Proof theory: Part II
Gentzen’s Hauptsatz

Michael Rathjen

Fischbachau, August 5th - August 9th, 2005
Gentzen’s Haupsatz

The most common logical calculi are Hilbert-style systems. They are specified by delineating a collection of schematic logical axioms and some inference rules. The choice of axioms and rules is more or less arbitrary, only subject to the desire to obtain a complete system. In model theory it is usually enough to know that there is a complete calculus for first order logic as this already entails the compactness theorem.
There are, however, proof calculi without this arbitrariness of axioms and rules. The natural deduction calculus and the sequent calculus were both invented by Gentzen. Both calculi are pretty illustrations of the symmetries of logic. In this course I shall focus on the sequent calculus since it is a central tool in ordinal analysis and allows for generalizations to infinitary logics. Gentzen’s main theorem about the sequent calculus is the Hauptsatz, i.e. cut elimination.
A **sequent** is an expression $\Gamma \Rightarrow \Delta$ where Γ and Δ are finite sequences of formulae A_1, \ldots, A_n and B_1, \ldots, B_m, respectively. $\Sigma \Rightarrow \Delta$ is read, informally, as Γ yields Δ or, rather, the conjunction of the A_i yields the disjunction of the B_j.

In particular,

- If Γ is empty, the sequent asserts the disjunction of the B_j.
- If Δ is empty, it asserts the negation of the conjunction of the A_i.
- if Γ and Δ are both empty, it asserts the **impossible**, i.e. a **contradiction**.

We use upper case Greek letters $\Gamma, \Delta, \Lambda, \Theta, \Xi \ldots$ to range over finite sequences of formulae.
Identity Axiom

\[A \Rightarrow A \]

where \(A \) is any formula. In point of fact, one could limit this axiom to the case of atomic formulae \(A \).

CUT

\[
\Gamma \Rightarrow \Delta, A \quad A, \Lambda \Rightarrow \Theta \\
\Gamma, \Lambda \Rightarrow \Delta, \Theta \quad \text{Cut}
\]

\(A \) is called the **cut formula** of the inference.
Structural Rules

\[
\frac{\Gamma, A, B, \Lambda \Rightarrow \Delta}{\Gamma, B, A, \Lambda \Rightarrow \Delta} \quad x_l
\]

\[
\frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad W_l
\]

\[
\frac{\Gamma, A, A \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad C_l
\]

Exchange, Weakening, Contraction

\[
\frac{\Gamma \Rightarrow \Delta, A, B, \Lambda}{\Gamma \Rightarrow \Delta, B, A, \Lambda} \quad x_r
\]

\[
\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A} \quad W_r
\]

\[
\frac{\Gamma \Rightarrow \Delta, A, A}{\Gamma \Rightarrow \Delta, A} \quad C_r
\]
LOGICAL INFERENCE

Negation

\[\Gamma \Rightarrow \Delta, A \quad \frac{\Gamma \Rightarrow \Delta}{\neg A, \Gamma \Rightarrow \Delta} \quad \neg L \]

\[\frac{B, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg B} \quad \neg R \]

Implication

\[\Gamma \Rightarrow \Delta, A \quad B, \Lambda \Rightarrow \Theta \quad \frac{A \rightarrow B, \Gamma, \Lambda \Rightarrow \Delta, \Theta}{\Gamma \Rightarrow \Delta, A \rightarrow B} \quad \rightarrow L \]

\[\frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \quad \rightarrow R \]
Conjunction

\[
\begin{align*}
A, \Gamma \Rightarrow \Delta & \quad \Gamma \Rightarrow \Delta \quad (\land L1) \\
\hline
A \land B, \Gamma \Rightarrow \Delta & \\
\end{align*}
\]

\[
\begin{align*}
B, \Gamma \Rightarrow \Delta & \quad \Gamma \Rightarrow \Delta \quad (\land L2) \\
\hline
A \land B, \Gamma \Rightarrow \Delta & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, A & \\
\hline
\Gamma \Rightarrow \Delta, A \land B & \quad (\land R) \\
\end{align*}
\]

