Algebraic Number Theory

Exercises 12

Dr. Tom Bachmann

Winter Semester 2021/2

Exercise 1. Let $K = \mathbb{Q}(\sqrt{3}, \sqrt{-1})$.

- (1) Show that K/\mathbb{Q} is Galois of degree 4.
- (2) Give the structure of \mathcal{O}_K^{\times} .

Exercise 2. Let A be a Dedekind domain with field of fractions K, L/K a finite separable extension of degree n and B the integral closure of A in L.

- (1) Show that if B is a PID, then C(A) is n-torsion.
- (2) Suppose that that there exists another finite separable extension L'/K of degree n' and integral closure B' of A in L', such that (n, n') = 1 and B' is also a PID. Show that then A is a PID.

Exercise 3. Let $L = \mathbb{Q}(\sqrt{5}, \sqrt{-1})$.

- (1) Show that L/\mathbb{Q} is Galois of degree 4.
- (2) Let A be a PID with field of fractions K, L/K a finite separable extension of degree n, B the integral closure of A in L. Suppose that for some family $x_1, \ldots, x_n \in B$ the discriminant $D_A^B(x_1, \ldots, x_n) \in A$ is square-free. Show that (x_1, \ldots, x_n) form an integral basis of B/A.
- (3) Using (2) with $B = \mathcal{O}_L$, $A = \mathbb{Z}[\sqrt{-1}]$, $x_1 = 1$, $x_2 = (1 + \sqrt{5})/2$, find a basis of \mathcal{O}_L over $\mathbb{Z}[\sqrt{-1}]$. Deduce that $\mathcal{O}_L = \mathbb{Z}[x_2, \sqrt{-1}]$.
- (4) Let p be an odd prime such that -1 is not a square modulo p. For the decomposition of $p\mathcal{O}_L$ compute the corresponding e and f. Show that p does not ramify in L.

Exercise 4. Let K be a number field and I a non-zero ideal in \mathcal{O}_K .

- (1) Show that there exists m > 0 such that I^m is principal.
- (2) Let n > 0 such that I^n is principal. Show that there exists an extension L/K of degree $\leq n$ such that $I\mathcal{O}_L$ is principal.