Algebraic Geometry 1 **Exercises** 9

Dr. Tom Bachmann

Winter Semester 2020–21

Exercise 1. Let $f: X \to Y$ be a dominant morphism of finite type with X, Yintegral and $K(X) \simeq K(Y)$ (via f). Show that there exists an open subset U of X such that $f(U) \subset Y$ is open and $f: U \to f(U)$ is an isomorphism.

Exercise 2. Let X be a scheme. Show that X is noetherian if and only if X is quasi-compact and for every affine open subscheme Spec $A \subset X$, A is noetherian.

Exercise 3. Let X be a scheme. Given $x \in X$, let $\Omega_x X := m_x/m_x^2$, where $m_x \subset \mathcal{O}_{X,x}$ is the corresponding maximal ideal. Show that $\Omega_x X$ is a $\kappa(x)$ -vector space. Let T_x denote its $\kappa(x)$ -linear dual space.

Now suppose that X is a scheme over a field k. Exhibit a bijection

$$\operatorname{Hom}_{k\text{-}Sch}(\operatorname{Spec} k[\epsilon]/\epsilon^2, X) \simeq \prod_{x \in X(k)} T_x X.$$

(Here X(k) denotes the set of points $x \in X$ with $\kappa(x) = k$.)

Exercise 4. Let $\mathbb{P}^1_{\mathbb{Z}}$, $\overline{\mathbb{A}}^1_{\mathbb{Z}}$ denote respectively the projective line and the affine line with the origin doubled, over \mathbb{Z} .

- (1) Show that $\mathcal{O}_{\mathbb{P}^1_{\mathbb{Z}}}(\mathbb{P}^1_{\mathbb{Z}}) = \mathbb{Z}$.
- (2) Show that P¹_Z is not isomorphic to Ā¹_Z.
 (3) Show that neither of P¹_Z, Ā¹_Z is affine.