Disjunction

\[
\begin{align*}
A, \Gamma \Rightarrow \Delta & \quad B, \Gamma \Rightarrow \Delta \quad (\lor L) \\
\hline
A \lor B, \Gamma \Rightarrow \Delta & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, A & \\
\hline
\Gamma \Rightarrow \Delta, A \lor B & \quad (\lor R1) \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, B & \\
\hline
\Gamma \Rightarrow \Delta, A \lor B & \quad (\lor R2) \\
\end{align*}
\]
Quantifiers

\[
\frac{F(t), \Gamma \Rightarrow \Delta}{\forall x \ F(x), \Gamma \Rightarrow \Delta} \quad \forall L
\]

\[
\frac{\Gamma \Rightarrow \Delta, F(a)}{\forall R}
\]

\[
\frac{F(a), \Gamma \Rightarrow \Delta}{\exists x \ F(x), \Gamma \Rightarrow \Delta} \quad \exists L
\]

\[
\frac{\Gamma \Rightarrow \Delta, \forall x \ F(x)}{\exists R}
\]

In \(\forall L \) and \(\exists R \), \(t \) is an arbitrary term. The variable \(a \) in \(\forall R \) and \(\exists L \) is an eigenvariable of the respective inference, i.e. \(a \) is not to occur in the lower sequent.
The formulae in a logical inference marked blue are called the minor formulae of that inference, while the red formula is the principal formula of that inference. The other formulae of an inference are called side formulae.

A proof (aka deduction or derivation) \(\mathcal{D} \) is a tree of sequents satisfying the following conditions:

- The topmost sequents of \(\mathcal{D} \) are identity axioms.
- Every sequent in \(\mathcal{D} \) except the lowest one is an upper sequent of an inference whose lower sequent is also in \(\mathcal{D} \).
The INTUITIONISTIC case

The intuitionistic sequent calculus is obtained by requiring that all sequents be intuitionistic. A sequent $\Gamma \Rightarrow \Delta$ is said to be intuitionistic if Δ consists of at most one formula.

Specifically, in the intuitionistic sequent calculus there are no inferences corresponding to contraction right or exchange right.
Our first example is a deduction of the law of excluded middle.

\[
\begin{array}{c}
A \Rightarrow A \\
\Rightarrow A, \neg A \\
\Rightarrow A, A \lor \neg A \\
\Rightarrow A \lor \neg A, A \\
\Rightarrow A \lor \neg A, A \lor \neg A \\
\Rightarrow A \lor \neg A
\end{array}
\]

\(\neg R \quad \lor R \quad \lor R \quad \lor R \quad C_r\)

Notice that the above proof is not intuitionistic since it involves sequents that are not intuitionistic.
The second example is an intuitionistic deduction.

\[
\frac{F(a) \Rightarrow F(a)}{F(a) \Rightarrow \exists x \ F(x)} \quad \exists R
\]

\[
\frac{F(a) \Rightarrow \exists x \ F(x)}{\neg \exists x \ F(x), \ F(a) \Rightarrow} \quad \neg L
\]

\[
\frac{F(a), \neg \exists x \ F(x) \Rightarrow}{\neg \exists x F(x) \Rightarrow \neg F(a)} \quad \neg L
\]

\[
\frac{\neg \exists x F(x) \Rightarrow \neg F(a)}{\exists x F(x) \Rightarrow \forall x \neg F(x)} \quad \forall R
\]

\[
\Rightarrow \quad \forall x \neg F(x)
\]

\[
\Rightarrow \quad \neg \exists x F(x) \rightarrow \forall x \neg F(x) \quad \rightarrow R
\]
Cut Elimination (Gentzen’s Hauptsatz)

If a sequent \(\Gamma \Rightarrow \Delta \) is provable, then it is provable without cuts.

Here is an example of how to eliminate cuts of a special form:

\[
\begin{align*}
A, \Gamma & \Rightarrow \Delta, B \\
\Gamma & \Rightarrow \Delta, A \rightarrow B \\
& \rightarrow R \\
\Lambda & \Rightarrow \Theta, A \\
B, \Xi & \Rightarrow \Phi \\
& \rightarrow L \\
\Gamma, \Lambda, \Xi & \Rightarrow \Delta, \Theta, \Phi \\
& \text{Cut}
\end{align*}
\]

is replaced by

\[
\begin{align*}
\Lambda & \Rightarrow \Theta, A \\
A, \Gamma & \Rightarrow \Delta, B \\
\Lambda, \Gamma & \Rightarrow \Theta, \Delta, B \\
& \text{Cut} \\
\Lambda, \Gamma & \Rightarrow \Theta, \Delta, B \\
B, \Xi & \Rightarrow \Phi \\
& \text{Cut} \\
\Gamma, \Lambda, \Xi & \Rightarrow \Delta, \Theta, \Phi \\
& \text{Cut}
\end{align*}
\]
Remarks

- The proof of the cut elimination theorem is rather intricate as the process of removing cuts interferes with contraction.

