Algebraic Geometry 1 Exercises Tutorium 8

Dr. Tom Bachmann

Winter Semester 2020–21

Exercise 1. Let A be a commutative ring and $f \in A$. Show that the locally ringed space $\operatorname{Spec} A \setminus V(f)$ is isomorphic to the locally ringed space $\operatorname{Spec} A_f$.

Exercise 2. Call a scheme X reduced if for every $U \subset X$ open, $\mathcal{O}_X(U)$ is reduced (i.e. has no nilpotent elements). Show that the following are equivalent: (1) X is reduced, (2) there exists an affine open cover $X = U_1 \cup \ldots$ such that $\mathcal{O}_X(U_i)$ is reduced for every i, (3) for every $x \in X$, the local ring $\mathcal{O}_{X,x}$ is reduced.

Exercise 3. For a scheme X, denote by $\mathcal{O}_{X_{red}}$ the sheaf on X given by $U \mapsto \mathcal{O}_X(U)_{red}$, the maximal reduced quotient of $\mathcal{O}_X(U)$. Show that $X_{red} := (X, \mathcal{O}_{X_{red}})$ is a scheme and $X_{red} \to X$ is a morphism of schemes.

Show that X_{red} satisfies the following universal property: given a morphism of schemes $f: Y \to X$ with Y reduced, there exists a unique morphism $g: Y \to X_{red}$ such that $Y \xrightarrow{g} X_{red} \to X$ is f.

Exercise 4. For a locally ringed space X, make sense of the sheaf \mathcal{F} of functions f on X with values $f(x) \in \kappa(x)$, and construct a homomorphism $\alpha : \mathcal{O}_X \to \mathcal{F}$. If X is a reduced scheme, show that α is injective. [*Hint*: You may wish to recall that the intersection of all prime ideals in a commutative ring equals the nilradical.]

Exercise 5. Let X be a reduced scheme. Given $Z \subset X$ closed, denote by $I_Z \subset \mathcal{O}_X$ the subsheaf consisting of those regular functions vanishing along Z. Show that this induces an injection from the set of closed subsets of X to the set of subsheaves of \mathcal{O}_X . Can you characterize its image?