, unital and commutative up to (non-direct)
A1-homotopy and deduce that LmotBGL is a presheaf of grouplike commutative H-spaces.

Exercise 2.5. Show that BGLn is motivically equivalent to Grn, as follows.

(1) Show that

Grn(Am) ' LZar[GLn+m/GLn ×GLm],

where the right hand side is the quotient of presheaves of groups.
(2) Show that colimnGLn+m/GLn ' ∗.
(3) Deduce the desired result. (You may use that �the colimit of a free action is a homotopy colimit�.)

3. Stable motivic homotopy theory

3.1. Pointed categories.

De�nition 3.1. Let C be an ∞-category. We say X ∈ C is a 0-object if X is both initial and �nal. We say
that C is pointed if it admits a 0-object.

We denote by Pr the∞-category of presentable∞-categories (see �2.1.3) and colimit preserving functors.

Proposition 3.2. Let C be presentable ∞-category with a �nal object ∗. Then

C∗ := {∗} ×C Fun([1], C)

is the initial pointed presentable category under C in Pr, where the functor C → C∗ is given by c 7→ (c →
c
∐
∗).10

In other words, an object of C∗ consists of an object c ∈ C and a morphism ∗ → C.

De�nition 3.3. We denote by Spc(S)∗ the category of pointed motivic spaces.

Exercise 3.1. Show that for X ∈ C∗ there is a pushout square in C∗

∗+ −−−−→ X+y y
∗ −−−−→ X.

Remark 3.4. Pushout squares of the form

A −−−−→ By y
∗ −−−−→ C

are also called co�ber sequences and denoted A→ B → C ' B/A.

10More formally, the forgetful functor C∗ → C admits a left adjoint with the claimed action on objects.
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3.2. Symmetric monoidal categories.

De�nition 3.5. A symmetric monoidal ∞-category is an object of CMon(Cat∞). A presentably symmetric
monoidal ∞-category is a symmetric monoidal ∞-category C such that C is presentable and the tensor
product preserves colimits in each variable separately. We write CAlg(Pr) for the category of presentably
symmetric monoidal categories and symmetric monoidal, cocontinuous functors.

We denote the unit object of a symmetric monoidal category generically by 1.
Since symmetric monoidal ∞-categories are examples of commutative monoids, one expects them to be

di�cult to write down directly. Here is one way.

Theorem 3.6. Let C be an ∞-category with �nite products. Then there exists a canonical symmetric
monoidal category C = C× ∈ CMon(Cat∞) with underlying object C and tensor product given by the cartesian
product.

In particular, Spc(S) is a symmetric monoidal ∞-category under cartesian product. It is easy to see that
Spc(S) is cartesian closed (i.e. the cartesian product has a right adjoint), and hence presentably symmetric
monoidal.

Here is another way of constructing symmetric monoidal structures.

Theorem 3.7. Let C be a presentable∞-category. Write C∧∗ for the initial object of CAlg(Pr) under C× such
that the underlying category is pointed. Then the underlying category of C∧∗ is C∗, the symmetric monoidal
operation is given by

X ⊗ Y := X ∧ Y = X × Y/X ∨ Y.

(Here X ∨ Y = X q∗ Y is the coproduct in C∗.)

In particular Spc(S)∗ is presentably symmetric monoidal.

Exercise 3.2. Let S1 ∈ Spc(S)∗ denote the image of the constant presheaf with values the circle S1, and
Gm the image of the representable sheaf A1 \ 0 pointed at 1. Show that S1 ∧ Gm ' P1.

3.3. Stabilization.

De�nition 3.8. Let C ∈ CAlg(Pr) and X ∈ C. Given D ∈ CAlg(Pr)C/ we say that X acts invertibly on D
if the functor D → D informally described as d 7→ X ⊗ d is an equivalence. We denote by C[X−1] the initial
object of CAlg(Pr) under C on which X acts invertibly, and call it the stabilization of C with respect to X.

