Stochastik Übungsblatt 3

Prof. Dr. Holger Kösters WS 2014/15

Tutoraufgaben

Aufgabe T1

Das Bertrandsche Paradoxon. In einem Kreis mit Radius 1 werde "rein zufällig" eine Sehne gezogen. Mit welcher Wahrscheinlichkeit ist diese länger als die Seiten des einbeschriebenen gleichseitigen Dreiecks? Betrachten Sie dazu die Fälle

- (i) der Sehnenmittelpunkt ist auf der Einheitskreisscheibe gleichverteilt;
- (ii) der Winkel, unter dem die Sehne vom Kreismittelpunkt erscheint, ist auf $[0,\pi]$ gleichverteilt;
- (iii) der Abstand der Sehne vom Kreismittelpunkt ist auf [0, 1] gleichverteilt. Präzisieren Sie das jeweils zu Grunde liegende Wahrscheinlichkeitsmodell.

Hausaufgaben

Aufgabe H1

Sei $\mathbb{P} = \mathcal{U}([0,1])$ die Gleichverteilung auf [0,1]. Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:

- (i) $\{1/\pi\}$
- (ii) Die siebte Nachkommastelle in der Dezimaldarstellung ist gerade.
- (iii) Alle Nachkommastellen in der Dezimaldarstellung sind gerade.
- (iv) $\mathbb{Q} \cap [0,1]$

Hinweis: Da die Dezimaldarstellung nicht eindeutig ist, legen Sie sich bitte vorab auf eine eindeutige Variante fest. Führen die unterschiedlichen Varianten zu verschiedenen Wahrscheinlichkeiten?

Aufgabe H2

(i) Bestimmen Sie das stetige Wahrscheinlichkeitsmaß, welches die Dichte

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} e^{-2x^2 + 2x - \frac{1}{2}}$$

besitzt.

(ii) Sei die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x - \frac{1}{2}$$

gegeben. Bestimmen Sie alle kompakten Intervalle von \mathbb{R} , so dass die Einschränkung von f auf eines dieser Intervalle eine Dichte ist.

(iii) Bestimmen Sie a > 0, so dass die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \frac{a+1}{8}(2-x)^a \mathbb{1}_{[0,2]}(x)$$

die Dichte eines Wahrscheinlichkeitsmaßes ist.

Aufgabe H3

Sei (x, y) ein rein zufällig bestimmter Punkt der Einheitskreisscheibe $B := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

(i) Geben Sie einen geeigneten Wahrscheinlichkeitsraum an, der dieses Zufallsexperiment beschreibt.

- (ii) Wie groß ist die Wahrscheinlichkeit, dass x + y eine ganze Zahl ist?
- (iii) Wie groß ist die Wahrscheinlichkeit, dass sowohl $\min\{x,y\} \ge 0$ als auch $\max\{x,y\} \le \frac{1}{2}$ gilt?
- (iv) Wie groß ist die Wahrscheinlichkeit, dass $|x+y| \leq \frac{1}{2}$ gilt?

Aufgabe H4

Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $A_n \in \mathcal{F}, n \in \mathbb{N}$, Ereignisse. Sei ferner A die Menge aller Ergebnisse, die in unendlich vielen der Ereignisse $A_n, n \in \mathbb{N}$, liegen.

- (i) Zeigen Sie: $A \in \mathcal{F}$, d.h. A ist wieder ein Ereignis.
- (ii) Zeigen Sie: $\limsup_{n\to\infty}\mathbb{P}[A_n]\leq\mathbb{P}[A]$
- (iii) Geben Sie einen konkreten Wahrscheinlichkeitsraum und konkrete Ereignisse A_n , $n \in \mathbb{N}$, an, so dass die Ungleichung in (ii) strikt ist.