Algebraic Number Theory

Exercises 7

Dr. Tom Bachmann

Winter Semester 2021/2

Exercise 1. Let A be a Dedekind domain and $S \subset A$ be a multiplicatively closed subset.

- (1) Let $I \in F(A)$. Denote its prime decomposition by $I = P_1^{e_1} \dots P_n^{e_n}$. Determine the prime decomposition of $S^{-1}I \in F(S^{-1}A)$.
- (2) Assuming that $\operatorname{Spec}(A) \setminus \operatorname{Spec}(S^{-1}A)$ has finite cardinality s, construct an exact sequence

 $0 \to A^{\times} \to (S^{-1}A)^{\times} \to \mathbb{Z}^s \to C(A) \to C(S^{-1}A) \to 0.$

(3) Suppose that C(A) is finitely generated. Show that there exists $f \in A \setminus 0$ such that $A[f^{-1}]$ is a PID.

Exercise 2. Let K be a number field.

- (1) Let $I \subset K$ be a non-zero fractional ideal. Show that $I \simeq \mathbb{Z}^n$ as abelian groups, where $n = [K : \mathbb{Q}]$.
- (2) Let $I \subset \mathcal{O}_K$ be an ideal. Show that \mathcal{O}_K/I is finite.

Exercise 3. Let K be a number field and $x \in \mathcal{O}_K \setminus 0$. Show that

$$|N_{\mathbb{O}}^{K}(x)| = |\mathcal{O}_{K}/(x)|.$$