Simon Reisser

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS 2017

Aufgabe 1

Angenommen K ist abgeschlossen. Damit ist K^c nach Definition der Abgeschlossenheit offen. Sei nun eine offene Überdeckung $(U_i)_{i\in I}$ von K gegeben. Dann ist $\bigcup_{i\in I} U_i \cup K^c$ eine offene

Überdeckung von X. Da X kompakt ist gibt es eine endliche Teilüberdeckung, $I' \subset I$, mit $\bigcup_{i \in I'} U_i \cup K^c = X$. Da $K \cap K^c = \emptyset$ ist $(U_i)_{i \in I'}$ schon eine endliche Teilüberdeckung von $(U_i)_{i \in I}$.

Sei nun K kompakt gegeben. Sei $x \in X \setminus K$, wir zeigen, dass x ein innerer Punkt von K^c ist. Sei $y \in K$ und offene Umgebungen U_y um y, V_y von x mit $U_y \cap V_y = \emptyset$ gegeben. Dann ist $\bigcup_{y \in K} U_y$

eine offene Überdeckung von K. Es gibt somit eine endliche Teilüberdeckung $K\subseteq\bigcap_{y\in I}U_y$ mit

$$I \subset K$$
, da K kompakt ist. Des weiteren ist $\left(\bigcup_{y \in I} U_y\right) \cap \left(\bigcap_{y \in I} V_y\right) = \emptyset$, also $K \cap \left(\bigcap_{y \in I} V_y\right) = \emptyset$.

Da die rechte Seite ein endlicher Schnitt offener Mengen ist, ist diese wieder offen. Somit ist $\bigcap_{y \in I} V_y$ eine offene Umgebung von x in K^c . Damit ist K^c offen und somit K abgeschlossen.

Aufgabe 2

Das Ziel dieser Aufgabe ist die Dichtheit von A in $(C(X,\mathbb{C}),\|\cdot\|_{\infty})$ zu zeigen. D.h., dass es für jede stetige Funktion $f:X\to\mathbb{C}$ eine Folge $(f_n)_{n\in\mathbb{N}}$ in A gibt, sodass $(f_n)_{n\in\mathbb{N}}$ gleichmäßig nach f konvergiert. Weil wir auf bekanntes in $C(X,\mathbb{R})$ zurückschließen wollen, ist es zweckmäßig, Re(f) und Im(f) durch reellwertige Funktionen zu approximieren. D.h. haben wir $(g_n)_{n\in\mathbb{N}}, (h_n)_{n\in\mathbb{N}}$ in A gefunden mit $Im(g_n)=Re(h_n)=0$ $\forall n$ und $g_n\overset{\text{gleichmäßig}}{\to}$ $Re(f), h_n\overset{\text{gleichmäßig}}{\to} Im(f)$ sind wir fertig. Auf den ersten Blick sieht es so aus als würden die Axiome (a)-(f) der komplexen Version des Satzes die Axoime 1.-5. der reellen Version implizieren. (Damit wäre nichts zu zeigen.) Aber Vorsicht:

Aus (f) folgt zunächst nicht 5.! (f) garantiert eine Funktion $g \in A$ mit $g(x) \neq g(y), x \neq y$, aber dieses g muss nicht reel sein , also Im(g) = 0 muss nicht sein. Hier greift der Hinweis:

Für $g + \overline{g} \stackrel{(e)}{\in} A$ greift $Im(g + \overline{g}) = 0$. Damit ist tatsächlich 5. erfüllt, (a) - (f) implizieren den gesamten reellen Teil, wir können also Re(f) und Im(f) durch $(g_n)_{n \in \mathbb{N}}$ und $(h_n)_{n \in \mathbb{N}}$ approximieren und dadurch f durch $(g_n + ih_n)_{n \in \mathbb{N}}$.

Aufgabe 3

Wir berechnen den k-ten Fourierkoeffizienten von f_n bzw g_n nach der Formel

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} \overline{f(e^{ix})} g(e^{ix}) dx$$

durch $\langle e_k, f_n \rangle$ bzw. $\langle e_k, g_n \rangle$ für $e_k = z^k$. (vgl. Definition 1.191 im Skript)

Beginnen wir mit $f_n = Re(z)^n$:

$$\langle e_k, f_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{e_k(e^{ix})} Re(e^{ix})^n \, dx = \frac{1}{2\pi} \int_0^{2\pi} e^{-ikx} \left(\frac{e^{ix} + e^{-ix}}{2} \right)^n \, dx$$
binomische Fromel
$$\frac{1}{2\pi} \int_0^{2\pi} e^{-ikx} \frac{1}{2^n} \sum_{l=0}^n \binom{n}{l} e^{ix(n-l)} e^{-ixl} \, dx$$

$$= \frac{1}{2\pi 2^n} \sum_{l=0}^n \binom{n}{l} \int_0^{2\pi} e^{ix(n-2l-k)} \, dx$$