The possibility of contraction accounts for the high cost of eliminating cuts. Let $|D|$ be the height of the deduction D. Also, let $\text{rank}(D)$ be supremum of the lengths of cut formulae occurring in D. Turning D into a cut-free deduction of the same end sequent results, in the worst case, in a deduction of height

$$H(\text{rank}(D), |D|)$$

where

$$H(0, n) = n \quad H(k + 1, n) = 4^H(k, n).$$
Cut-free proofs aren’t suitable for the mathematical practice. The cut formulae in a proof usually carry the idea of the proof (lemmata). Removing cuts not only makes proofs longer but also renders them less understandable.
The **Hauptsatz** has an important corollary.

The **Subformula Property**

*If a sequent $\Gamma \Rightarrow \Delta$ is provable, then it has a deduction all of whose formulae are subformulae of the formulae of Γ and Δ.***

Corollary

A contradiction, i.e. the empty sequent, is not deducible.
While mathematics is based on logic, it cannot be developed solely on the basis of pure logic. What is needed in addition are axioms that assert the existence of mathematical objects and their properties. Logic plus axioms gives rise to (formal) theories such as Peano arithmetic or the axioms of Zermelo-Fraenkel set theory.
What happens when we try to apply the procedure of cut elimination to theories? Well, axioms are poisonous to this procedure. It breaks down because the symmetry of the sequent calculus is lost. In general, we cannot remove cuts from deductions in a theory T when the cut formula is an axiom of T. However, sometimes the axioms of a theory are of bounded syntactic complexity. Then the procedure applies partially in that one can remove all cuts that exceed the complexity of the axioms of T.
This gives rise to

partial cut elimination.

This is a very important tool in proof theory. For example, it works very well if the axioms of a theory can be presented as atomic intuitionistic sequents (also called Horn clauses), yielding the completeness of Robinsons' resolution method.
Partial cut elimination also pays off in the case of fragments of PA and set theory with restricted induction schemes, be it induction on natural numbers or sets. This method can be used to extract bounds from proofs of Π^0_2 statements in such fragments.
Full arithmetic, i.e. \textbf{PA}, does not even allow for partial cut elimination since the induction axioms have unbounded complexity.

However, one can remove the obstacle against cut elimination in a drastic way by going **infinite**. The so-called **ω-rule** consists of the two types of infinitary inferences:

\[
\frac{
\Gamma \Rightarrow \Delta, F(0); \ \Gamma \Rightarrow \Delta, F(1); \ \ldots; \Gamma \Rightarrow \Delta, F(n); \ \ldots
}{\Gamma \Rightarrow \Delta, \forall x F(x)} \quad \omega R
\]

\[
\frac{
F(0), \Gamma \Rightarrow \Delta; \ F(1), \Gamma \Rightarrow \Delta; \ \ldots; \ F(n), \Gamma \Rightarrow \Delta; \ \ldots
}{\exists x F(x), \Gamma \Rightarrow \Delta} \quad \omega L
\]

The price to pay will be that deductions become infinite objects, i.e. **infinite well-founded trees**.
The sequent-style version of Peano arithmetic with the \(\omega \)-rule will be termed \(\text{PA}_\omega \).

\(\text{PA}_\omega \) has no use for free variables. Thus free variables are discarded and thus all terms are closed. All formulae of this system are therefore closed, too.

The \textit{numerals} are the terms \(\bar{n} \), where \(\bar{0} = 0 \) and \(\bar{n} + 1 = S\bar{n} \). We shall identify \(\bar{n} \) with the natural number \(n \). All terms \(t \) of \(\text{PA}_\omega \) evaluate to a numeral \(\bar{n} \).
PA_ω has all the inference rules of the sequent calculus except for $\forall R$ and $\exists L$. In their stead, PA_ω has the ωR and ωL inferences.

