Algebraic Number Theory Exercises Tutorium 10

Dr. Tom Bachmann

Winter Semester 2021–22

Exercise 1. Let $d \neq 1(4)$ be squarefree. Using the "efg = n formula", classify primes which ramify in $\mathbb{Q}(\sqrt{d})$.

Exercise 2. Let

$$\Phi_{p^r}(X) = \frac{X^{p^r} - 1}{X^{p^{r-1}} - 1} \in \mathbb{Z}[X].$$

We shall give another proof that Φ_{p^r} is irreducible, as follows.

(1) Let $K = \mathbb{Q}(\zeta_{p^r})$, where ζ_{p^r} is a primitive p^r -th root of unity. Show that

$$[K:\mathbb{Q}] \le \deg \Phi_{p^r} =: e,$$

with equality if and only if Φ_{p^r} is irreducible.

(2) Let z_1, \ldots, z_e be the roots of Φ_{p^r} . Show that

$$\prod_i (z_i - 1) = \pm p$$

- (3) Show that $(z_j 1)\mathcal{O}_K$ is independent of j.
- (4) Deduce that $p\mathcal{O}_k = P^e$, for some ideal P. Conclude.