Algebraic Number Theory Exercises 4

Dr. Tom Bachmann
Winter Semester 2021/2
Exercise 1. Let $K=\mathbb{Q}(i)$, where $i^{2}=-1$. Find all rational primes p such that the integral closure of $\mathbb{Z}_{(p)}$ in K is a dvr.
[Hint: use the decomposition of p in $\mathbb{Z}[i]$ established at the beginning of the lecture.]

Exercise 2. Let A be a noetherian domain and $f_{1}, \ldots, f_{n} \in A$ generating the unit ideal. Put $K=\operatorname{Frac}(A)$.
(1) Show that $A=\cap_{i} A_{f_{i}}$ as subsets of K.
(2) Show that A is Dedekind if and only if $A_{f_{i}}$ is Dedekind for every i.

Exercise 3. For $n>0$, denote by $z_{n} \in \mathbb{C}$ a primitive n-th root of unity. Let p be an odd prime and $L=\mathbb{Q}\left(z_{p}\right)$ the corresponding cyclotomic field. Recall that L / \mathbb{Q} is Galois with group $(\mathbb{Z} / p)^{\times}$.
(1) Deduce that L / \mathbb{Q} has a unique quadratic subextension K.
(2) Using the formula $d_{L}=(-1)^{\frac{p-1}{2}} p^{p-2}$, find K explicitly. [Hint: Compute d_{L} in terms of the embeddings of L into an algebraic closure of \mathbb{Q}.]
(3) Deduce that any quadratic extension of \mathbb{Q} embeds into a cyclotomic field. [Hint: Show that $\sqrt{2} \in \mathbb{Q}\left(z_{8}\right)$ and use that $\mathbb{Q}\left(z_{n}\right) \subset \mathbb{Q}\left(z_{m n}\right)$.]

