Algebraic Number Theory Exercises 8

Dr. Tom Bachmann
Winter Semester 2021/2
Throughout let d be a squarefree integer and $K=\mathbb{Q}(\sqrt{d})$.
Exercise 1. (1) If $d \in\{-7,-3,-2,-1,2,3,5\}$, show that

$$
\left(\frac{4}{\pi}\right)^{r_{2}} \frac{2}{2^{2}} \sqrt{\left|d_{K}\right|}<2
$$

(2) Conclude that \mathcal{O}_{K} is a PID in these cases.

Exercise 2. Let $d=-5$. Show that $C\left(\mathcal{O}_{K}\right)=\mathbb{Z} / 2$.
[Hint: use ex. 2 of sheet 3 and the structure of $\mathcal{O}_{K} / 2$.]
Exercise 3. Let $d<0$. Show that \mathcal{O}_{K}^{\times}is finite of order 2, except if $d=-1$ in which case the order is 4 , or $d=-3$ in which case the order is 6 .
Exercise 4. Let A be an integral domain which is of finite type as a \mathbb{Z}-module. Show that A^{\times}is a finitely generated abelian group.