Example 3.9. Let C = Spc∗ (the usual ∞-category of pointed spaces) and X = S1. Then the category
C[(S1)−1] is called the stable ∞-category. We denote it by SH. hSH is the stable homotopy category, as
constructed by Boardman. The canonical functor Spc∗ → SH is customarily denoted Σ∞. The traditional
notation for the tensor product in SH is ∧.

De�nition 3.10. Let P1 ∈ Spc(S)∗ denote P1 pointed at 1. The category SH(S) := Spc(S)∗[(P1)−1] is
called the stable motivic ∞-category. We denote the canonical functor Spc(S)∗ → SH(S) by Σ∞, and the
tensor product in SH(S) by ∧.

In order to get a handle on the very abstractly de�ned stabilizations, the following result is very helpful.

Theorem 3.11. Let C ∈ CAlg(Pr) and X ∈ C. Suppose that for some n ≥ 2, the cyclic permutation on X⊗n

is homotopic to the identity. Then the presentable category underlying C[X−1] is equivalent to the category

SpN(C, X) = eq(Fun(N, C) ⇒ Fun(N, C)),

where the two endomorphisms are given by the identity (Xn)n 7→ (Xn)n and Ω : (Xn)n 7→ (ΩXXn+1)n. Here
ΩX denotes the right adjoint of (−)⊗X : C → C.

In other words, objects of SpN(C, X) are collections (c1, c2, . . . ) with ci ∈ C, together with bonding maps
ci ' ΩXci+1, and morphisms are the evident commutative diagrams.
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3.4. The motivic stable homotopy category. It follows from Exercise 3.2 that the operations Σ1,1 :=
ΣGm := (−) ∧ Σ∞Gm : SH(S)→ SH(S) and Σ1,0 := ΣS1 := (−) ∧ Σ∞S1 : SH(S)→ SH(S) are invertible.
For p, q ∈ Z we put Σp,q = (Σ1,1)◦p(Σ1,0)◦q−p.

De�nition 3.12. For E ∈ SH(S), the groups11

πi,j(E) := [Σi,j1, E]

are called the bigraded homotopy groups of E. We also use the notation

πi(E)j = [Σi1,Σj,jE] = πi−j,−j(E).

Remark 3.13. Suspension Σ1,0 being invertible, SH(S) is a stable ∞-category. It follows in particular that
hSH(S) is a triangulated category. So for example if A → B → C ∈ SH(S) is a co�ber sequence, then for
any q ∈ Z we obtain a long exact sequence

· · · → π∗,qA→ π∗,qB → π∗,qC → π∗−1,qA→ . . . .

De�nition 3.14 (Milnor�Witt K-theory). Let k be a �eld. The graded ring KMW
∗ (k) called Milnor�Witt

K-theory of k is de�ned to be the quotient of the free non-commutative algebra on generators [a] in degree
1 for a ∈ k× and a generator η in degree -1, subject to the following relations

(1) η[a] = [a]η,
(2) [a][1− a] = 0 for a ∈ k \ {0, 1},
(3) [ab] = [a] + [b] + η[a][b], and
(4) η(2 + η[−1]) = 0.

The graded ring KM
∗ (k) called Milnor K-theory of k is de�ned as the quotient of KMW

∗ (k) by the central
element η.

For a ∈ k×, there is a corresponding map [a] : ∗ → Gm ∈ Spc(k) yielding also a stable map [a] : 1 →
Σ1,1

1 ∈ SH(k). There is also the map H : A2 \ 0 → P1. By Exercises 3.2 and 3.6, Σ−1,−1Σ∞H de�nes a
map η : Σ1,1

1→ 1 ∈ SH(k).

Theorem 3.15 (Morel). Let k be a �eld. The graded ring π0(1k)∗ is via the elements constructed above
isomorphic to KMW

∗ (k).

