Lösung zur Übung für Analysis einer Variablen WS 2016/17

Aufgabe 1

Zuerst nummerieren wir die Zeilen der Definitionen damit wir uns später einfacher darauf beziehen können:

$$1 := N(0), 2 := N(1), 3 := N(2), 4 := N(3)$$
(1)

$$n + 0 := n \tag{2}$$

$$n + N(m) := N(n+m) \tag{3}$$

$$n \cdot 0 := 0 \tag{4}$$

$$n \cdot N(m) := n \cdot m + n \tag{5}$$

Nun führen wir die Beweise, wobei jeweils über dem Gleicheitszeichen steht, welchen Teil der Definition wir verwenden:

Teilaufgabe a):

$$1 + 1 \stackrel{(1)}{=} 1 + N(0) \stackrel{(3)}{=} N(1 + 0) \stackrel{(2)}{=} N(1) \stackrel{(1)}{=} 2 \tag{6}$$

Teilaufgabe b):

$$2 + 2 \stackrel{\text{(1)}}{=} 2 + N(N(0)) \stackrel{\text{(3)}}{=} N(2 + N(0)) \stackrel{\text{(3)}}{=} N(N(2)) \stackrel{\text{(1)}}{=} N(3) \stackrel{\text{(1)}}{=} 4 \tag{7}$$

Teilaufgabe c):

$$2 \cdot 2 \stackrel{\text{(1)}}{=} 2 \cdot N(N(0)) \stackrel{\text{(5)}}{=} 2 \cdot N(0) + 2 \stackrel{\text{(5)}}{=} 2 \cdot 0 + 2 + 2 \stackrel{\text{(2)}}{=} 2 + 2 \stackrel{\text{a}}{=} 4 \tag{8}$$

Aufgabe 2

Zu Beginn stellen wir fest, dass sich die Aufgabe reduzieren lässt auf die Aussage, dass die logische Formel

$$(A \Rightarrow B) \land (\neg A \Rightarrow \neg B) \tag{9}$$

äquivalent ist zu der logischen Formel:

$$A \Leftrightarrow B.$$
 (10)

Wenn diese Äquivalenz allgemein gezeigt ist, kann man dann Aussagen für A und B einsetzen um die verlange Aussage zu erhalten.

A	B	$A \Rightarrow B$	$\neg A$	$\neg B$	$\neg A \Rightarrow \neg B$	$(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$	$A \Leftrightarrow B$
W	W	W	f	f	W	W	W
W	f	f	f	W	W	f	f
f	W	W	W	f	f	f	f
f	f	W	W	W	W	W	W

Wir sehen, dass die letzten beiden Spalten in allen Zeilen übereinstimmen. Ersetzen wir A nun mit $A_1 \wedge A_2$ und B mit $A_3 \wedge A_4$, so ergibt sich die gewünschte Äquivalenz zwischen

$$(A_1 \wedge A_2 \Rightarrow A_3 \wedge A_4) \wedge (\neg (A_1 \wedge A_2) \Rightarrow \neg (A_3 \wedge A_4)) \tag{11}$$

und

$$A_1 \wedge A_2 \Leftrightarrow A_3 \wedge A_4. \tag{12}$$

Aufgabe 3

Teilaufgabe a) Wir beweisen die Äquivalenz mit einer Wahrheitstabelle.

A	B	$A \Rightarrow B$	$ \neg (A \Rightarrow B) $	$\neg B$	$A \land \neg B$
w	W	W	f	f	f
W	f	f	W	W	W
f	W	W	f	f	f
f	f	W	f	W	f

Die drittletzte und die letzte Spalte stimmen überein, daher sind $\neg(A \Rightarrow B)$ und $A \land \neg B$ äquivalent.

Teilaufgabe b) Wir formen schrittweise um:

$$\neg \left[\forall \varepsilon > 0 \exists \delta > 0 \forall x \in \mathbb{R} \forall y \in \mathbb{R} : (|x - y| < \delta \Rightarrow |x^2 - y^2| < \varepsilon) \right] \Leftrightarrow \\
\exists \varepsilon > 0 \neg \left[\exists \delta > 0 \forall x \in \mathbb{R} \forall y \in \mathbb{R} : (|x - y| < \delta \Rightarrow |x^2 - y^2| < \varepsilon) \right] \Leftrightarrow \\
\exists \varepsilon > 0 \forall \delta > 0 \exists x \in \mathbb{R} \neg \left[\forall y \in \mathbb{R} : (|x - y| < \delta \Rightarrow |x^2 - y^2| < \varepsilon) \right] \Leftrightarrow \\
\exists \varepsilon > 0 \forall \delta > 0 \exists x \in \mathbb{R} \exists y \in \mathbb{R} : \neg \left[(|x - y| < \delta \Rightarrow |x^2 - y^2| < \varepsilon) \right] \Leftrightarrow \\
\exists \varepsilon > 0 \forall \delta > 0 \exists x \in \mathbb{R} \exists y \in \mathbb{R} : \neg \left[(|x - y| < \delta \Rightarrow |x^2 - y^2| < \varepsilon) \right] \Leftrightarrow \\
\exists \varepsilon > 0 \forall \delta > 0 \exists x \in \mathbb{R} \exists y \in \mathbb{R} : (|x - y| < \delta \land |x^2 - y^2| > \varepsilon) \quad (13)$$