 $\int_{0}^{2\pi} e^{ix(n-2l-k)} dx \text{ ist genau dann nicht } 0 \text{ wenn } n-2l-k=0. \text{ Dass ist der Fall wenn } n-k \text{ gerade ist und } l=\frac{n-k}{2}. \text{ Somit haben wir, falls } n-k \text{ nicht grade sind: } \langle f,g\rangle=0. \text{ Seien nun } n,k \text{ so, dass } n-k \text{ gerade ist. Dann ist } \int_{0}^{2\pi} e^{ix(n-2l-k)} dx=2\pi \text{ und damit gilt nach obiger Rechnung } \langle e_k,f_n\rangle=\frac{1}{2^n} \binom{n}{\frac{n-k}{2}}=\frac{1}{2^n} \binom{n}{\frac{n+k}{2}}.$

Für g_n rechnen wir analog:

$$\langle e_k, g_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{e_k(e^{ix})} Im(e^{ix})^n \, dx = \frac{1}{2\pi} \int_0^{2\pi} e^{-ikx} \left(\frac{e^{ix} - e^{-ix}}{2i} \right)^n \, dx$$

$$\stackrel{binomischeFromel}{=} \frac{1}{2\pi} \int_0^{2\pi} e^{-ikx} \frac{1}{(2i)^n} \sum_{l=0}^n \binom{n}{l} e^{ixl} e^{-ix(n-l)} (-1)^l \, dx$$

$$= \frac{1}{2\pi (2i)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \int_0^{2\pi} e^{ix(2l-n-k)} \, dx$$

wir machen die gleiche Fallunterscheidung wie oben und erhalten wieder für n+k ungerade $\langle e_k,g_n\rangle=0$, sowie für n+k gerade $\langle e_k,g_n\rangle=\frac{(-1)^{(n+k/2)}}{(2i)^n}\binom{n}{\frac{k+k}{2}}.$

Aufgabe 4

Zuerst zeigen wir die Eigenschaften von $\iota\colon$

Linear: Seien $f, g \in C(S^1, \mathbb{C}), \lambda \in S^1$. Dann ist $\iota(\lambda f + g)(x) = (\lambda f + g)(e^{ix}) = \lambda \cdot f(e^{ix}) + g(e^{ix}) = \lambda \cdot \iota(f)(x) + \iota(g)(x)$. Somit ist ι linear.

Isometrie: Seien $f, g \in C(S^1, \mathbb{C})$. Dann ist $\|\iota(f) - \iota(g)\|_{\infty} = \sup_{x \in [0, 2\pi]} |f(e^{ix}) - g(e^{ix})| = \sup_{|y|=1} |f(y) - g(y)| = \sup_{y \in S^1} |f(y) - g(y)| = \|f - g\|_{\infty}$.

Injektiv: Wir zeigen Injektivität, indem wir $\iota^{-1}[0:\mathbb{R}\to\mathbb{C}]$, also den Kern von ι , bestimmen. Da $e^{i\cdot}:\mathbb{R}\to S^1$ surjektiv ist, ist $\iota(f)=0$ genau dann wenn f=0. Somit ist der Kern von ι nur die 0 und damit ist ι injektiv.

Surjektiv: Da $e^{i\cdot}$: $[0,2\pi[\to S^1$ ein Homöomorphismus ist, also bijektiv, stetig mit stetiger Umkehrabbildung gibt es eine stetige Funktion $g:S^1\to [0,2\pi[$ mit $g\circ e^{i\cdot}=id.$ Somit ist $g\circ f\in C(S^1,\mathbb{C})$ und $\iota(f\circ g)=f(g(e^{i\cdot}))=f.$ Damit ist ι surjektiv, da 2π periodische Funktionen bereits durch das Intervall $[0,2\pi[$ eindeutig definiert sind.

Um zu zeigen, dass der von den Funktionen $x \to e^{ikx}, k \in \mathbb{Z}$ aufgespannte \mathbb{C} -Vektorraum dicht in $C_{per}(\mathbb{R},\mathbb{C})$ ist, reicht es wegen den soeben gezeigten Eigenschaften von ι , Dichtheit des, von den Funktionen $z \to z^k, k \in \mathbb{Z}$ erzeugten, Vektorraums in $C(S^1,\mathbb{C})$ zu zeigen. Dies folgt sofort aus Korollar 1.185.