Algebraic Number Theory

 Exercises Tutorium 3

 Exercises Tutorium 3}

Dr. Tom Bachmann
Winter Semester 2021-22

Exercise 1. Prove Dedekind's Lemma: If $\chi_{1}, \ldots, \chi_{n}: G \rightarrow K^{\times}$are distinct homomorphisms from a group G to the multiplicative group of a field, and if $a_{1}, \ldots, a_{n} \in K$ such that $\sum_{i} a_{i} \chi_{i}: G \rightarrow K$ is the zero map, then $a_{i}=0$ for all i.

Exercise 2. Using Dedekind's Lemma, show that if E, F are extensions of a field K, and $[E: K]=n$, then there are at most $n k$-algebra homomorphisms from E to F.

Exercise 3. Let A be a ring and $a_{1}, \ldots, a_{n} \in A$. Consider the $n \times n$ Vandermonde matrix M with entries $M_{i j}=a_{i}^{j-1}$.
(1) Show that if $a_{i}=a_{j}$ for some $i \neq j$, then $|M|=0$.
(2) Suppose that $A=\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and $a_{i}=X_{i}$. Show that $\left(X_{j}-X_{i}\right)$ divides $|M|$ for $i \neq j$. Deduce that

$$
|M|=\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right) .
$$

(3) Deduce that for $\left(A, a_{1}, \ldots, a_{n}\right)$ general we have

$$
|M|=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)
$$

Exercise 4. Show that given $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in A$ with the a_{i} distinct, there exists a unique monic polynomial $P(X) \in A[X]$ of degree n such that $P\left(a_{i}\right)=b_{i}$.

