Algebraic Number Theory
 Exercises Tutorium 9

Dr. Tom Bachmann
Winter Semester 2021-22
Let $x^{3}=2$ and $K=\mathbb{Q}(x)$. The aim of these exercises is to determine \mathcal{O}_{K}.
Exercise 1. Show that $X^{3}-2$ is irreducible in $\mathbb{Q}[X]$ and $[K: \mathbb{Q}]=3$.
Exercise 2. Let $z=a+b x+c x^{2} \in K$. Compute $\operatorname{tr}_{\mathbb{Q}}^{K}(z)$.
Exercise 3. Let $A=\mathcal{O}_{K}$ and $B \subset K$ the subring $\mathbb{Z}[x]$ generated by x. Show that $B \subset A$ and B is a free abelian group with basis $\left\{1, x, x^{2}\right\}$.
Exercise 4. Show that $x A$ is a prime ideal in A [hint: consider the decomposition of $2 A$ into prime ideals] and $x B$ a prime ideal in B. What is the residue field of $x A$? Show that $B / x B \simeq A / x A$. Conclude that $A=B+x A$ and $A=B+2 A$.
Exercise 5. Show that $3=(x-1)(x+1)^{3}$ and $x-1$ is a unit in B. Proceeding as in (5), with $1+x$ in place of $x, 3$ in place of 2 , show that $A=B+(x+1) A$ and $A=B+3 A$.

Exercise 6. Conclude that $A=B$.

