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1 Preliminaries: Hilbert Spaces and Operators

The basic mathematical objects in quantum mechanics are Hilbert spaces and

operators defined on them. In order to fix notations we briefly review the defini-

tions.

DEFINITION 1.1 (Hilbert Space). A Hilbert Space H is a vector space en-

dowed with a sesquilinear map (·, ·) : H×H → C (i.e., a map which is conjugate

linear in the first variable and linear in the second1) such that ‖φ‖ = (φ, φ)1/2

defines a norm on H which makes H into a complete metric space.

REMARK 1.2. We shall mainly use the following two properties of Hilbert spaces.

(a) To any closed subspace V ⊂ H there corresponds the orthogonal complement

V ⊥ such that V ⊕ V ⊥ = H.

(b) Riesz representation Theorem: To any continuous linear functional Λ : H →
C there is a unique ψ ∈ H such that Λ(φ) = (ψ, φ) for all φ ∈ H.

We denote by H∗ the dual of the Hilbert space H, i.e., the space of all contin-

uous linear functionals on H. The map J : H → H∗ defined by J(ψ)(φ) = (ψ, φ)

is according to Riesz representation Theorem an anti-linear isomorphism. That

J is anti-linear (or conjugate-linear) means that J(αφ + βψ) = αJ(φ) + βJ(ψ)

for α, β ∈ C and φ, ψ ∈ H.

We shall always assume that our Hilbert spaces are separable and therefore

that they have countable orthonormal bases.

We will assume that the reader is familiar with elementary notions of measure

theory, in particular the fact that L2- spaces are Hilbert spaces.

DEFINITION 1.3 (Operators on Hilbert spaces). By an operator (or more

precisely densely defined operator) A on a Hilbert space H we mean a linear map

A : D(A)→ H defined on a dense subspace D(A) ⊂ H. Dense refers to the fact

that the norm closure D(A) = H.

DEFINITION 1.4 (Extension of operator). If A and B are two operators such

that D(A) ⊆ D(B) and Aφ = Bφ for all φ ∈ D(A) then we write A ⊂ B and say

that B is an extension of A.
1This is the convention in physics. In mathematics the opposite convention is used.
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Note that the domain is part of the definition of the operator. In defining

operators one often starts with a domain which turns out to be too small and

which one then later extends.

DEFINITION 1.5 (Symmetric operator). We say that A is a symmetric oper-

ator if

(ψ,Aφ) = (Aψ, φ) (1)

for all φ, ψ ∈ D(A).

The result in the following problem is of great importance in quantum me-

chanics.

PROBLEM 1.6. Prove that (1) holds if and only if (ψ,Aψ) ∈ R for all ψ ∈
D(A).

REMARK 1.7. It is in general not easy to define the sum of two operators A and

B. The problem is that the natural domain of A + B would be D(A) ∩ D(B),

which is not necessarily densely defined.

EXAMPLE 1.8. The Hilbert space describing a one-dimensional particle without

internal degrees of freedom is L2(R), the space of square (Lebesgue) integrable

functions defined modulo sets of measure zero. The inner product on L2(R) is

given by

(g, f) =

∫
R
g(x)f(x) dx.

The operator describing the kinetic energy is the second derivative operator.

A = −1
2
d2

dx2 defined originally on the subspace

D(A) = C2
0(R) =

{
f ∈ C2(R) : f vanishes outside a compact set

}
.

Here C2(R) refers to the twice continuously differentiable functions on the real

line. The subscript 0 refers to the compact support.

The operator A is symmetric, since for φ, ψ ∈ D(A) we have by integration

by parts

(ψ,Aφ) = −1

2

∫
R
ψ(x)

d2φ

dx2
(x)dx

=
1

2

∫
R

dψ

dx
(x)

dφ

dx
(x)dx = −1

2

∫
R

d2ψ

dx2
(x)φ(x)dx = (Aψ, φ).
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DEFINITION 1.9 (Bounded operators). An operator A is said to be bounded

on the Hilbert Space H if D(A) = H and A is continuous, which by linearity is

equivalent to

‖A‖ = sup
φ, ‖φ‖=1

‖Aφ‖ <∞.

The number ‖A‖ is called the norm of the operator A. An operator is said to be

unbounded if it is not bounded.

PROBLEM 1.10. (a) Show that if an operator A with dense domain D(A)

satisfies ‖Aφ‖ ≤ M‖φ‖ for all φ ∈ D(A) for some 0 ≤ M < ∞ then A can

be uniquely extended to a bounded operator.

(b) Show that the kinetic energy operator A from Example 1.8 cannot be extended

to a bounded operator on L2(R).

DEFINITION 1.11 (Adjoint of an operator). If A is an operator we define the

adjoint A∗ of A to be the linear map A∗ : D(A∗)→ H defined on the space

D(A∗) =
{
φ ∈ H

∣∣∣ sup
ψ∈D(A), ‖ψ‖=1

|(φ,Aψ)| <∞
}

and with A∗φ defined such that

(A∗φ, ψ) = (φ,Aψ)

for all ψ ∈ D(A). The existence of A∗φ for φ ∈ D(A∗) is ensured by the Riesz

representation Theorem (why?). If D(A∗) is dense in H then A∗ is an operator

on H.

PROBLEM 1.12. Show that the adjoint of a bounded operator is a bounded

operator.

PROBLEM 1.13. Show that A is symmetric if and only if A∗ is an extension

of A, i.e., A ⊂ A∗.

EXAMPLE 1.14 (Hydrogen atom). One of the most basic examples in quantum

mechanics is the hydrogen atom. In this case the Hilbert space isH = L2(R3;C2),

i.e., the square integrable functions on R3 with values in C2. Here C2 represents

the internal spin degrees of freedom. The inner product is

(g, f) =

∫
R3

g(x)∗f(x) dx,
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The total energy operator is2

H = −1
2
∆− 1

|x|
, (2)

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 , is the Laplacian. I.e.,

(Hφ)(x) = −1
2
∆φ(x)− 1

|x|
φ(x)

The domain of H may be chosen to be

D(H) = C2
0

(
R3;C2

)
(3)

=
{
f ∈ C2(R3;C2) : f vanishes outside a compact subset of R3

}
.

It is easy to see that if φ ∈ D(H) then Hφ ∈ H. It turns out that one may extend

the domain of H to the Sobolev space H2(R3). We will return to this later.

EXAMPLE 1.15 (Schrödinger operator). We may generalize the example of hy-

drogen to operators on L2(Rn) or L2(Rn;Cq) of the form

−1
2
∆− V (x)

where V : Rn → R is a potential. If V is a locally square integrable function we Correction since

August 30, 09:

V → −V to agree

with Definition

5.1.

may start with the domain C2
0 (Rn) or C2

0 (Rn;C2). We shall return to appropriate

conditions on V later. We call an operator of this form a Schrödinger operator.

See Section 5

DEFINITION 1.16 (Compact, trace class, and Hilbert-Schmidt operators).

A linear operator K is said to be a compact operator on a Hilbert space H if

D(K) = H and there are orthonormal bases u1, u2, . . . and v1, v2, . . . for H and a

sequence λ1, λ2, . . . with limn→∞ λn = 0 such that

Kφ =
∞∑
n=1

λn(un, φ)vn (4)

for all φ ∈ H. A compact operator K is said to be trace class if
∑∞

n=1 |λn| < ∞
and it is called Hilbert-Schmidt if

∑∞
n=1 |λn|2 <∞.

If K is trace class the trace of K is defined to be

TrK =
∞∑
n=1

λn(un, vn).

2We use units in which Planck’s constant ~, the electron mass me, and the electron charge

e are all equal to unity
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PROBLEM 1.17. (a) Show that a trace class operator is Hilbert-Schmidt.

(b) Show that the trace of a trace class operator on a Hilbert space H is finite

and that if φ1, φ2, . . . is any orthonormal basis for H and K is any trace class

operator on H then

TrK =
∞∑
n=1

(φn, Kφn).

PROBLEM 1.18. (a) (Super symmetry) Show that if K is a compact oper-

ator then K∗K and KK∗ have the same non-zero eigenvalues with the same

(finite) multiplicities.