3.5. The algebraic K-theory spectrum. For a scheme X, write Vect(X) for the category of vector
bundles on X, viewed as a symmetric monoidal category for direct sum. This yields Vect(X) ∈ CMon(Cat1).
Discarding non-invertible morphisms, taking classifying spaces and group-completing we obtain a space

KVect(X) = (BVect(X)⊗,')gp

also called direct sum K-theory of X. If X = Spec(A) is a�ne then KVect(X) ' K(A). A �nitely generated
projective OX(X)-module (i.e. a summand of OX(X)n for some n) induced a vector bundle on X; this is a
symmetric monoidal functor Proj(OX(X))→ Vect(X). This way we obtain a morphism

K(O(−))→ KVect(−) ∈ P(SmS)

which induces an equivalence on a�ne schemes, and hence is a Zariski equivalence. Hence the motivic space
K ∈ Spc(S) can also be written as K ' LmotKVect(−).

The element 0 ∈ K(S) yields a canonical map ∗ → K ∈ Spc(S), i.e. a lift K ∈ Spc(S)∗. We have
the tautological line bundle γ ∈ Vect(P1

S). For X ∈ SmS , we obtain an additive functor ⊗γ : Vect(X) →
Vect(X×P1), naturally inX. This induces a morphism of commutative monoids γ : KVect(X)→ KVect(X×
P1). We also have the pullback morphism 1 : KVect(X)→ KVect(X×P1), and since KVect(X) is grouplike,
we can form the di�erence of morphisms γ − 1.

Theorem 3.16. The above morphisms assemble into a morphism of presheaves

γ − 1 : KVect(−)→ ΩP1KVect(−) ∈ P(SmS)∗.

If S is noetherian, regular and �nite-dimensional12, the induced map

γ − 1 : K ' Lmot(KVect(−))→ ΩP1K ∈ Spc(S)∗

is an equivalence.

11Recall that [A,B] := π0Map(A,B).
12These assumptions are actually unnecessary.
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Proof. We put KVect(−) =: K ′ for brevity. By naturality we obtain a morphism K ′ → ΩP1
+
K ′ ∈ P(SmS)∗,

which by adjunction is the same as a morphism P1
+ ∧ K ′ → K ′. Exercise 3.1 gives us a co�ber sequence

∗+ → P1
+ → P1, and hence to produce P1 ∧K ′ → K ′ we need to show that the composite K ′ ' ∗+ ∧K ′ →

P1
+ ∧ K ′ → K ′ is null homotopic. Unwinding the de�nitions, it is induced by γ|S − 1, which is null since
γ|S is the trivial bundle. Passing over by adjoints again, we have constructed the desired map K ′ → ΩP1K ′.
This induces LmotK

′ → LmotΩP1K ′ → Ω1
PLmotK

′. In order to show that this is an equivalence, by Remark
2.26 we must show that for a noetherian regular �nite-dimensional scheme X we have K(X) ' K(X+ ∧P1),
where K(−) is Thomason�Trobaugh K-theory. This follows from the so-called projective bundle formula
[Wei13, Theorem V.1.5]. �

De�nition 3.17. We obtain an object

KGL = KGLS := (K,K,K, . . . ) ∈ SpN(Spc(S)∗,P
1) ' SH(S),

with all bonding maps given by γ − 1.

Exercise 3.3. Show that Σ2n,nKGL ' KGL.

Proposition 3.18. Let S be regular, noetherian and �nite-dimensional. Then πp,qKGLS ' Kp−2q(S) for
p ≥ 2q and = 0 else.

Proof. See Exercise 3.7. �

3.6. The slice �ltration. Denote by SH(k)e� ⊂ SH(k) the full subcategory generated under colimits by
objects of the form Σn,0Σ∞+ X for X ∈ Smk, n ∈ Z. The adjoint functor theorem implies that the inclusion
admits a right adjoint r, and we denote the composite

SH(k)
r−→ SH(k)e� → SH(k)

by f0 : SH(k)→ SH(k). For n ∈ Z we put

fn = Σn,nf0Σ−n,−n : SH(k)→ SH(k).

Exercise 3.4. Show that fn(SH(k)) ⊂ SH(k)e�(n) := Σn,nSH(k)e� and that the restricted functor fn :
SH(k)→ SH(k)e�(n) is right adjoint to the inclusion SH(k)e�(n)→ SH(k).

