Algebraic Number Theory
 Exercises Tutorium 2

Dr. Tom Bachmann
Winter Semester 2021-22
For a positive integer n, define the n-th cyclotomic polynomial as

$$
\Phi_{n}(X)=\prod_{\zeta \in W_{n}}(X-\zeta)
$$

Here $W_{n} \subset \mathbb{C}$ denotes the set of primitive n-th roots of unity.
Exercise 1. Show that $\Phi_{n}(X) \in \mathbb{Z}[X]$.
Exercise 2. Show that

$$
X^{n}-1=\prod_{d \mid n} \Phi_{d}(X) \in \mathbb{Z}[X] .
$$

Exercise 3. Show that
(1) If $n=p$ is prime, then

$$
\Phi_{p}(X)=1+X+\cdots+X^{p-1} .
$$

(2) If $n=2 m, m>1$ odd, then

$$
\Phi_{n}(X)=\Phi_{m}(-X) .
$$

(3) For $n>2, \Phi_{n}(X)$ is palindromic (its list of coefficients reads the same forward and backwards).

Exercise 4. Let k be any field and $x \in k$ a primitive n-th root of unity. Show that $\Phi_{n}(x)=0 \in k$.

Extra: What about the converse?
Exercise 5. Show that $\Phi_{5}(X)$ is irreducible over \mathbb{F}_{2}.
Hint: What would the existence of a quadratic factor tell you about roots of unity in \mathbb{F}_{4} ?