(b) Show that if K is a compact operator then it maps the eigenspaces of K∗K

corresponding to non-zero eigenvalues to the eigenspace of KK∗ with the same

eigenvalue.

(c) (Spectral Theorem for compact operators) Show that if K is a compact

symmetric operator on a Hilbert space H then there is an orthonormal basis

u1, u2, . . . for H and a sequence λ1, λ2, . . . ∈ R such that limn→∞ λn = 0 and

Kφ =
∞∑
n=1

λn(un, φ)un.

(Hint: Diagonalize the finite dimensional operator obtained by restricting K

to a non-zero eigenvalue eigenspace of K∗K = K2.)

1.1 Tensor products of Hilbert spaces

Let H and K be two Hilbert spaces. The tensor product of H and K is a Hilbert

space denoted H⊗K together with a bilinear map

H×K 3 (u, v) 7→ u⊗ v ∈ H ⊗K,

such that the inner products satisfy

(u1 ⊗ v1, u2 ⊗ v2)H⊗K = (u1, u2)H(v1, v2)K,

and such that the span{u ⊗ v |u ∈ H, v ∈ K} is dense in H ⊗ K. We call the

vectors of the form u⊗ v for pure tensor products.

The tensor product is unique in the sense that if H⊗̂K is another tensor

product then the map u⊗̂v 7→ u⊗v extends uniquely to an isometric isomorphism.



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 9

PROBLEM 1.19. Prove the above uniqueness statement.

If (uα)α∈I is an orthonormal basis for H and (vβ)β∈J is an orthonormal basis

for K, then (uα ⊗ vβ)α∈Iβ∈J is an orthonormal basis for H⊗K.

PROBLEM 1.20 (Construction of the tensor product). Show that the tensor

product H⊗K may be identified with the space `2(I × J) and

(u⊗ v)ij = (ui, u)H(vj, v)K.

More generally, if µ is a σ-finite measure on a measure space X and ν is a

σ-finite measure on a measure space Y , it follows from Fubini’s Theorem that

the tensor product L2(X,µ)⊗ L2(Y, ν) may be identified with L2(X × Y, µ× ν)

(where µ× ν is the product measure) and

f ⊗ g(x, y) = f(x)g(y).

PROBLEM 1.21. Use Fubini’s Theorem to show that L2(X × Y, µ× ν) in this

way may be identified with L2(X,µ)⊗ L2(Y, ν).

If we have an operator A on the Hilbert space H and an operator B on the

Hilbert space K then we may form the tensor product operator A⊗B on H⊗K
with domain

D(A⊗B) = span {φ⊗ ψ | φ ∈ D(A), ψ ∈ D(B)}

and acting on pure tensor products as

A⊗B(φ⊗ ψ) = (Aφ)⊗ (Bψ).

The tensor product may in a natural way be extended to more than two

Hilbert spaces. In particular, we may for N = 1, 2, . . . consider the N -fold tensor

product
⊗N H of a Hilbert space H with itself. On this space we have a natural

action of the symmetric group SN . I.e., if σ ∈ SN then we have a unitary map

Uσ :
⊗N H →

⊗N H defined uniquely by the following action on the pure tensor

products

Uσu1 ⊗ · · · ⊗ uN = uσ(1) ⊗ · · · ⊗ uσ(N).

We shall denote by Ex : H⊗H → H⊗H the unitary corresponding to a simple

interchange of the two tensor factors.
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PROBLEM 1.22. Show that Uσ defines a unitary operator and that the two

operators

P+ = (N !)−1
∑
σ∈SN

Uσ, P− = (N !)−1
∑
σ∈SN

(−1)σUσ, (5)

are orthogonal projections (P = P ∗, P 2 = P ) satisfying P−P+ = 0 if N ≥ 2.

Here (−1)σ is the sign of the permutation σ. Correction since

April 15: N ≥ 2

added

Correction since

May 3: definition

of (−1)σ added

correction July

6: sentence

corrected

The two projections P± define two important subspaces of
⊗N H.

DEFINITION 1.23 (Symmetric and anti-symmetric tensor products). The

symmetric tensor product is the space

N⊗
sym

H := P+

( N⊗
H
)
. (6)

The antisymmetric tensor product is the space

N∧
H := P−

( N⊗
H
)
. (7)

We define the antisymmetric tensor product of the vectors u1, . . . , uN ∈ H as

u1 ∧ · · · ∧ uN = (N !)1/2P−(u1 ⊗ · · · ⊗ uN). (8)

PROBLEM 1.24. Show that if u1, . . . , uN are orthonormal then u1 ∧ · · · ∧ uN
is normalized (i.e., has norm 1).

PROBLEM 1.25. Let u1, . . . , uN be orthonormal functions in an L2 space

L2(X,µ) over the measure space X with measure µ. Show that in the space

L2(XN , µN)

u1 ∧ · · · ∧ uN(x1, . . . , xN) = (N !)−1/2 det


u1(x1) · · · uN(x1)

u1(x2) · · · uN(x2)
...

u1(xN) · · · uN(xN)

 .

One refers to this as a Slater determinant.

PROBLEM 1.26. Show that if dimH < N then
∧N H = {0}.
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PROBLEM 1.27. Let X be a measure space with measure µ and let H be a

Hilbert space. Show that we may identify the tensor product L2(X,µ) ⊗ H with

the Hilbert space L2(X,µ;H) of H-valued L2 functions on X, where the tensor

product of f ∈ L2(X,µ) with u ∈ H is the function

f ⊗ u(x) = f(x)u.

2 The Principles of Quantum Mechanics

We shall here briefly review the principles of quantum mechanics. The reader

with little or no experience in quantum mechanics is advised to also consult

standard textbooks in physics.

In quantum mechanics a pure state of a physical system is described by a

unit vector ψ0 in a Hilbert space H. The measurable quantities correspond to

‘expectation values’

〈A〉ψ0 = (ψ0, Aψ0),

of operators A on H. Of course, in order for this to make sense we must have

ψ0 ∈ D(A). Since measurable quantities are real the relevant operators should

have real expectation values, i.e, the operators are symmetric. (See Problem 1.6).

The physical interpretation of the quantity 〈A〉ψ0 is that it is the average

value of ‘many’ measurements of the observable described by the operator A in

the state ψ0.

As an example ψ0 ∈ C2
0 (R3;C2) with

∫
|ψ0|2 = 1 may represent a state of a

hydrogen atom (see Example 1.14). The average value of many measurements of

the energy of the atom in this state will be(
ψ0, (−1

2
∆− 1

|x|
)ψ0

)
=

∫
R3

ψ0(x)∗(−1
2
∆− 1

|x|
)ψ0(x) dx

=

∫
R3

1
2
|∇ψ0(x)|2 − 1

|x|
|ψ0(x)|2 dx,

where the last equality follows by integration by parts.

The general quantum mechanical state, which is not necessarily pure is a

statistical average of pure states, i.e, expectations are of the form

〈A〉 =
∞∑
n=1

λn(ψn, Aψn), (9)
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where 0 ≤ λn ≤ 1 with
∑

n λn = 1 and ψn is a family of orthonormal vectors. In

this representation the λn are unique (i.e. independent on the choice of {ψn}) 3.

How far the state is from being pure is naturally measured by its entropy. Correction since

April 15: unit

→ orthonormal.

Uniqueness state-

ment. Problem

added to footnote

Correction since

August 30, 09:

explanation for

the uniqueness of

λn

DEFINITION 2.1 (Von Neumann entropy). The von Neumann entropy of a

state 〈·〉 of the form (9) is

S(〈·〉) = −
∞∑
n=1

λn log λn,

which is possibly +∞. (We use the convention that t log t = 0 if t = 0.) Addition since

April 15: which is

possibly +∞

Note that the entropy vanishes if and only if the state is pure.

Of particular interest are the equilibrium states, either zero (absolute) tem-

perature or positive temperature states. The zero temperature state is usually a

pure state, i.e., given by one vector, whereas the positive temperature states (the

Gibbs states) are non-pure. Both the zero temperature states and the positive

temperature states are described in terms of the energy operator, the Hamilto-

nian. We shall here mainly deal with the zero temperature equilibrium states,

the ground states.