It follows that for E ∈ SH(k) we obtain a canonical bi-in�nite tower

· · · → f1E → f0E → f−1E → · · · → E ∈ SH(k),

called the slice tower of E. The successive co�bers

sn(E) := cof(fn+1E → fnE)

are called the slices of E.

De�nition 3.19. The motivic spectrum kgl := f0KGL is called the e�ective algebraic K-theory spectrum.
The motivic spectrum HZ := s0KGL is called the motivic cohomology spectrum.

Exercise 3.5. Show that fnKGL ' Σ2n,nkgl and snKGL ' Σ2n,nHZ.

De�nition 3.20. The decreasing �ltration im(π∗,0fnKGLk → π∗,0KGLk)n ⊂ K∗(k) is called the motivic
�ltration.

3.7. Further exercises.

Exercise 3.6. Show that An \ 0 ' G∧nm ∧ Sn−1.

Exercise 3.7. Let S be regular, noetherian and �nite-dimensional and X ∈ SmS. Prove that [Σp,qΣ∞+ X,KGLS ] =
Kp−2q(X) for p− 2q ≥ 0, and = 0 else, as follows.

(1) Reduce to q = 0.
(2) Show the result for p ≥ 0 (and q = 0).
(3) Show that the result for p < 0 will follow from the following statement: if X ∈ SmS, then K0(X) '

K0(X × A1 \ 0).

This last property is known as (part of) Bass' fundamental theorem, and holds in the regular noetherian
situation. [Hints: Use that KGL ' P1 ∧KGL and S−1 ∧ P1 ' Gm.]



ALGEBRAIC K-THEORY FROM THE VIEWPOINT OF MOTIVIC HOMOTOPY THEORY 13

4. Motivic cohomology

Throughout we work in SH(k), where k is a �eld.13

4.1. Homotopy ring spectra.

De�nition 4.1. Let C be a symmetric monoidal ∞-category. By a homotopy ring object of C we mean an
object of CAlg(hC), i.e. a commutative algebra object in the symmetric monoidal 1-category hC.14

In other words a homotopy ring object is E ∈ C together with maps u : 1 → E and m : E ⊗ E → E
satisfying the axioms of a commutative algebra up to homotopy; e.g. the composite

E ' 1⊗ E u⊗idE−−−−→ E ⊗ E m−→ E

should be homotopic to idE .

Example 4.2. One may show that the tensor product of vector bunndles induces a homotopy ring structure
on KGLk ∈ SH(k).

One checks immediately that lax symmetric monoidal functors preserve homotopy ring objects.

Exercise 4.1. Show that kgl, HZ ∈ SH(k) are homotopy ring objects.

4.2. Motivic cohomology groups. Given E ∈ SH(k) and X ∈ Smk, we put

Ep,q(X) = [Σ∞X+,Σ
p,qE].

This is called the bigraded cohomology theory represented by E.

Example 4.3. πp,qE ' E−p,−q(k)

Example 4.4. If E is a homotopy ring spectrum, then E∗∗(X) is a (not necessarily commutative) ring.

De�nition 4.5. For an integer n and E ∈ SH(k), we de�ne E/n as the pushout in the following diagram

E
n−−−−→ Ey y

0 −−−−→ E/n.

Here the map n : E → E is the sum of n copies of the identity map, using additivity of SH(k).

Example 4.6. We have a long exact sequence

· · · → πp,qE
n−→ πp,qE → πp,q(E/n)→ πp−1,qE

n−→ . . . .

Remark 4.7. It is possible to show that HZ/n is a homotopy ring spectrum, in an essentially unique way.

De�nition 4.8. The bigraded cohomology theory represented by HZ (respectively HZ/n) is called motivic
cohomology (respectively motivic cohomology with Z/n coe�cients) and denoted by

Hp,q(X) = Hp,q(X,Z) = Hp(X,Z(q)) := HZp,q(X)

(respectively Hp,q(X,Z/n) = Hp(X,Z(q)/n) := (HZ/n)p,q(X)).

