Algebraic Number Theory
 Exercises Tutorium 10

Exercise 1. Let $d \not \equiv 1(4)$ be squarefree. Using the "ef $g=n$ formula", classify primes which ramify in $\mathbb{Q}(\sqrt{d})$.

Exercise 2. Let

$$
\Phi_{p^{r}}(X)=\frac{X^{p^{r}}-1}{X^{p^{r-1}}-1} \in \mathbb{Z}[X] .
$$

We shall give another proof that $\Phi_{p^{r}}$ is irreducible, as follows.
(1) Let $K=\mathbb{Q}\left(\zeta_{p^{r}}\right)$, where $\zeta_{p^{r}}$ is a primitive p^{r}-th root of unity. Show that

$$
[K: \mathbb{Q}] \leq \operatorname{deg} \Phi_{p^{r}}=: e,
$$

with equality if and only if $\Phi_{p^{r}}$ is irreducible.
(2) Let z_{1}, \ldots, z_{e} be the roots of $\Phi_{p^{r}}$. Show that

$$
\prod_{i}\left(z_{i}-1\right)= \pm p
$$

(3) Show that $\left(z_{j}-1\right) \mathcal{O}_{K}$ is independent of j.
(4) Deduce that $p \mathcal{O}_{k}=P^{e}$, for some ideal P. Conclude.