DEFINITION 2.2 (Stability and Ground States). Consider a physical system

described by a Hamiltonian, i.e., energy operator, H on a Hilbert space H. If

inf
φ∈D(H), ‖φ‖=1

(φ,Hφ) > −∞

the system is said to be stable. If this holds we call

E = inf
φ∈D(H), ‖φ‖=1

(φ,Hφ)

for the ground state energy.

A ground state for the system, if it exists, is a unit vector ψ0 ∈ D(H) such

that

(ψ0, Hψ0) = inf
φ∈D(H), ‖φ‖=1

(φ,Hφ) .

Thus a ground state is characterized by minimizing the energy expectation.
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Correction since

April 15: stable

addedDEFINITION 2.3 (Free energy and temperature states). The free energy of a

stable system at temperature T ≥ 0 is

F (T ) = inf
〈·〉

〈H〉<∞

(〈H〉 − TS(〈·〉)) ,

(possibly −∞) where the infimum is over all states of the form (9) with ψn ∈
D(H) for n = 1, 2, . . .. If for T > 0 a minimizer exists for the free energy variation

above it is called a Gibbs state at temperature T .

PROBLEM 2.4. Show that F (T ) is a decreasing function of T and that F (0) =

E, i.e., the free energy at zero temperature is the ground state energy.

PROBLEM 2.5 (Ground state eigenvector). Show that if ψ0 is a ground state

with (ψ0, Hψ0) = λ then Hψ0 = λψ0, i.e., ψ0 is an eigenvector of H with eigen-

value λ. (Hint: consider the normalized vector

φε =
ψ0 + εφ

‖ψ0 + εφ‖
for φ ∈ D(H). Use that the derivative of (φε, Hφε) wrt. ε is zero at ε = 0.)

PROBLEM 2.6 (Stability of free particle). Show that the free 1-dimensional

particle described in Example 1.8 is stable, but does not have a ground state.

Show that its free energy is F (T ) = −∞ for all T > 0.

PROBLEM 2.7 (Gibbs state). Show that if 〈·〉 is a Gibbs state at temperature

T > 0 then

〈A〉 =
Tr(A exp(−H/T ))

Tr(exp(−H/T ))

for all bounded operators A. In particular, exp(−H/T ) is a trace class operator.

(Hint: Use Jensen’s inequality and the fact that t 7→ t log t is strictly convex. The

problem is easier if one assumes that exp(−H/T ) is trace class, otherwise some

version of the spectral Theorem is needed4. ) Correction since

April 15: footnote

added
The Hamiltonian H for hydrogen, given in (2) and (3), is stable. It does not

have a ground state on the domain C2
0 , but in this case, however, this is simply Correction since

April 15: ∞→ 2

3More generally, a state may be defined as a normalized positive linear functional on the

bounded operators on H (or even on some other algebra of operators). Here we shall only

consider states of the form (9) (see also Problem A.2.2).
4Theorem 4.12 is sufficient
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because the domain is too small (see Section 5). On the extended domain H2(R3)

the Hamiltonian does have a ground state. Finding the correct domain on which

a Hamiltonian has a possible ground state is an important issue in quantum

mechanics.

In Section 3 we discuss in some generality operators and quadratic forms.

We shall only be concerned with the eigenvalues of the operators and not with

the continuous part of the spectrum. We therefore do not need to understand

the Spectral Theorem in its full generality and we shall not discuss it here. We

therefore do not need to understand the more complex questions concerning self-

adjointness. We mainly consider semi bounded operators and the corresponding

quadratic forms.

The notion of quadratic forms is very essential in quantum mechanics. As we

have seen the measurable quantities corresponding to an observable, represented

by an operator A are the expectation values which are of the form (ψ,Aψ). In

applications to quantum mechanics it is therefore relevant to try to build the

general theory as much as possible on knowledge of these expectation values.

The map ψ 7→ (ψ,Aψ) is a special case of a quadratic form.

2.1 Many body quantum mechanics

Consider N quantum mechanical particles described on Hilbert spaces h1, . . . , hN

and with Hamilton operators h1, . . . , hN . The combined system of these particles

is described on the tensor product

HN = h1 ⊗ · · · ⊗ hN .

We may identify the operators h1, . . . , hN with operators on this tensor product

space. I.e., we identify h1, . . . , hN with the operators

h1 ⊗ I ⊗ · · · ⊗ I, I ⊗ h2 ⊗ I ⊗ · · · ⊗ I, . . . I ⊗ I ⊗ · · · ⊗ hN .

If the particles are non-interacting the Hamiltonian operator for the combined

system is simply

H in
N = h1 + . . .+ hN .

This operator may be defined on the domain

D(H in
N ) = span{φ1 ⊗ · · · ⊗ φN | φ1 ∈ D(h1), . . . , φN ∈ D(hN)}.



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 15

Correction since

April 15: one “if”

removed 1→ N
PROBLEM 2.8. Show that if D(h1), . . . , D(hN) are dense in h1, . . . , hN respec-

tively then D(H in
N ) is dense in HN .

THEOREM 2.9 (ground state of non-interacting particles). If

ej = inf
φ∈D(hj),‖φ‖=1

(φ, hjφ), j = 1, . . . , N

are ground state energies of the Hamiltonians h1, . . . , hN then the ground state

energy of H in
N is

∑N
j=1 ej. Moreover, if φ1, . . . , φN are ground state eigenvectors

of h1, . . . , hN then φ1 ⊗ · · · ⊗ φN is a ground state eigenvector for H in
N . Correction since

April 15: H → H

Correction since

August 30, 09:

HN → Hin
N

Proof. If Ψ ∈ D(H in
N ) is a unit vector we may write

Ψ = ψ1 ⊗Ψ1 + . . .+ ψK ⊗ΨK

where ψ1, . . . , ψK ∈ D(h1) and Ψ1, . . . ,ΨK ∈ h2 ⊗ · · · ⊗ hN are orthonormal. Correction since

May 3: N → K

Since Ψ is a unit vector we have ‖ψ1‖2 + . . .+ ‖ψK‖2 = 1.

We have

(Ψ, h1Ψ) =
K∑
i=1

(ψi, h1ψi) ≥
K∑
i=1

‖ψi‖2e1 = e1.

Hence (Ψ, H in
NΨ) ≥

∑N
j=1 ej.

On the other hand if we, given ε > 0, choose unit vectors φj ∈ D(hj), j =

1, . . . , N such that (φj, hjφj) < ej+ε for j = 1, . . . , N and define Ψ = φ1⊗· · ·⊗φN .

We find that Ψ is a unit vector and

(Ψ, H in
NΨ) =

N∑
j=1

(φj, hjφj) ≤
N∑
j=1

ej +Nε.

It is clear that if φ1, . . . , φN are ground state eigenvectors for h1, . . . , hN then Ψ

is a ground state eigenvector for H in
N .

The physically more interesting situation is for interacting particles. The

most common type of interactions is for two particles to interact pairwise. We

talk about 2-body interactions. The interaction of particle i and particle j (i < j

say) is described by an operator Wij acting in the Hilbert space hi ⊗ hj. As we

shall now explain we may again identify such an operator with an operator on
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h1 ⊗ · · · ⊗ hN , which we also denote by Wij. Let us for simplicity of notation Correction since

May 3: “by”

insertedassume that i = 1 and j = 2. We then identify W12 with the operator

W12 ⊗ I ⊗ · · · ⊗ I

(the number of identity operators in this tensor product is N − 2) thinking of

h1 ⊗ · · · ⊗ hN = (h1 ⊗ h2)⊗ · · · ⊗ hN .

The interacting Hamiltonian is then formally

HN = H in
N +

∑
1≤i<j≤N

Wij =
N∑
j=1

hj +
∑

1≤i<j≤N

Wij.

The reason this is only formal is that the domain of the operator has to be

specified and it may depend on the specific situation.

Determining the ground state energy and possible ground state eigenfunctions

of an interacting many particle quantum Hamiltonian is a very difficult problem.

It can usually not be done exactly and different approximative methods have

been developed and we shall discuss these later.