4.3. The Bloch cycle complex. Let X ∈ Smk and d ≥ 0. We denote by Zd(X) the group of codimension

d cycles on X, in other words the free abelian group on those points x ∈ X such that the closure {x} ⊂ X
has codimension d. The latter condition means hat dimOX,x = d, or equivalently if X is equidimensional,

dim {x}+ d = dimX. Now let i : Y → X be a closed immersion, with Y ∈ Smk. If c =
∑
n anxn ∈ Zd(X),

we say that c is in good position with respect to i if every component of Y ∩ {xn} has codimension ≥ d on
Y , for every n. Denote by Zd(X)i ⊂ Zd(X) the subgroup of cycles in good position with respect to i. Then
there exists a pullback map i∗ : Zd(X)i → Zd(Y ); see e.g. [MVW06, �17A.1]. If c = x ∈ Zd(X)i then

i∗(c) =
∑
enyn, where yn runs through the generic points of {x} ∩ Y of codimension d and en ∈ Z is called

the intersection multiplicity.

13Some of the de�nitions make sense more generally, but we concentrate on the �elds case for simplicity.
14There is a notion of commutative algebra in C itself, but the de�nition is more involved.
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De�nition 4.9 (Bloch cycle complex). Let X ∈ Smk. Denote by z
d(X,n) ⊂ Zd(X × �n) the subgroup of

those cycles in good position with respect to all (iterated) faces X × �i ⊂ X × �n. De�ne

∂n =

n∑
i=0

(−1)id∗i : zd(X,n)→ zd(X,n− 1),

where di : �n−1 → �n is the inclusion of the i-th face. One may show that (zd(X, •), ∂) is a chain complex.
Its homology groups are denote by

CHd(X,n) = Hn(zd(X, •), ∂)

and called higher Chow groups.

Remark 4.10. Replacing zd(X, •) by zd(X, •)/n, one obtains higher Chow groups with Z/n co�ecients.

Example 4.11. zd(X, 0) = Zd(X) (sine �0 has no faces), and so CHd(X, 0) is a quotient of Zd(X). One may

show that it coincides with the ordinary Chow group CHd(X).

Exercise 4.2. Let X be connected. Show that CH0(X, 0) = Z whereas CH0(X,n) = 0 for n 6= 0.

Remark 4.12. It is not obvious, but
⊕

d,n CHd(X,n) can be given a ring structure related to intersection of
cycles.

Remark 4.13. Let f : Y → X be a �at morphism. Since �at morphisms preserve codimension of subschemes,
there is an induced morphism f∗ : zd(X,n)→ zd(Y, n) which one may prove induces a morphism of complexes

zd(X)→ zd(Y ). Hence we obtain �at pullbacks CHd(X,n)→ CHd(Y, n).

4.4. Theorems.

Theorem 4.14 (Bloch [Blo86], bottom p. 269). Let X be the localization of a smooth scheme. Then

CH1(X, 1) = OX(X)× and CH1(X,n) = 0 else.

Theorem 4.15 (Nesterenko�Suslin [NS90], Totaro [Tot92]). Let k be a �eld. We have CHd(k, n) = 0 for

n < d and CHd(k, d) ' KM
d (k).

The above two theorems are, in principle, elementary. This is very far from true for the remaining
theorems we are going to state.

Theorem 4.16 (Levine [Lev08]). For X ∈ Smk, p, q ∈ Z we have natural isomorphisms

Hp,q(X) ' CHq(X, 2q − p)
and similarly for Z/n coe�cients.

Apart from the fact that there is no obvious relationship a priori between motivic cohomology and higher
Chow groups (as we de�ned them), they also have very di�erent a priori properties. Let us unpack these
properties to illuminate just how strong the above theorem is:

• By Remark 4.13, CHd(−, n) is contravariantly functorial in �at morphisms. But since any coho-
mology theory represented by a motivic spectrum is contravariant in all morphisms of schemes, we
deduce that the same must be true for CHd(−, n).
• By construction, any cohomology theory represented by a motivic spectrum is A1-invariant. We
deduce that CHd(X,n) ' CHd(X × A1, n).
• Similarly, any cohomology theory represented by a motivic spectrum has a Mayer�Vietoris sequences
for distinguished Nisnevich squares, hence the same must be true for CHd(−, •).
• Combining this with Theorem 4.14, we deduce that

Hp(X,Z(1)) ' Hp−1
Nis (X,Gm) '


Pic(X) p = 2

OX(X)× p = 1

0 else

.