Die letzte Umformung ist mit Hilfe von Teilaufgabe a) geschehen.

Teilaufgabe c) Zu dieser Aufgabe ist keine Lösung abzugeben.

Teilaufgabe d) Wir haben im Beweis schon Positionen mit Δ markiert, um in der nächsten Teilaufgabe darauf Bezug nehmen zu können.

Sei $\varepsilon = 1$. (Δ_1) Sei $\delta > 0$ (sonst beliebig) gegeben. (Δ_2) Wir setzten $x = \frac{\delta}{4} + \frac{2}{\delta}$ (Δ_3) und $y = \frac{2}{\delta} - \frac{\delta}{4}$. (Δ_4)

Dann gilt:

$$|x - y| = \left| \frac{\delta}{4} + \frac{2}{\delta} + \frac{\delta}{4} - \frac{2}{\delta} \right| = \frac{\delta}{2} < \delta \tag{14}$$

und außerdem:

$$|x^2 - y^2| = |(x - y)(x + y)| = \left| \frac{\delta}{2} \left(\frac{\delta}{4} + \frac{2}{\delta} - \frac{\delta}{4} + \frac{2}{\delta} \right) \right| = \frac{\delta}{2} \left| \frac{4}{\delta} \right| = 2 \ge 1 = \varepsilon$$
 (15)

$$(\Delta_5)$$

 $^{^1}$ Man findet diese Werte für x,ybeispielsweise, indem man erkennt, dass $|x^2-y^2|=|(x-y)|(x+y)$ ist. Da der erste Faktor auf einen Wert kleiner als δ festgelegt ist (also z.B. $\delta/2$), muss der zweite Faktor ein Vielfaches vom Kehrwert davon sein, damit das Produkt insgesamt einen großen Wert annehmen kann, also z.B. $\frac{4}{\delta}$. Wir haben dann also $x-y=\delta/2, \quad x+y=\frac{4}{\delta}$ und müssen diese Gleichungen nur noch nach x und y auflösen.

Teilaufgabe e) Wir führen in einer Tabelle an, was noch zu zeigen, bzw. was durch den bisherigen Beweis bis zum Punkt Δ_i schon gegeben ist.

	noch zu zeigen	durch bisherigen Beweis gegeben
Δ_1	$\forall \delta > 0 \exists x \in \mathbb{R} \exists y \in \mathbb{R} : (x - y < \delta \land x^2 - y^2 \ge \varepsilon)$	$\varepsilon = 1$
Δ_2	$\exists x \in \mathbb{R} \exists y \in \mathbb{R} : (x - y < \delta \land x^2 - y^2 \ge \varepsilon)$	$\delta > 0, \varepsilon = 1$
Δ_3	$\exists y \in \mathbb{R} : (x - y < \delta \land x^2 - y^2 \ge \varepsilon)$	$\delta > 0, \varepsilon = 1, x = \frac{\delta}{4} + \frac{2}{\delta}$
Δ_4	$(x - y < \delta \land x^2 - y^2 \ge \varepsilon)$	$\delta > 0, \varepsilon = 1, x = \frac{\delta}{4} + \frac{2}{\delta}, y = -\frac{\delta}{4} + \frac{2}{\delta}$
Δ_5	Es gibt nichts mehr zu zeigen	-

Aufgabe 4

Teilaufgabe a) $(A \Leftrightarrow B) \land (B \Leftrightarrow C)$ ist äquivalent zu $A \land B \land C \lor \neg A \land \neg B \land \neg C$.² Der Beweis erfolgt über eine Wahrheitstabelle:

A	$\mid B \mid$	$\mid C \mid$	$\neg A$	$\neg B$	$\neg C$	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$A \wedge B \wedge C$	$\neg A \land \neg B \land \neg C$
W	W	W	f	f	f	W	W	W	f
W	W	f	f	f	W	W	f	f	f
W	f	W	f	W	f	f	f	f	f
W	f	f	f	W	W	f	W	f	f
f	W	W	W	f	f	f	W	f	f
f	W	f	W	f	W	f	f	f	f
f	f	W	W	W	f	W	f	f	f
f	f	f	W	W	W	W	W	f	W