Finally, we must discuss one of the most important issues of many body

quantum mechanics. The question of statistics of identical particles. Assume

that the N particles discussed above are identical, i.e.,

h1 = . . . = hN = h, h1 = . . . = hN = h.

If the particles are interacting we also have that the 2-body potential Wij is the

same operator W for all i and j and that ExWEx = W , where Ex is the unitary

exchange operator.

When we identify the 1-body Hamiltonian h and the 2-body potential W with

operators on h⊗· · ·⊗h we must still write subscripts on them: hj and Wij. This

is to indicate on which of the tensor factors they act, e.g.

h1 = h⊗ I ⊗ · · · ⊗ I, W12 = W ⊗ I ⊗ · · · ⊗ I.

It is now clear that the non-interacting operator H in
N maps vectors in the sub-

spaces
⊗N

sym h and
∧N h into the same subspaces. The operator may therefore

be restricted to the domains

P+D(H in
N ) or P−D(H in

N ).
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If we restrict to the symmetric subspace
⊗N

sym h we refer to the particles as

bosons and say that they obey Bose-Einstein statistics. If we restrict to the

antisymmetric subspace
∧N h we refer to the particles as fermions and say that

they obey Fermi-Dirac statistics. As we shall see the physics is very different for

these two types of systems.

The interaction Hamiltonian will also formally map the subspaces
⊗N

sym h and∧N h into themselves. This is only formal since we have not specified the domain

of the interaction Hamiltonian.

We have an immediate corollary to Theorem 2.9.

COROLLARY 2.10 (Ground state of Bose system). We consider the Hamil-

tonian H in
N for N identical particles restricted to the symmetric subspace

⊗N
sym h,

i.e., with domain

Dsym(H in
N ) = P+D(H in

N ).

The ground state energy of this bosonic system is Ne if e is the ground state

energy of h. Moreover, if h has a ground state eigenvector φ then H in
N has the

ground state eigenvector φ⊗ · · · ⊗ φ.

Note in particular that the ground state energy of H in
N on the symmetric

subspace
⊗N

sym h is the same as on the full Hilbert space
⊗N h.

The situation for fermions is more complicated and we will return to it later.

EXAMPLE 2.11 (Atomic Hamiltonian). The Hamilton operator for N electrons

in an atom with nuclear charge Z and with the nucleus situated at the origin is

N∑
i=1

(−1
2
∆i −

Z

|xi|
) +

∑
1≤i<j≤N

1

|xi − xj|
.

Since physical electrons are fermions this Hamiltonian should be considered on

the antisymmetric Hilbert space
∧N L2(R3;C2). We shall return to showing that

an atom is stable.

3 Semi-bounded operators and quadratic forms

DEFINITION 3.1 (Positive Operators). An operator A defined on a subspace

D(A) of H is said to be positive (or positive definite) if (ψ,Aψ) > 0 for all



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 18

non-zero ψ ∈ D(A). It is said to be positive semi-definite if (ψ,Aψ) ≥ 0 for all

ψ ∈ D(A). In particular, such operators are symmetric.

The notion of positivity induces a partial ordering among operators.

DEFINITION 3.2 (Operator ordering). If A and B are two operators with

D(A) = D(B)5 then we say that A is (strictly) less than B and write A < B if Correction since

April 15: footnote

addedthe operator B−A (which is defined on D(B−A) = D(A) = D(B) is a positive

definite operator. We write A ≤ B if B − A is positive semi-definite.

DEFINITION 3.3 (Semi bounded operators). An operator A is said to be

bounded below if A ≥ −cI for some scalar c. Here I denotes the identity operator

on H. Likewise an operator A is said to be bounded above if A ≤ cI.

DEFINITION 3.4 (Quadratic forms). A quadratic form Q is a mapping Q :

D(Q)×D(Q)→ C (where D(Q) is a (dense) subspace ofH), which is sesquilinear

(conjugate linear in the first variable and linear in the second):

Q(α1φ1 + α2φ2, ψ) = α1Q(φ1, ψ) + α2Q(φ2, ψ)

Q(φ, α1ψ1 + α2ψ2) = α1Q(φ, ψ1) + α2Q(φ, ψ2).

We shall often make a slight abuse of notation and denote Q(φ, φ) by Q(φ). A

quadratic form Q is said to be positive definite if Q(φ) > 0 for all φ 6= 0 and

positive semi-definite if Q(φ) ≥ 0. It is said to be bounded below if Q(φ) ≥
−c‖φ‖2 (and above if Q(φ) ≤ c‖φ‖2) for some c ∈ R.

PROBLEM 3.5 (Cauchy-Schwarz inequality). Show that if Q is a positive semi-

definite quadratic form it satisfies the Cauchy-Schwarz inequality

|Q(φ, ψ)| ≤ Q(φ)1/2Q(ψ)1/2. (10)

DEFINITION 3.6 (Bounded quadratic forms). A quadratic form Q is said to

be bounded if there exists 0 ≤M <∞ such that

|Q(φ)| ≤M‖φ‖2,

for all φ ∈ D(Q).

5It would be more correct to say that we require that D(A)∩D(B) is dense and that B−A

is positive (semi)-definite on this subspace
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Note that quadratic forms that are bounded above and below are bounded,

but the converse is not true since bounded quadratic forms are not necessarily

real.

As for operators we have that if Q is positive semi-definite (or even just

bounded above or below) then it is symmetric, meaning

Q(φ, ψ) = Q(ψ, φ). (11)

The proof is the same as in Problem 1.6.

PROBLEM 3.7. Show that if Q is a bounded quadratic form then it extends to

a unique bounded quadratic form on all of H (compare Problem 1.10).

PROBLEM 3.8. Show that if Q is a quadratic form then it is enough to know,

Q(φ) = Q(φ, φ) for all φ ∈ D(Q), in order to determine Q(ψ1, ψ2) for all ψ1, ψ2 ∈
D(Q). Correction since

April 15: “All”

added
It is clear that to an operator A we have a corresponding quadratic form

Q(φ) = (φ,Aφ). The next problem shows that the opposite is also true.

PROBLEM 3.9 (Operators corresponding to quadratic forms). Show that cor-

responding to a quadratic form there exists a unique linear map A : D(A)→ H,

with Correction

since April 15:

operator→ linear

map. Formula-

tion improved

to Q(ψ, φ) =

(ψ,Aφ) for all

φ ∈ D(A) and

ψ ∈ D(Q)

D(A) =

{
φ ∈ D(Q) : sup

ψ∈D(Q)\{0}

|Q(ψ, φ)|
‖ψ‖

<∞

}
such that Q(ψ, φ) = (ψ,Aφ) for all φ ∈ D(A) and ψ ∈ D(Q). Note, that we may

have that D(A) is a strict subspace of D(Q). In fact, in general D(A) need not

even be dense (see Example 5.4).

The quadratic form corresponding to a Schrödinger operator −1
2
∆ + V is

Q(φ) = −1
2

∫
φ(x)∆φ(x)dx+

∫
V (x)|φ(x)|2dx

= 1
2

∫
|∇φ(x)|2dx+

∫
V (x)|φ(x)|2dx

for φ being a C2
0 function. In Section 11.3 in Lieb and Loss Analysis6 conditions Correction

since April 15:

C∞0 → C2
0are given on the potential V that ensure that the quadratic form corresponding

to a Schrödinger operator can be extended to the Sobolev space H1(R3).

6Lieb and Loss Analysis, AMS Graduate Studies in Mathematics Vol. 114 2nd edition
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PROBLEM 3.10. Assume that Q is a quadratic form, which is bounded below

and that A is the corresponding operator defined in Problem 3.9. If a unit vector

ψ0 ∈ D(Q) satisfies that

Q(ψ0) = inf
φ∈D(Q),‖φ‖=1

Q(φ)

show that ψ0 is a ground state eigenvector for A.

Theorem 11.5 in Lieb and Loss Analysis gives conditions ensuring that a

Schrödinger operator has a ground state.

4 Extensions of operators and quadratic forms

We shall here briefly sketch how to define a natural extension of a symmetric

operator and how to define a natural extension of the corresponding quadratic

form if the operator is bounded below.

