Algebraic Number Theory

Exercises 10

Dr. Tom Bachmann
Winter Semester 2021/2

Exercise 1. Let $K=\mathbb{Q}(\sqrt{d})$, where d is a square-free positive integer. Let $A=\mathcal{O}_{K}$.
(1) Show that

$$
H:=A^{\times} \cap(0, \infty) \subset A^{\times}
$$

is isomorphic to \mathbb{Z}. Deduce that there is only one generator of H which is greater than 1 . We call this generator the fundamental unit.
(2) Let $u=\inf \left\{v \in A^{\times} \mid v>1\right\}$. Show that u is the fundamental unit of K.
(3) For every positive integer n, let $u^{n}=a_{n}+b_{n} \sqrt{d}$, where $a_{n}, b_{n} \in \mathbb{Q}$. Show that the sequence b_{n} is increasing.
(4) Find the fundamental unit for $d=2,7$. [Hint: use (3) and the explicit description of A.]
(5) Suppose that $d \not \equiv 1(\bmod 4)$ and the fundamental unit u is known. Describe the solutions of the Pell-Fermat equations $x^{2}-d y^{2}= \pm 1$.
(6) Describe the positive integer solutions of the Pell-Fermat equations for $d=2,7$.

Exercise 2. Let $L=\mathbb{Q}\left(\zeta_{5}\right)$, where ζ_{5} is a primitive 5-th root of unity.
(1) Show that $\mu(L) \simeq \mathbb{Z} / 10$ and conclude that $\mathcal{O}_{L}^{\times} \simeq \mathbb{Z} / 10 \oplus \mathbb{Z}$.
(2) Let $u \in \mathcal{O}_{L}^{\times}$. Show that $\bar{u} / u \in \mu(L)$.
(3) Show that if $\bar{u} / u=\lambda^{2}$ then $\bar{\lambda}=\lambda^{-1}$ and $u^{\prime}=u \lambda \in \mathcal{O}_{L}^{\times}$satisfies $\overline{u^{\prime}}=u^{\prime}$.
(4) Show that if \bar{u} / u is not a square then u^{5} is pure imaginary.
(5) Show that \mathcal{O}_{L}^{\times}contains no pure imaginary elements, as follows. Set $\omega=$ $\zeta+\zeta^{-1}$. Compute the minimum polynomial of ω and show that ω is a unit. Show that we may write any $u \in \mathcal{O}_{K}$ as $a+b \zeta$, with $a, b \in \mathbb{Z}[\omega]$. If u is a pure imaginary unit then show that $(1-2 \zeta / \omega)$ is a (pure imaginary) unit. Show that this is false.
(6) Conclude that there exists $\alpha \in \mathcal{O}_{L}^{\times} \cap \mathbb{R}$ such that

$$
\mu(L) \times \mathbb{Z} \rightarrow \mathcal{O}_{L}^{\times},(\mu, n) \mapsto \mu \cdot \alpha^{n}
$$

is an isomorphism.

