Algebraic Number Theory Exercises 9

Dr. Tom Bachmann
Winter Semester 2021/2

Exercise 1. (1) Let K be a field and $A \subset B \subset K$ subrings. Show that if both A and B are dvrs with K as field of fractions, then $A=B$.
(2) Let $\mathbb{Q} \subset K$ be a number field and $A \subset K$ a dvr with field of fractions K, maximal ideal M and residue field κ. Show that $\mathcal{O}_{K} \subset A$. Prove that $P:=M \cap \mathcal{O}_{K}$ is a non-zero prime ideal. [Hint: If $P=0$ then $\mathcal{O}_{K} \rightarrow \kappa$ would be injective.] Conclude that $A=\left(\mathcal{O}_{K}\right)_{P}$.

Exercise 2. Let $\mathbb{Q} \subset K$ be a number field and $A \subset K$ a subring which is a finitely generated abelian group and whose field of fractions is K.
(1) Show that $A \subset \mathcal{O}_{K}$ and A is a Dedekind domain if and only if $A=\mathcal{O}_{K}$.
(2) Show that A^{\times}is finitely generated.
(3) Show that \mathcal{O}_{K} / A is finite and that if $f=\left|\mathcal{O}_{K} / A\right|$ then there are only finitely many maximal ideals in A containing f. Moreover show that $Q \mapsto Q \cap A$ induces a bijection between the set of maximal ideals of \mathcal{O}_{K} not containing f and the set of maximal ideals of maximal ideals of A not containing f.
Exercise 3. (1) Show that \mathcal{O}_{K} is a PID, where $K=\mathbb{Q}(\sqrt{-11})$.
(2) Find all integral solutions to the equation $y^{3}=x^{2}+11$. [Hint: if (x, y) is a solution, write $x+\sqrt{-11}$ as a cube in \mathcal{O}_{K} and use an integral basis of \mathcal{O}_{K}.]