DEFINITION 4.1 (Closed operator). An operator A on a Hilbert space H is

said to be closed if its graph Correction since

April 15: ∈ H⊕H
added

G(A) = {(φ,Aφ) ∈ H ⊕H | φ ∈ D(A)}

is closed in the Hilbert space H⊕H.

THEOREM 4.2 (Closability of symmetric operator). If A is a symmetric

(densely defined) operator on a Hilbert space H then the closure of its graph

G(A) is the graph of a closed operator A, the closure of A.

Proof. We have to show that we can define an operator A with domain

D(A) = {φ ∈ H | ∃ψ ∈ H : (φ, ψ) ∈ G(A)}

such that for φ ∈ D(A) we have Aφ = ψ if (φ, ψ) ∈ G(A). The only difficulty

in proving that this defines a closed (linear) operator is to show that there is at

most one ψ for which (φ, ψ) ∈ G(A). Thus we have to show that if (0, ψ) ∈ G(A)

then ψ = 0.

If (0, ψ) ∈ G(A) we have a sequence φn ∈ D(A) with limn→∞ φn = 0 and

limn→∞Aφn = ψ. For all φ′ ∈ D(A) we then have since A is symmetric that

(φ′, ψ) = lim
n→∞

(φ′, Aφn) = lim
n→∞

(Aφ′, φn) = 0.
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Thus ψ ∈ D(A)⊥, but since D(A) is dense we have ψ = 0.

EXAMPLE 4.3. If we consider the Laplace operator with domain C2
0(Rn), then

the domain of the closure is the Sobolev space H2(Rn). Correction

since April 15:

C∞0 → C2
0

DEFINITION 4.4 (Closed quadratic form). A quadratic form Q satisfying the

lower bound Q(φ) ≥ −α‖φ‖2 for some α > 0 is said to be closed if the domain

D(Q) is complete under the norm

‖φ‖α =
√

(α + 1)‖φ‖2 +Q(φ).

(That this is a norm follows from the Cauchy-Schwarz inequality in Problem 3.5.)

PROBLEM 4.5. Show that the above definition does not depend on how large

α is chosen.
Correction

since April 15:

symmetric →
semibounded.

Q(φ) ≥ −α‖φ‖2

added.

THEOREM 4.6 (Closability of form coming from semibounded operator). Let

A be a (densely defined) operator on a Hilbert space H with the lower bound

A ≥ −αI for some α > 0. Then there exists a unique closed quadratic form Q

such that

• D(A) ⊆ D(Q).

• D(Q) is the closure of D(A) under the norm ‖ · ‖α.

• Q(φ) ≥ −α‖φ‖2

• Q(φ) = (φ,Aφ) for φ ∈ D(A).

Proof. We consider the norm

‖φ‖α =
√

(α + 1)‖φ‖2 + (φ,Aφ)

defined for φ ∈ D(A). Observe that ‖φ‖ ≤ ‖φ‖α. Thus if φn ∈ D(A) is a Cauchy

sequence for the norm ‖ · ‖α it is also a Cauchy sequence for the original norm

‖ · ‖. Hence there is a φ ∈ H such that limn→∞ φn = φ. Moreover, since ‖ · ‖α
is a norm it follows that ‖φn‖α is a Cauchy sequence of real numbers, which

hence converges to a real number. Since limn→∞ ‖φn‖ = ‖φ‖ we conclude that

the sequence (φn, Aφn) converges to a real number.
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We want to define the quadratic form Q having domain D(Q) consisting of all

vectors φ ∈ H for which there is a Cauchy sequence φn ∈ D(A) under the ‖ · ‖α
norm such that limn→∞ φn = φ. For such a φ we define Q(φ) = limn→∞(φn, Aφn).

The only difficulty in proving the theorem is to show that φ = 0 implies that

limn→∞(φn, Aφn) = 0. In fact, all we have to show is that limn→∞ ‖φn‖α = 0.

Let us denote by

(ψ′, ψ)α = (α + 1)(ψ′, ψ) + (ψ′, Aψ)

the inner product corresponding to the norm ‖ · ‖α. Then

‖φn‖2
α = (φn, φm)α + (φn, φn − φm)α ≤ |(φn, φm)α|+ ‖φn‖α‖φn − φm‖α.

The second term tends to zero as n tends to infinity with m ≥ n since φn is a Correction since

April 15: absolute

values insertedCauchy sequence for the ‖ · ‖α norm and ‖φn‖α is bounded. For the first term

above we have since A is symmetric

(φn, φm)α = (α + 1)(φn, φm) + (φn, Aφm) = (α + 1)(φn, φm) + (Aφn, φm).

This tends to 0 as m tends to infinity since limm→∞ φm = φ = 0.

EXAMPLE 4.7. If we consider the Laplace operator with domain C2
0(Rn), then

the domain of the closed quadratic form in the theorem above is the Sobolev

space H1(Rn). Correction

since April 15:

C∞0 → C2
0

DEFINITION 4.8 (Friedrichs’ extension). The symmetric operator which ac-

cording to Problem 3.9 corresponds to the closed quadratic form Q described in

Theorem 4.6 is called the Friedrichs’ extension of the operator A, we will denote

it AF. Correction

since April 15:

Notation AF

addedWe will in the future often prove results on conveniently chosen domains.

These results may then by continuity be extended to the naturally extended

domain for the Friedrichs’ extension.

In particular we see that stable Hamiltonians H have a Friedrichs’ extension.

PROBLEM 4.9. Show that the Friedrichs’ extension of an operator is a closed

operator and hence that A ⊆ AF.

PROBLEM 4.10. Argue that Friedrichs extending an operator that is already

a Friedrichs extension does not change the operator, i.e., (AF)F = AF.
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Hence the Friedrichs extension is in general a larger extension than the closure

of the operator. In Problem 5.19 we shall see that the Friedrichs extension may

in fact be strictly larger than the closure.

PROBLEM 4.11. Show that if A is bounded below then the Friedrichs’ extension

of A+ λI (defined on D(A)) for some λ ∈ R is (A+ λI)F = AF + λI defined on

D(AF ).

We have seen that symmetric operators are characterized by A ⊆ A∗. The

Friedrichs’ extensions belong to the more restrictive class of self-adjoint operators

satisfying A = A∗ 7 . Self-adjoint operators are very important. It is for this class Correction since

August 30, 09:

footnote addedof operators that one has a general spectral theorem. We will here not discuss

selfadjoint operators in general, but restrict attention to Friedrichs’ extensions.

The closure of a symmetric operator is in general not self-adjoint. If it is the

operator is called essentially self-adjoint.

Short of giving the full spectral theorem we will in the next theorem charac-

terize the part of the spectrum of a Friedrichs’ extension which corresponds to

eigenvalues below the essential spectrum. We will not here discuss the essential

spectrum, it includes the continuous spectrum but also eigenvalues of infinite

multiplicity.

In these lecture notes we will only be interested in aspects of physical sys-

tems which may be understood solely from the eigenvalues below the essential

spectrum. For hydrogen the spectrum is the set{
− 1

2n2
: n = 1, 2, . . .

}
∪ [0,∞).

The essential spectrum [0,∞) corresponds here to the continuous spectrum. The

eigenvalues can be characterize as in the theorem below. In the next section we

will do this for the ground state energy.

THEOREM 4.12 (Min-max principle for Friedrichs’ extension). Consider an

operator A which is bounded from below on a Hilbert space H. Define the sequence

µn = µn(A) = inf

{
max

φ∈M, ‖φ‖=1
(φ,Aφ) : M ⊆ D(A), dimM = n

}
. (12)

7see Appendix A.4.1
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Then µn is a non-decreasing sequence and unless µ1, . . . , µk are eigenvalues of

the Friedrichs’ extension AF of A counted with multiplicities we have

µk = µk+1 = µk+2 = . . . .

If this holds we call µk the bottom of the essential spectrum. Correction since

August 30, 09:

µk=2 → µk+2

Correction

since May 3:

Formulation

changed slightly

If µk < µk+1 then the infimum above for n = k is attained for the k-

dimensional space Mk spanned by the eigenfunctions of AF corresponding to the

eigenvalues µ1, . . . , µk in the sense that

µk = max
φ∈Mk, ‖φ‖=1

(φ,AFφ),

If φ ∈M⊥
k ∩D(AF) then (φ,AFφ) ≥ µk+1‖φ‖2.

