Algebraic Number Theory Exercises Tutorium 12

Dr. Tom Bachmann

Winter Semester 2021–22

Let A be a Dedekind domain with field of fractions K, L/K a finite separable extension, B the integral closure of A in L.

Exercise 1. Let

$$B^{\vee} := \{ x \in L \mid tr_K^L(xy) \in A \text{ for all } y \in \mathcal{B} \}.$$

- (1) Suppose that B admits an integral A-basis x_1, \ldots, x_n . Show that B^{\vee} admits an A-basis y_1, \ldots, y_n characterized by $tr(x_i y_j) = \delta_{ij}$.
- (2) Show that B^{\vee} is a non-zero fractional ideal. (3) Let $Diff_A^B = (B^{\vee})^{-1}$. Show that $Diff_A^B$ is an integral ideal.

From now on let L/K be Galois.

Exercise 2. Show that $D_A^B(B^{\vee}) \cdot D_A^B = 1$ and $N_K^L(Diff_A^B) = D_A^B$. [*Hint:* reduce to the case where *B* admits an integral *A*-basis and is a PID.]

Exercise 3. Show that a prime P of B is ramified if and only if $Diff_A^B \subset P$.

Exercise 4. Show that $\mathcal{O}_{K(\sqrt[3]{2})}$ is a PID.