Algebraic Number Theory Exercises 8

Dr. Tom Bachmann

Winter Semester 2021/2

Throughout let d be a squarefree integer and $K = \mathbb{Q}(\sqrt{d})$.

Exercise 1. (1) If $d \in \{-7, -3, -2, -1, 2, 3, 5\}$, show that

$$\left(\frac{4}{\pi}\right)^{r_2}\frac{2}{2^2}\sqrt{|d_K|} < 2.$$

(2) Conclude that \mathcal{O}_K is a PID in these cases.

Exercise 2. Let d = -5. Show that $C(\mathcal{O}_K) = \mathbb{Z}/2$. [*Hint:* use ex. 2 of sheet 3 and the structure of $\mathcal{O}_K/2$.]

Exercise 3. Let d < 0. Show that \mathcal{O}_K^{\times} is finite of order 2, except if d = -1 in which case the order is 4, or d = -3 in which case the order is 6.

Exercise 4. Let A be an integral domain which is of finite type as a \mathbb{Z} -module. Show that A^{\times} is a finitely generated abelian group.