On the other hand if µ1, . . . , µk are eigenvalues for AF with corresponding

eigenvectors spanning a k-dimensional space Mk such that (φ,AFφ) ≥ µk‖φ‖2 for

all φ ∈M⊥
k ∩D(Q) then (12) holds for n = 1, . . . , k.

The proof is given in Appendix C. Note in particular that since A is assumed

to be bounded from below

µ1(A) = inf
φ∈D(A), ‖φ‖=1

(φ,Aφ) > −∞. (13)

PROBLEM 4.13. Show that if µn are the min-max values defined in Theo-

rem 4.12 for an operator A which is bounded below then

N∑
n=1

µn(A) =

inf{Tr(PA) | P an orth. proj. onto an N-dimensional subspace of D(A)}.

PROBLEM 4.14 (Operators with compact resolvent). Assume that the min-

max values µn(A) of an operator A on a Hilbert space H which is bounded below

satisfy µn(A) → ∞ as n → ∞. Show that we may choose an orthonormal basis

of H consisting of eigenvectors of AF.

Show that there is a constant α > 0 such that the Friedrichs’ extension of

A + αI (defined on D(A)) is an injective operator that maps onto all of the

Hilbert space. Show that the inverse map (AF + αI)−1 is compact. The operator Correction since

August 30, 09:

A→ AF(AF + αI)−1 is called a resolvent of A and we say that A has compact resolvent.
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5 Schrödinger operators

We shall in this section discuss Schrödinger operators (see Example 1.15) in more

details.

DEFINITION 5.1 (Schrödinger operator on C2
0(Rn)). The Schrödinger oper-

ator for a particle without internal degrees of freedom moving in a potential

V ∈ L2
loc(Rn)8

H = −1
2
∆− V

with domain D(H) = C2
0(Rn).

As we saw earlier we also have the Schrödinger quadratic form.

DEFINITION 5.2 (Schrödinger quadratic form on C1
0(Rn)). The Schrödinger

quadratic form for a particle without internal degrees of freedom moving in a

potential V ∈ L1
loc(Rn) is

Q(φ) = 1
2

∫
Rn
|∇φ|2 −

∫
Rn
V |φ|2

with domain D(Q) = C1
0(Rn).

Note that in order to define the quadratic form on C1
0(Rn) we need only

assume that V ∈ L1
loc whereas for the operator we need V ∈ L2

loc.

PROBLEM 5.3. If V ∈ L2
loc show that the operator defined as explained in

Problem 3.9 from the Schrödinger quadratic form Q with D(Q) = C1
0(Rn) is

indeed an extension of the Schrödinger operator H = −∆−V to a domain which

includes C2
0(Rn). If V ∈ L1

loc \ L2
loc then this need not be the case as explained in

the next example.

EXAMPLE 5.4. Consider the function f : Rn → R given by

f(x) =

{
|x|−n/2, if |x| < 1

0, otherwise

Then f is in L1(Rn) but not in L2(Rn). Let q1, q2, . . . be an enumeration of the

rational points in Rn and define V (x) =
∑

i i
−2f(x− qi). Then V ∈ L1(Rn) but
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for all ψ ∈ C1
0(Rn)\0 we have V ψ 6∈ L2. This follows easily since |V (x)|2|ψ(x)|2 ≥ Correction since

August 30, 09:

V ∈ L1
loc → V ∈

L1; C1
0 (Rn) →

C1
0 (Rn)\{0}

i−2|x−qi|−n|ψ(x)|2 for all i. Therefore the domain of the operator A defined from

the Schrödinger quadratic form Q with D(Q) = C1
0(Rn) is D(A) = {0}.

We shall now discuss ways of proving that the Schrödinger quadratic form is

bounded from below.

We begin with the Perron-Frobenius Theorem for the Schrödinger operator.

Namely, the fact that if we have found a non-negative eigenfunction for the

Schrödinger operator then the corresponding eigenvalue is the lowest possible

expectation for the Schrödinger quadratic form.

THEOREM 5.5 (Perron-Frobenius for Schrödinger). Let V ∈ L1
loc(Rn). As-

sume that 0 < ψ ∈ C2(Ω) and that (−1
2
∆ − V )ψ(x) = λψ(x) for all x in some Correction since

August 30,

09: C2(Rn) ∩
L2(Rn) →
C2(Ω). In the

Corollary below

ψ(x) = e−Z|x| /∈
C1(RN ).

open set Ω. Then for all φ ∈ C1
0(Rn) with support in Ω we have

Q(φ) = 1
2

∫
Rn
|∇φ|2 −

∫
Rn
V |φ|2 ≥ λ

∫
Rn
|φ|2.

Proof. Given φ ∈ C1
0(Rn) we can write φ = fψ, where f ∈ C1

0(Rn). Then

Q(φ) = 1
2

∫
Rn

[
ψ2|∇f |2 + |f |2|∇ψ|2 +

(
f∇f + f∇f

)
ψ∇ψ

]
−
∫
Rn
V |fψ|2

≥ 1
2

∫
Rn

[
|f |2|∇ψ|2 +

(
f∇f + f∇f

)
ψ∇ψ

]
−
∫
Rn
V |fψ|2

=

∫
Rn

[
|f |2ψ(−1

2
∆− V )ψ

]
= λ

∫
Rn
|φ|2,

where the second to last identity follows by integration by parts.

COROLLARY 5.6 (Lower bound on hydrogen). For all φ ∈ C1
0(R3) we have

1
2

∫
|∇φ(x)|2dx−

∫
Z|x|−1|φ(x)|2dx ≥ −Z

2

2

∫
|φ(x)|2dx.

Proof. Consider the function ψ(x) = e−Z|x|. Then for all x 6= 0 we have

(−1
2
∆− Z|x|−1)ψ(x) = −Z

2

2
ψ(x).

The statement therefore immediately follows for all φ ∈ C1
0(R3) with support

away from 0 from the previous theorem. The corollary follows for all φ ∈ C1
0(R3)

using the result of the next problem.

8The space Lp
loc(Rn), for some p ≥ 1 consists of functions f (defined modulo sets of measure

zero), such that
∫
C |f |

p <∞ for any compact set C ⊂ Rn
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PROBLEM 5.7. Show that all φ ∈ C1
0(R3) can be approximated by functions

φn ∈ C1
0(R3) with support away from 0 in such a way that∫

|∇φn(x)|2dx−
∫
Z|x|−1|φn(x)|2dx→

∫
|∇φ(x)|2dx−

∫
Z|x|−1|φ(x)|2dx.

PROBLEM 5.8. Show that the function ψ(x) = e−Z|x| as a function in L2(R3)

is an eigenfunction with eigenvalue −Z2/2 for the Friedrichs’ extension of H =

−1
2
∆− Z|x|−1 (originally) defined on C2

0(R3).

It is rarely possible to find positive eigenfunctions. A much more general

approach to proving lower bounds on Schrödinger quadratic forms is to use the

Sobolev inequality. In a certain sense this inequality is an expression of the

celebrated uncertainty principle.

THEOREM 5.9 (Sobolev Inequality). For all φ ∈ C1
0(Rn) with n ≥ 3 we have

the Sobolev inequality

‖φ‖ 2n
n−2
≤ 2(n− 1)

n− 2
‖∇φ‖2

Proof. Let u ∈ C1
0(Rn) then we have

u(x) =

∫ xi

−∞
∂iu(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)dx′i.

Hence

|u(x)|
n
n−1 ≤

(
n∏
i=1

∫ ∞
−∞
|∂iu|dxi

) 1
n−1

.

Thus by the general Hölder inequality (in the case n = 3 simply by Cauchy-

Schwarz)

∫ ∞
−∞
|u(x)|

n
n−1dx1 ≤

(∫ ∞
−∞
|∂1u|dx1

) 1
n−1

(
n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|∂iu|dx1dxi

) 1
n−1

.