A	B	C	$A \wedge B \wedge C \vee \neg A \wedge \neg B \wedge \neg C$	$A \Leftrightarrow B \land B \Leftrightarrow C$
W	W	w	W	W
W	W	f	f	f
W	f	w	f	f
W	f	f	f	f
f	W	W	f	f
f	W	f	f	f
f	f	W	f	f
f	f	f	W	W

Die letzten beiden Spalten stimmen überein, daher sind die beiden Ausdrücke äquivalent. **Teilaufgabe b)** Es seien für ein beliebiges $n \in \mathbb{N}$ $A_1, \ldots A_n$ Aussagen. Sei $J(A_1, \ldots, A_n)$ ein beliebiger n-stelliger Junktor, wir fassen diesen als Abbildung auf.

$$J: \{w, f\}^n \to \{w, f\}$$

$$(A_1, \dots, A_n) \mapsto J(A_1, \dots, A_n)$$

$$(16)$$

Falls der Junktor die konstante Funktion mit dem Wert f ist kann sie mit der leeren Disjunktion darstellen werden (welche nach Aufgabenstellung mit dem Falsum identifiziert wird). Wir nehme also im Folgenden an, dass es $k \neq 0$ verschiedene Aussagentupel

²Intuition wie man bei diesem Ausdruck ankommt ist im Beweis der Teilaufgabe b) enthalten: Man zerlegt den Junktor in eine Disjunktion von Junktoren die genau für eine Wahl von Wahrheitswerten von A,B,C wahr werden, die auch den gesamten Junktor wahr machen.

gibt die von J auf wahr abgebildet werden. Wir schreiben diese als $(Z_{l,1}, \ldots Z_{l,n})_{1 \leq l \leq k}$ und meinen damit k Tupel, die jeweils n Aussagen enthalten. Für die Darstellung von J verwenden wir die Hilfsjunktoren

$$H_l(A_1, \dots A_n) := a_{l,1} \wedge \dots \wedge a_{l,n} \quad \text{mit } a_{l,j} := \begin{cases} A_j & \text{für } Z_{l,j} = w \\ \neg A_j & \text{für } Z_{l,j} = f \end{cases}.$$
 (17)

 $J(A_1, \ldots, A_n)$ lässt sich dann darstellen als:

$$J(A_1, \dots, A_n) = H_1(A_1, \dots, A_n) \vee \dots \vee H_k(A_1, \dots, A_n)$$

$$\tag{18}$$

Beweis: Als ersten Schritt im Beweis zeigen wir, dass der Hilfsjunktor die folgende Eigenschaft hat:

$$H_l(A_1, \dots, A_n) = w \Leftrightarrow (A_1, \dots, A_n) = (Z_{l,1}, \dots, Z_{l,n})$$
 (19)

Beweis von (19): Fall "\(= \)": Jeder der Faktoren in der Konjunktion ist wahr nach Konstruktion, daher ist die ganze Konstruktion wahr.

Fall " \Rightarrow ": In diesem Fall muss jeder Faktor der Konjunktion in (17) wahr sein, denn die Konjunktion ist wahr. Das bedeutet aber:

$$\forall j \in \{1, \dots, n\} : a_{l,j} = w$$

$$\Leftrightarrow (\forall j \in \{1, \dots, n\} : A_j = w \land Z_{l,j} = w \lor \neg A_j = w \land Z_{l,j} = f)$$

$$\Leftrightarrow (\forall j \in \{1, \dots, n\} : A_j = Z_{l,j}).$$
(20)

Ende des Beweises von (19) Für eine Disjunktion von mehreren Aussagen $B_1 \vee \cdots \vee B_m$ mit $m \in \mathbb{N}$ gilt:

$$B_1 \vee \cdots \vee B_m \Leftrightarrow \exists i \in \{1, \dots, m\} : B_i = w$$
 (21)

Ist die rechte Seite von (18) wahr, so gibt es ein $1 \leq l \leq k$ sodass $(A_1, \ldots, A_n) = (Z_{l,1}, \ldots, Z_{l,n})$, die Aussagen A_1, \ldots, A_n werden also von J auf wahr abgebildet. Wenn die rechte seite von (18) falsch ist, so gibt es kein solches l, also werden die Aussagen A_1, \ldots, A_n von J nicht auf wahr abgebildet. Die rechte und linke Seite stimmen also in jedem Fall überein.