Algebraic Number Theory Exercises 2

Dr. Tom Bachmann

Winter Semester 2021/2

Exercise 1. Let A be an integrally closed integral domain and $S \subset A$ be a multiplicatively closed subset. Show that $S^{-1}A$ is also integrally closed.

Exercise 2. Let A be an integral domain with field of fractions K, L/K a finite extension and $S \subset A$ be a multiplicatively closed subset. Show that

$$\overline{S^{-1}A}_L = S^{-1}(\overline{A}_L).$$

Exercise 3. Let $d \in \mathbb{Z}$ be squarefree and $K = \mathbb{Q}(\alpha)$, where $\alpha^2 = d$.

- (1) Describe the kernel and image of Tr^{O_K}_Z : O_K → Z.
 (2) If d < 0 show that N^{O_K}_Z : O[×]_K → {±1} is trivial. Show that N^{O_K}_Z is onto if d = 2, and trivial if d = 3.

Exercise 4. Let K as in Exercise 3. Compute the discriminant $d_K \in \mathbb{Z}$.