Using the same argument for repeated integrations over x2, . . . , xn gives

∫
Rn
|u(x)|

n
n−1dx ≤

(
n∏
i=1

∫
Rn
|∂iu|dx

) 1
n−1

.

Thus

‖u‖ n
n−1
≤ ‖∇u‖1.
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Now set u = φ
2(n−1)
n−2 . (The reader may at this point worry about the fact that u

is not necessarily C1. One can easily convince oneself that the above argument

works for this u too. Alternatively , in the case n = 3 which is the one of interest

here 2(n−1)
n−2

is an integer and thus u is actually C1.) We then get

‖φ‖
2(n−1)
n−2
2n
n−2

≤ 2(n− 1)

n− 2
‖φ‖

n
n−2
2n
n−2

‖∇φ‖2.

Especially for n = 3 we get

‖φ‖6 ≤ 4‖∇φ‖2.

The sharp constant in the Sobolev inequality was found by Talenti9 In the case Correction since

August 30, 09: In

footnote Vol. 114

→ Vol. 14.

n = 3 the sharp version of the Sobolev inequality is

‖φ‖6 ≤
√

3

2
(2π2)1/3‖∇φ‖2 ≈ 2.34‖∇φ‖2. (14)

THEOREM 5.10 (Sobolev lower bound on Schrödinger). Assume that V ∈
L1

loc(Rn), n ≥ 3 and that the positive part V+ = max{V, 0} of the potential satisfies

V+ ∈ L
2+n

2 (Rn). Then for all φ ∈ C1
0(Rn) we get

Q(φ) = 1
2

∫
Rn
|∇φ|2 −

∫
Rn
V |φ|2

≥ − 2

n+ 2

(
2n

n+ 2

)n/2(
2(n− 1)

n− 2

)n(∫
V

2+n
2

+

)
‖φ‖2

2

Proof. In order to prove a lower bound we may of course replace V by V+. We

use the Sobolev Inequality and Hölder’s inequality

Q(φ) ≥ 1

2

(
2(n− 1)

n− 2

)−2

‖φ‖2
2n
n−2
− ‖V+‖ 2+n

2
‖φ‖

2n
n+2
2n
n−2

‖φ‖
4

n+2

2 .

We get a lower bound by minimizing over t = ‖φ‖2
2n
n−2

, i.e.,

Q(φ) ≥ min
t≥0

{
1

2

(
2(n− 1)

n− 2

)−2

t− ‖V+‖ 2+n
2
‖φ‖

4
n+2

2 t
n
n+2

}
,

which gives the answer above.

9Talenti, G. Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.

See the book Analysis, AMS Graduate Studies in Mathematics Vol. 14 by Lieb and Loss for a

simple proof.
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For n = 3 we find

Q(φ) ≥ −768

25

√
6

5

(∫
V

5/2
+

)
‖φ‖2

2 ≈ −33.65

(∫
V

5/2
+

)
‖φ‖2

2.

PROBLEM 5.11. Show that using the sharp Sobolev inequality (14) we get

Q(φ) ≥ −27π2

25

√
2

5

(∫
V

5/2
+

)
‖φ‖2

2 ≈ −6.74

(∫
V

5/2
+

)
‖φ‖2

2. (15)

PROBLEM 5.12 (Positivity of Schrödinger quadratic form). Show that if V+ ∈
L3/2(R3) and if the norm ‖V+‖3/2 is small enough then

Q(φ) =
1

2

∫
R3

|∇φ|2 −
∫
R3

V |φ|2 ≥ 0

for all φ ∈ C1
0(R3).

Correction since

May 3: 3→ n
PROBLEM 5.13. Show that if n ≥ 3 and V = V1 + V2, where V1 ∈ L∞(Rn)

and V2 ∈ Ln/2(Rn) with ‖V2‖n/2 small enough then the closed quadratic form

defined in Theorem 4.6 corresponding to the operator −1
2
∆−V defined originally

on C2
0(Rn) has domain H1(Rn). [Hint: You may use that H1(Rn) is the domain

of the closed quadratic form in the case V = 0]

EXAMPLE 5.14 (Sobolev lower bound on hydrogen). We now use the Sobolev

inequality to give a lower bound on the hydrogen quadratic form

Q(φ) =
1

2

∫
R3

|∇φ|2 −
∫
R3

Z|x|−1|φ|2.

In Corollary 5.6 we of course already found the sharp lower bound for the hydro-

gen energy. This example serves more as a test of the applicability of the Sobolev

inequality.

For all R > 0

Q(φ) ≥ 1

2

∫
R3

|∇φ|2 −
∫
|x|≤R

Z|x|−1|φ|2 − ZR−1

∫
R3

|φ|2.

Using (15) we find

Q(φ) ≥

[
−27π2

25

√
2

5

(∫
|x|<R

Z5/2|x|−5/2

)
− ZR−1

]∫
R3

|φ|2

≈ −169.43Z5/2R1/2 − ZR−1 ≥ −57.87Z2,

where we have minimized over R. This result should be compared with the sharp

value −0.5Z2.
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We may think of the Sobolev lower bound Theorem 5.10 as a bound on the

first min-max value µ1 (independetly of whether it is an eigenvalue or not) of

−1
2
∆ − V (x). The Sobolev bound may be strengthened to the following result.

A proof may be found in Lieb and Loss, Analysis, Theorem 12.4.

THEOREM 5.15 (Lieb-Thirring inequality). There exists a constant CLT > 0

such that if V ∈ L2
loc(Rn) and V+ ∈ L(n+2)/2(Rn) then the min-max values µn for

−1
2
∆− V (x) defined on C2

0(Rn) satisfy Correction since

August 30, 09:∑∞
n=0 µn →∑∞
n=1 µn.

∞∑
n=1

µn ≥ −CLT

∫
V

(n+2)/2
+ .

PROBLEM 5.16 (Hardy’s Inequality). Show that for all φ ∈ C1
0(R3) we have∫

R3

|∇φ(x)|2dx ≥ 1

4

∫
R3

|x|−2|φ(x)|2dx.

Show also that 1/4 is the sharp constant in this inequality.

EXAMPLE 5.17 (Dirichlet and Neumann Boundary conditions). Consider the

quadratic form

Q(φ) =

∫ 1

0

|φ′|2

on the Hilbert space L2([0, 1]) with the domain

D0(Q) =
{
φ ∈ C1([0, 1]) : φ(0) = φ(1) = 0

}
or

D1(Q) = C1([0, 1]).

The operator A0 corresponding toQ according to Problem 3.9 with domainD0(Q)

satisfies that Correction

since May 3: =

D(A0)∩C2([0, 1])

added
{
φ ∈ C2([0, 1]) : φ(0) = φ(1) = 0

}
= D(A0) ∩ C2([0, 1])

and if φ ∈ C2([0, 1]) with φ(0) = φ(1) = 0 then A0φ = −φ′′. This follows by

integration by parts since if ψ ∈ D0(Q) then

Q(ψ, φ) =

∫ 1

0

ψ′φ′ = φ′(1)ψ(1)− φ′(0)ψ(0)−
∫ 1

0

ψφ′′ = −
∫
ψφ′′.
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The condition φ(0) = φ(1) = 0 is called the Dirichlet boundary condition.

The operator A1 corresponding to Q with domain D1(Q) satisfies that Correction

since May 3: =

D(A1)∩C2([0, 1])

added
{
φ ∈ C2([0, 1]) : φ′(0) = φ′(1) = 0

}
= D(A1) ∩ C2([0, 1])

and if φ ∈ C2([0, 1]) with φ′(0) = φ′(1) = 0 then A1φ = −φ′′. Note that this

time there was no boundary condition in the domain D1(Q), but it appeared

in the domain of A1. The boundary condition φ′(0) = φ′(1) = 0 is called the

Neumann boundary condition. The statement again follows by integration by

parts as above. This time the boundary terms do not vanish automatically.

Since the map (ψ, φ) 7→ φ′(1)ψ(1) is not bounded on L2 we have to ensure the

vanishing of the boundary terms in the definition of the domain of A1.

