Algebraic Number Theory

Exercises 2

Dr. Tom Bachmann

Winter Semester 2021/2

Exercise 1. Let A be an integral domain, K = Frac(A), and L/K a finite Galois extension. Let B be the integral closure of A in L.

(1) Show that if $\sigma \in Gal(L/K)$ than $\sigma B \subset B$.

(2) Show that if A is integrally closed, then $B^{Gal(L/K)} = A$.

Exercise 2. Let $K = \mathbb{Q}(\alpha)$, where $\alpha^2 = -5$. Show that \mathcal{O}_K is not a PID. [*Hint*: $2 \times 3 = (1 + \alpha)(1 - \alpha)$]

Exercise 3. Let $A = \mathbb{Z}[X, Y]/(X^2 - Y^3)$.

- (1) Show that $A \to \mathbb{Z}[T], X \mapsto T^3, Y \mapsto T^2$ is a well-defined, injective ring homomorphism. (In particular A is an integral domain.) [Hint: you may wish to show that $Y^i X^{\epsilon}$ with $i \ge 0, \epsilon \in \{0, 1\}$ form a \mathbb{Z} -basis of A.]
- (2) Prove that $\mathbb{Z}[T]$ is the integral closure of A.

Exercise 4. Let $P(X) = X^3 - X^2 - 2X - 8 \in \mathbb{Z}[X], K = \mathbb{Q}(\alpha)$ where $P(\alpha) = 0$.

- (1) Show that P is irreducible.
- (2) Compute that $D_{\mathbb{Q}}^{K}(1, \alpha, \alpha^{2}) = -4 \times 503.$
- (3) Show that $\beta := \frac{\alpha + \alpha^2}{2}$ is integral over \mathbb{Z} . (4) Compute $D_{\mathbb{Q}}^K(1, \alpha, \beta)$ and deduce that $\{1, \alpha, \beta\}$ is a \mathbb{Z} -basis of \mathcal{O}_K .