Algebraic Number Theory

Exercises 12

Exercise 1. Let $K=\mathbb{Q}(\sqrt{3}, \sqrt{-1})$.
(1) Show that K / \mathbb{Q} is Galois of degree 4.
(2) Give the structure of \mathcal{O}_{K}^{\times}.

Exercise 2. Let A be a Dedekind domain with field of fractions $K, L / K$ a finite separable extension of degree n and B the integral closure of A in L.
(1) Show that if B is a PID, then $C(A)$ is n-torsion.
(2) Suppose that that there exists another finite separable extension L^{\prime} / K of degree n^{\prime} and integral closure B^{\prime} of A in L^{\prime}, such that $\left(n, n^{\prime}\right)=1$ and B^{\prime} is also a PID. Show that then A is a PID.
Exercise 3. Let $L=\mathbb{Q}(\sqrt{5}, \sqrt{-1})$.
(1) Show that L / \mathbb{Q} is Galois of degree 4.
(2) Let A be a PID with field of fractions $K, L / K$ a finite separable extension of degree n, B the integral closure of A in L. Suppose that for some family $x_{1}, \ldots, x_{n} \in B$ the discriminant $D_{A}^{B}\left(x_{1}, \ldots, x_{n}\right) \in A$ is square-free. Show that $\left(x_{1}, \ldots, x_{n}\right)$ form an integral basis of B / A.
(3) Using (2) with $B=\mathcal{O}_{L}, A=\mathbb{Z}[\sqrt{-1}], x_{1}=1, x_{2}=(1+\sqrt{5}) / 2$, find a basis of \mathcal{O}_{L} over $\mathbb{Z}[\sqrt{-1}]$. Deduce that $\mathcal{O}_{L}=\mathbb{Z}\left[x_{2}, \sqrt{-1}\right]$.
(4) Let p be an odd prime such that -1 is not a square modulo p. For the decomposition of $p \mathcal{O}_{L}$ compute the corresponding e and f. Show that p does not ramify in L.

Exercise 4. Let K be a number field and I a non-zero ideal in \mathcal{O}_{K}.
(1) Show that there exists $m>0$ such that I^{m} is principal.
(2) Let $n>0$ such that I^{n} is principal. Show that there exists an extension L / K of degree $\leq n$ such that $I \mathcal{O}_{L}$ is principal.