• By construction we have CHd(X,n) = 0 for n < 0. Translated into motivic cohomology this says
that Hp,q(X) ' CHq(X, 2q − p) = 0 for p > 2q.

Exercise 4.3. Without using the above theorem, show that CHq(X, 2q − p) = 0 = Hp,q(X) for q < 0.
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Remark 4.17. It is an open question if Hp,q(X) = 0 for p < 0. This is known as the Beilinson�Soulé
vanishing conjecture.

Exercise 4.4. Show that Hp,p(k,Z/n) = KM
p (k)/n and Hp,q(k,Z/n) = 0 for p > q.

The next result is known as the norm residue isomorphism theorem, formerly the Bloch�Kato conjecture.
See [HW19] for a textbook account.

Theorem 4.18 (Voevodsky). Let n be coprime to the characteristic of k, q ≥ 0 and X ∈ Smk.

(1) The complex Létz
d(X)/n (on the site of étale X-schemes) is quasi-isomorphic to Létµ

⊗d
n .

(2) The induced map Hp(X,Z/n(q))→ Hp
ét(X,µ

⊗q
n ) is an isomorphism for p ≤ q.

The really di�cult part of the theorem (2), (1) is more elementary, going back to Bloch. Again let us
expound on this result by illustrating some consequences.

• If p < 0, then Hp
ét(X,µ

⊗q
n ) = 0. Thus the Beilinson�Soulé vanishing conjecture holds with Z/n

coe�cients.
• If k is a �eld, then Hp(k,Z/n(q)) = 0 for p > q by Theorem 4.15. Hence we obtain

Hp,q(k,Z/n) '

{
Hp
ét(k, µ

⊗q
n ) p ≤ q, q ≥ 0

0 else
.

• Using the other part of Theorem 4.15 we obtain a canonical isomorphism (of rings)⊕
p≥0

Hp
ét(k, µ

⊗p
n ) ' KM

∗ (k)/n.

Exercise 4.5. Let k be a �eld containing a primitive n-th root of unity (so in particular n is coprime to the
characteristic of k). Show that

H∗∗(k,Z/n) ' KM
∗ (k)/n[τ ],

where τ is a certain element in H0,1(k,Z/n).

Finally we have the following analog �at the characteristic�.

Theorem 4.19 (Geisser�Levine [GL00]). Let k have characteristic p. Then Hm,n(k,Z/pr) = 0 unless
m = n.

In other words, combining again with Theorem 4.15, we �nd that

H∗∗(k,Z/pr) ' KM
∗ (k)/pr,

where the elements of KM
q (k)/pr are placed in bidegree (q, q).

5. K-theory of fields

Throughout we work in SH(k), where k is a �eld.

5.1. p-adic completion.

Proposition 5.1 (Milnor exact sequence). Let · · · → E2 → E1 ∈ SH(k) be an inverse system. Then there
is a short exact sequence

0→ lim1
nπi+1,jEn → πi,j(lim

n
En)→ lim

n
πi,j(E)→ 0.

De�nition 5.2. Let E ∈ SH(k). We put

E∧p = lim
(
· · · → E/p3 → E/p2 → E/p

)
and call it the p-adic completion of E.

Example 5.3. The groups πn,0KGL∧p are also denoted Kn(k,Zp) and called the p-adic K-theory groups of k.

Proposition 5.4. (1) The assignment E 7→ E∧p is a lax symmetric monoidal functor preserving limits
and �nite colimits.
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(2) There are natural exact sequences

0→ Lpπi,j(E)→ πi,j(E
∧
p )→ lim

n
πi−1,j(E)[pn]→ 0

and
0→ lim1

nπi,j(E)[pn]→ Lpπi,j(E)→ πi,j(E)∧p → 0.

