Schedule

18.4. (Stefan Schreieder) **Classical Motives**[9], see also [6]. Survey of the basic definitions and properties [9, section 1].

25.4. (Christian Liedtke) **Applications of Classical Motives** [9]. Applications of Classical Motives: Manin’s Identity Principle, computation of the motive of a projective bundle [9, section 2]. Also, motives of curves, abelian varieties and surfaces [9, section 3], see also [8].

2.5. (Kai Behrens) **Numerical equivalence and semi-simplicity** [5].

9.5. (Christian Liedtke) **The category of finite correspondences and presheaves with transfers** Explain the category of finite correspondences and define presheaves with transfers [7, Lecture 1, 2] up to and including Definition 2.14; omit the appendix 1A.

16.5 (Claudia Stadlmayr) **Motivic cohomology** [7]. Define the motivic complex $Z(q)$ and explain first properties [7, Lecture 3]. Sketch a proof of the quasi-isomorphism $Z(1) \sim \mathcal{O}^\times[-1]$ from [7, Lecture 4].

23.5. (Oliver Gregory) **Relation with Milnor K-theory** [7]. Cover [7, Lecture 5].

13.6. (Stefan Schreieder) **Higher Chow groups** [1]. Definition and basic properties of higher Chow groups.

20.6 (Andreas Rosenschon) **Cycle maps and étale motivic cohomology**[2], [3], [4]. Construction of cycle maps and comparison results.

to be continued ...

Literatur

