Algebraic Number Theory

 Exercises Tutorium 1

 Exercises Tutorium 1}

Dr. Tom Bachmann
Winter Semester 2021-22

Exercise 1. Determine the quadratic residues and non-residues modulo 3, 5, 7, 11.

Exercise 2. Prove that there are an equal number of quadratic residues and non-residues modulo any (odd) prime. Deduce that the Legendre symbol $\left(\frac{d}{p}\right)$ is a multiplicative function of d.
Exercise 3. Prove that the finite abelian group \mathbb{F}_{p}^{\times}is cyclic. Deduce that:
(1) The Legendre symbol is multiplicative.
(2) $\left(\frac{d}{p}\right) \equiv d^{(p-1) / 2}(\bmod p)$.
(3) $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$.

The quadratic reciprocity law states that for odd primes p, q one has

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4},
$$

and one also knows that

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

Exercise 4. Determine $\left(\frac{23}{59}\right),\left(\frac{10}{1009}\right),\left(\frac{261}{2017}\right)$ and $\left(\frac{-77}{9967}\right)$. [You may use that the "denominators" are all prime.]
Exercise 5. Let $p>3$. Prove that -3 is a square $\bmod p$ if and only if $p \equiv 1(6)$.