The **Axioms** of PA_ω are the following:

- $\Rightarrow A$ if A is a **true** atomic sentence.
- $B \Rightarrow$ if B is a **false** atomic sentence.
- $F(s_1, \ldots, s_n) \Rightarrow F(t_1, \ldots, t_n)$ if $F(s_1, \ldots, s_n)$ is an atomic sentence and s_i and t_i evaluate to the same numeral.
With the aid of the ω-rule, induction becomes logically deducible in infinitary logic.

Theorem For every n there is a finite deduction \mathcal{D}_n of the sequent

$$F(0), \forall x [F(x) \to F(Sx)] \Rightarrow F(n).$$

Proof. Since $B, \Gamma \Rightarrow B$ is deducible for every formula B and sequence Γ, we obtain \mathcal{D}_0.

Let $\Delta := F(0), \forall x [F(x) \to F(Sx)]$. From \mathcal{D}_n we obtain \mathcal{D}_{n+1} as follows:

$$\begin{align*}
\mathcal{D}_n & \quad \mathcal{D}^* \\
\Delta \Rightarrow F(n) & \quad F(Sn), \Delta \Rightarrow F(Sn) \\
\frac{F(n) \to F(Sn), \Delta \Rightarrow F(S(n))}{\forall x [F(x) \to F(Sx)], \Delta \Rightarrow F(S(n))} & \quad \forall L \\
\frac{F(0), \forall x [F(x) \to F(Sx)] \Rightarrow F(S(n))}{\text{Struc}} & \quad \Rightarrow L
\end{align*}$$
A final application of ωR yields an infinite deduction

\[
\begin{align*}
D_0 & \quad \cdots \quad D_n \\
\Delta & \Rightarrow F(0) & \cdots & \Delta & \Rightarrow F(n) & \cdots \\
F(0), \forall x [F(x) \rightarrow F(Sx)] & \Rightarrow \forall x F(x) & & \omega R \\
F(0) & \land \forall x [F(x) \rightarrow F(Sx)], \forall x [F(x) \rightarrow F(Sx)] & \Rightarrow \forall x F(x) & & \land L, \land R \\
\forall x [F(x) \rightarrow F(Sx)], \forall x [F(x) \rightarrow F(Sx)] & \Rightarrow \forall x F(x) & & \forall x [F(x) \rightarrow F(Sx)], \forall x [F(x) \rightarrow F(Sx)] \\
F(0) & \land \forall x [F(x) \rightarrow F(Sx)], \text{same} & \Rightarrow \forall x F(x) & & \land L, \land R \\
F(0) & \land \forall x [F(x) \rightarrow F(Sx)] & \Rightarrow \forall x F(x) & & \land L, \land R \\
\Rightarrow F(0) & \land \forall x [F(x) \rightarrow F(Sx)] & \rightarrow \forall x F(x) & & \land L, \land R
\end{align*}
\]
Cut Elimination for \mathbf{PA}_ω

We want to measure the **height** and **cut rank** of a \mathbf{PA}_ω deduction \mathcal{D}.
We will notate this by

$$\mathcal{D} \vdash_\alpha^k \Gamma \Rightarrow \Delta.$$

The above relation is defined inductively following the buildup of the deduction \mathcal{D}.

For the **cut rank** we need the definition of the **length**, $|A|$ of a formula:

- $|A| = 0$ if A is atomic;
- $|\neg A_0| = |A_0| + 1$;
- $|A_0 \Box A_1| = \max(|A_0, A_1|) + 1$ where $\Box = \land, \lor, \to$;
- $|\exists x F(x)| = |\forall x F(x)| = |F(0)| + 1$.

Suppose the last inference of \mathcal{D} is of the form

$$
\begin{array}{c}
\mathcal{D}_0 \\
\Gamma_0 \Rightarrow \Delta_0 \\
\vdots \\
\mathcal{D}_n \\
\Gamma_n \Rightarrow \Delta_n \\
\vdots \\
n < \tau \\
\hline
\Gamma \Rightarrow \Delta
\end{array}
$$

where $\tau = 1, 2, \omega$ and the \mathcal{D}_n are the immediate subdeductions of \mathcal{D}. If

$$
\mathcal{D}_n \mid_{\alpha_n}^{\alpha} \Gamma_n \Rightarrow \Delta_n
$$

and $\alpha_n < \alpha$ for all $n < \tau$ then

$$
\mathcal{D} \mid_{\alpha}^{\alpha} \Gamma \Rightarrow \Delta
$$

providing that in the case of I being a cut with cut formula A we also have $|A| < k$.
We also just write $\text{PA}_\omega \vdash \frac{\alpha}{k} \Gamma \Rightarrow \Delta$ if there exists a PA_ω deduction $\mathcal{D} \vdash \frac{\alpha}{k} \Gamma \Rightarrow \Delta$.
Embedding Theorem If $PA \vdash \Gamma \Rightarrow \Delta$ then