Here for an abelian group A, A[pn] means the pn-torsion subgroup, and A∧p = limnA/p
n is the

p-completion.
(3) There is a co�ber sequence

E′p := lim
(
. . .

p−→ E
p−→ E

p−→ E
)
→ E → E∧p .

(4) We have E∧p /p ' E/p.

Proof. (1) is formal nonsense, and (2) can be deduced from Proposition 5.1. (3) follows from the co�ber
sequence of diagrams

. . .
p−−−−→ E

p−−−−→ E
p−−−−→ E

p3
y p2

y p

y
. . .

id−−−−→ E
id−−−−→ E

id−−−−→ Ey y y
. . . −−−−→ E/p3 −−−−→ E/p2 −−−−→ E/p

by taking limits, noting that limits preserve co�ber sequences by stability. (4) can be deduced from (3) by
showing that multiplication by p is an isomorphism of E′p. �

Exercise 5.1. Suppose that π∗∗E is bounded p-torsion. Show that π∗∗(E
∧
p ) ' π∗∗(E∧p ).

5.2. Weakly orientable spectra and Bott elements.

De�nition 5.5. Let E ∈ SH(k) be a homotopy ring spectrum. We call E weakly orientable if the image of
η ∈ π−1,−11 ' KMW

−1 (k) under the unit map 1→ E vanishes.

Exercise 5.2. Let E be weakly orientable. Show that f0E, s0E are also weakly orientable.

Example 5.6. KGL is weakly orientable, since π−1,−1(KGL) = 0 by Exercise 3.7. It follows from Exercise
5.2 that kgl, HZ are also weakly orientable.

Example 5.7. Let E be weakly orientable. Then the canonical map

KMW
∗ (k) ' π0(1)∗ → π0(E)∗

annihilates η, and so we obtain
KM
∗ (k)→ π0(E)∗.

Remark 5.8. One may show that if E is weakly orientable, then the ring E∗∗(X) is graded commutative
(with the signs depending only on the �rst index).

De�nition 5.9. We shall write µp∞ ⊂ k to mean that char(k) 6= p and also k contains all pn-th roots of
unity, for all n.

Construction 5.10. Let µp∞ ⊂ k and E ∈ SH(k) a weakly orientable ring spectrum. Pick a sequence
(ζn)n ∈ k×, where ζn is a primitive pn-th root of unity and ζpn+1 = ζn. The elements [ζn] ∈ π0(E)1

from Example 5.6 induce via the Milnor exact sequence (Proposition 5.1) an element (possibly non-unique)
ζ ∈ π0(E′p) (notation from Proposition 5.4). By construction the image of ζ in π0(E)1 is p[ζ1] = [ζp1 ] = [1] = 0
(using Example 5.6 again for the �rst equality), and hence ζ lifts to an element (possibly non-unique)
τ ∈ π1(E∧p )1 = π0,−1(E∧p ) called a Bott element.

Exercise 5.3. Show that under the composite E∧p → E/p
∂−→ ΣE/p, where ∂ is the Bockstein map (i.e. the

composite of the boundary map E/p → ΣE and the reduction ΣE → ΣE/p), the Bott element τ is sent to
the image of [ζ1].
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5.3. K-theory computations.

Lemma 5.11. Suppose that µp∞ ⊂ k and τ ∈ π0,−1HZ∧p is a Bott element. Then

H∗∗(k,Zp) := π−∗,−∗HZ∧p ' KM
∗ (k)∧p [τ ].

Alternatively if char(k) = p we have H∗∗(k,Zp) ' KM
∗ (k)∧p .