$PA_{\omega} \models_{k}^{\omega+m} \Gamma \Rightarrow \Delta$

for some $m, k < \omega$.
Reduction Lemma If $\text{PA}_\omega \models^{\alpha} \Gamma \Rightarrow \Delta, A$ and $\text{PA}_\omega \models^{\beta} A, \Lambda \Rightarrow \Theta$ with $k = |A|$, then

$$\text{PA}_\omega \models^{\alpha \# \beta} \Gamma, \Lambda \Rightarrow \Delta, \Theta.$$
Theorem If $\text{PA}_\omega \vdash_{k+1}^\alpha \Gamma \Rightarrow \Delta$, then $\text{PA}_\omega \vdash_k^{\omega^\alpha} \Gamma \Rightarrow \Delta$.

Cut Elimination Theorem If $\text{PA}_\omega \vdash_n^{\alpha} \Gamma \Rightarrow \Delta$, then

\[\text{PA}_\omega \vdash_0^{\omega^\alpha \cdots \omega^\alpha} \Gamma \Rightarrow \Delta \]

n times
Ockham’s Razor
In what follows, we shall be solely dealing with classical logic. Therefore we can simplify the sequent calculus as follows:

- We get rid of the structural rules by using sets of formulae rather than sequents of formulae. This has the effect that exchange and contraction happen automatically:

\[\{C_1, \ldots, C_r, A, A, D_1, \ldots, D_s\} = \{D_1, \ldots, D_s, A, C_1, \ldots, C_r\} \]

We take care of weakening by adding all the formulae we may be interested in from the start; thus we have more liberal axioms:

\[A, \Gamma \Rightarrow \Delta, A \]
• Using the **De Morgan laws** of classical logic we can push **negations** in front of **atomic** formulae. Also, in classical logic \(\neg, \land, \lor \) forms a **complete** set of connectives. Thus we can simplify matters, by demanding that formulae are built up from **atomic** and **negated atomic formulae** (literals) by means of \(\land, \lor, \forall, \exists \).

Negating a formula \(A \) then becomes a defined operation:

- \(\neg \neg A := A \) if \(A \) is atomic;
- \(\neg (A \land B) = \neg A \lor \neg B; \neg (A \lor B) = \neg A \land \neg B \);
- \(\neg \forall x F(x) := \exists x \neg F(x); \neg \exists x F(x) := \forall x \neg F(x) \).

• In classical logic we don’t need the two sides of a sequent

\[
A_1, \ldots, A_r \Rightarrow \Delta
\]

since it can be re-written as

\[
\Rightarrow \neg A_1, \ldots, \neg A_r, \Delta
\]
In the Tait-style version of the classical sequent calculus $\Gamma, \Delta, \Lambda, \Theta, \ldots$ range over finite sets of formulae in negation normal form. Γ, Δ stands for $\Gamma \cup \Delta$ and Δ, A is short for $\Delta \cup \{A\}$.
The **inferences** of the **Tait-calculus** are as follows:

(Axiom) \(\Gamma, A, \neg A \)

(\&) \[
\frac{\Gamma, A \quad \Gamma, A'}{\Gamma, A \land A'}
\]

(\lor) \[
\frac{\Gamma, A_i}{\Gamma, A_0 \lor A_1} \quad \text{if } i = 0 \text{ or } i = 1
\]

(\forall) \[
\frac{\Gamma, F(a)}{\Gamma, \forall x \ F(x)}
\]

(\exists) \[
\frac{\Gamma, F(t)}{\Gamma, \exists x \ F(x)}
\]

(Cut) \[
\frac{\Gamma, A \quad \Gamma, \neg A}{\Gamma}
\]

Of course, the variable \(a \) in (\forall) is an **eigenvariable**.