Proof. Let us prove the second statement as a warm-up. We have HZ∧p = limnHZ/pn, and π∗∗HZ/pn '
KM
∗ (k)/pn by Theorem 4.19. By the Milnor exact sequence (Proposition 5.1), we need to prove that lim1 of

this sequence vanishes. But this is true since all the transition maps are surjective. For the �rst statement
we can argue similarly using the resolution of the Bloch�Kato conjecture; via Exercise 4.5 we are reduced to
proving that the image τn of τ in π0,−1(HZ/pn) generates this group, which we know is isomorphic to Z/pn.
Since Z/pn is a local ring, this just means that the image in Z/p is non-zero; i.e. we need to prove that τ1
is non-zero. But ∂τ1 6= 0 by Exercise 5.3, concluding the proof. �

Theorem 5.12. Let µp∞ ⊂ k or char(k) = p. Write τ ∈ π0,−1kgl∧p for a choice of Bott element and
β = γ − 1 ∈ π2,1kgl for the periodicity generator. Let R = Z if char(k) = p and R = Z[τ ] else. Then we
have

π∗∗kgl∧p ' KM
∗ (k)∧p [β]⊗R and π∗∗KGL∧p ' KM

∗ (k)∧p [β, β−1]⊗R.

Proof. We have

KGL = kgl[β−1] = colim(kgl
β−→ Σ−2,−1kgl

β−→ . . . ),

whence the statement for kgl implies the one for KGL. We have seen in Exercise 3.7 that πn(kgl)0 =
πn(KGL)0 = 0 for n < 0. One may use this to deduce [Bac17, �3] that πn(kgl)∗ = 0 if n < 0, and hence by
Proposition 5.4(2) we get

(5.1) πn(kgl∧p )∗ = 0 if n < 0.

Exercise 3.5 supplies us with a co�ber sequence Σ2,1kgl
β−→ kgl→ HZ, and hence by p-completing we get

(5.2) Σ2,1kgl∧p
β−→ kgl∧p → HZ∧p .

Now we determine π∗∗kgl∧p . This is a ring by Example 4.4. Example 5.6 leads to a ring map in from KM
∗ (k)∧p ,

and we also have elements β, τ (the latter if char(k) 6= p). Hence we obtain a ring morphism

α : S := KM
∗ (k)∧p [β]⊗R→ π∗∗kgl∧p ,

which we shall show is an isomorphism. Lemma 5.11 shows that the right hand map in (5.2) is surjective on
π∗∗, and hence we get a short exact sequence

0→ π∗−2,∗−1kgl∧p
β−→ π∗∗kgl∧p

r−→ KM
∗ (k)∧p ⊗R→ 0.

Proof that α is surjective: Let x1 ∈ π∗∗kgl∧p . If r(x1) 6= 0, then we �nd y ∈ S with rα(y) = r(x1).

Replacing x1 by x1−α(y), we may assume that r(x1) = 0. Then x1 = βx2, for some x2 ∈ π∗−2,∗−1kgl∧p , and
it su�ces to prove that x2 is in the image of α. Repeating this argument, we eventually get to xn = 0, by
(5.1). Hence α is surjective as descried.

Proof that α is injective: Let 0 6= y ∈ S. We can write y = βny′, where y′ is not divisible by β. Then
α(y) = 0 if and only if α(y′) = 0, because multiplication by β is injective on π∗∗kgl∧p (by our exact sequence).

The image of y′ in S/β = KM
∗ (k)∧p ⊗R is non-zero and coincides with rα(y′), whence also α(y′) 6= 0. Thus

α is injective. �

Corollary 5.13. Assumptions as in the theorem. We have

K∗(k,Zp) ' KM
∗ (k)∧p ⊗R′,

where R′ = Z if char(k) = p and otherwise R′ = Z[t] (with t = τβ and so |t| = 2).

Exercise 5.4. Show that K∗(C,Zp) ' π∗ku∧p , where ku is the topological spectrum known as connective

complex K-theory. Can you produce an equivalence K(C)∧p ' ku∧p?



18 TOM BACHMANN

5.4. Further results. We can rewrite Theorem 5.12 as

π∗∗KGL∧p ' π∗∗(HZ∧p )[β, β−1].

In this form the result holds for many more �elds (i.e. without assuming that µp∞ ⊂ k [Kah02]. It also
holds rationally:

π∗∗(KGL)⊗ Q ' π∗∗(HZ)[β, β−1]⊗ Q

for any �eld k (in fact any smooth scheme over a �eld) [Rio10, Theorem 5.3.10]. For many more results
about the K-theory of �elds, see [Wei13, �VI].
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