The operators A1 and A0 are both extensions of the operator A = − d2

dx2

defined on D(A) = C2
0(0, 1), i.e., the C2-functions with compact support inside

the open interval (0, 1). Both A1 and A0 are bounded below and thus have

Friedrichs’ extensions. We shall see below that these Friedrichs’ extensions are

not the same. We will also see that the Friedrichs’ extension of A is the same as

the Friedrichs’ extension of A0.

PROBLEM 5.18. Show that the eigenvalues of the Dirichlet operator A0 in

Example 5.17 are n2π2, n = 1, 2, . . .. Show that the eigenvalues of the Neumann

operator A1 in Example 5.17 are n2π2, n = 0, 1, 2, . . .. Argue that these operators

cannot have the same Friedrichs’ extension.

PROBLEM 5.19. Show that if we consider the operator A = − d2

dx2 defined

on C2
0(0, 1) then the min-max values of A are µn = n2π2 n = 1, 2, . . .. Hence

these are eigenvalues of the Friedrichs’ extension of A. Argue that therefore

AF = A0F. Show however that they are not eigenvalues for the closure of the

operator A. (From the theory of Fourier series it is known that the eigenfunctions

corresponding to the eigenvalues n2π2 n = 1, 2, . . . form an orthonormal basis for

L2(0, 1). You may assume this fact.)
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6 The canonical and grand canonical picture and

the Fock spaces

We return to the study of the N -body operator

HN = H in
N +

∑
1≤i<j≤N

Wij =
N∑
j=1

hj +
∑

1≤i<j≤N

Wij (16)

defined on the Hilbert space HN = h1⊗ · · · ⊗ hN . This situation where we study

a fixed number of particles N is referred to as the canonical picture. If we have

an infinite sequence of particles (and hence also an infinite sequence of spaces

h1, h2, . . .) we may however consider all particle numbers at the same time. To

do this we introduce the Fock Hilbert space

F =
∞⊕
N=0

h1 ⊗ · · · ⊗ hN (17)

(when N = 0 we interpret h1 ⊗ · · · ⊗ hN as simply C and refer to it as the 0-

particle space, the vector 1 ∈ C is often called the vacuum vector and is denoted

Ω or |Ω〉) and the operator Correction

since May 3: =

removed

H =
∞⊕
N=0

HN , H
∞⊕
N=0

ΨN =
∞⊕
N=0

HNΨN (18)

(here H0 = 0) with domain

D

(
∞⊕
N=0

HN

)
=

{
Ψ =

∞⊕
N=0

ΨN | ΨN ∈ D(HN),
∞∑
N=0

‖HNΨN‖2 <∞

}
.

This situation when all particle numbers are considered at the same time is called

the grand canonical picture.

PROBLEM 6.1. What is the natural quadratic form domain for
⊕∞

N=0HN?

DEFINITION 6.2 (Stability of first and second kind). A many-body system

is said to be stable of the first kind or canonically stable if the operators HN are

stable for all N , i.e., if they are bounded below. A many-body system is said to

be stable of the second kind or grand canonically stable if there exists a constant

µ such that the operator
∞⊕
N=0

HN + µN

(with the same domain as
⊕∞

N=0HN) is stable, i.e., bounded below.
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Of special interest is the situation when we have identical particles. In this

case we may introduce the bosonic Fock space

FB(h) =
∞⊕
N=0

N⊗
sym

h (19)

and the fermionic Fock space

FF(h) =
∞⊕
N=0

N∧
h. (20)

The projections P± defined in (5) may be identified with projections on F with

P+(F) = FB(h), P−(F) = FF(h).

In this case we refer to h as the one-particle space.

PROBLEM 6.3. Assume we have two one-paticle spaces h1 and h2. In this prob-

lem we shall see that the spaces FB,F(h1 ⊕ h2) may in a natural way be identified

with FB,F(h1) ⊗ FB,F(h2). More precisely, show that there is a unique unitary

map

U : FB(h1)⊗FB(h2)→ FB(h1 ⊕ h2)

such that

U(Φ1 ⊗ Φ2) =

√
(N1 +N2)!

N1!N2!
P+(Φ1 ⊗ Φ2)

for Φ1 belonging to the N1-particle sector of FB(h1) and Φ2 belonging to the N2-

particle sector of FB(h2). The corresponding result holds for the fermionic Fock

spaces.

PROBLEM 6.4. Consider an operator of the form H =
⊕∞

N=0HN on F , FB or

FF. If Ψ is a normalized vector in the domain D (
⊕∞

N=0 HN) show that there exist

N and a normalized vector ΨN ∈ D(HN) such that (Ψ, HΨ) ≥ (ΨN , HNΨN).

If we have a system that is stable of the second kind, such that
⊕∞

N=0HN+µN

is stable, it follows from the above problem that the corresponding ground state

energy is always attained at a fixed particle number. The grand canonical picture

is useful in situations where we look for the particle number which gives the

smallest possible energy.
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EXAMPLE 6.5 (Molecules). We will here give the quantum mechanical descrip-

tion of a molecule. We first consider the canonical picture where the molecule has

N electrons (mass= 1, charge= −1, and spin= 1/2) and K nuclei with charges

Z1, . . . , ZK > 0, masses M1, . . . ,MK , and spins j1, . . . , jK (satisfying 2jk + 1 ∈ N
for k = 1, . . . , K). Some nuclei may be identical, but let us for simplicity not

treat them as bosons or fermions. The Hilbert space describing the molecule is

HN =
N∧
L2(R3;C2)⊗

K⊗
k=1

L2(R3;C2jk+1).

The Hamiltonian is

HN =
N∑
i=1

−1

2
∆xi +

K∑
k=1

− 1

2Mk

∆rk +
∑

1≤i<j≤N

1

|xi − xj|

−
N∑
i=1

K∑
k=1

Zk
|xi − rk|

+
∑

1≤k<`≤K

ZkZ`
|rk − r`|

.

Here we have written the nuclei coordinates as rk ∈ R3, k = 1, . . . , K and the

electron coordinates as xi ∈ R3, i = 1, . . . , N .

We may choose the domain forHN to be functions in C2
0 , i.e., smooth functions Correction since

May 3: ∞ → 3

and problem

added

with compact support. It can be proved that the molecule is stable in the sense

that there is a ground state energy EN > −∞ (See Problem A.6.1)

We may now consider the grand canonical picture for the electrons, i.e., we

vary the number N of electrons but leave the number K of nuclei fixed. Thus

we consider the operator
⊕∞

N=0 HN on the Fock space
⊕∞

N=0HN . It can be

proved that this system is stable of the second kind (even with µ = 0), i.e., that

infN EN > −∞. In fact, there is an Nc such that EN = ENc for all N ≥ Nc. It

is known that

Z1 + . . .+ ZK ≤ Nc ≤ 2(Z1 + . . .+ ZK) + 1.

PROBLEM 6.6. What would the Hilbert space be in the previous example if the

nuclei were all identical bosons?

PROBLEM 6.7 (Very difficult). Show that the map N 7→ EN defined in the

previous example is a non-increasing map.

(Hint: Physically adding an electron does not make the ground state energy

increasing because we can move this electron to infinity.) Correction since

August 30, 09:

Hint added
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EXAMPLE 6.8 (Matter). In the previous example we considered the number

of nuclei fixed, but both the canonical and the grand canonical picture for the

electrons. We may also consider the grand canonical situation for the nuclei. Let

us assume that we have only a finite number L of different kinds of nuclei and

let us still treat them neither as bosons nor fermions. Thus we want to consider

an arbitrary number K of nuclei with charges, masses and spins belonging to the

set

{(Z1,M1, j1), . . . , (ZL,ML, jL)}

We have to specify how many of each kind of nuclei we have. Let us not do this

explicitly, but only say that as the number of nuclei K tends to infinity we want

to have that the fractions of each kind converge to some values ν1, . . . , νL > 0

where of course ν1 + . . .+ νL = 1. Let EN,K be the canonical ground state energy

for N electrons and K nuclei. Stability of the second kind for this system states

that there is a constant µ such that

EN,K ≥ µ(N +K). (21)

This inequality is true. It is called Stability of Matter. It was first proved by

Dyson and Lenard in 1967–6810,11 but has a long history in mathematical physics.

Moreover, it is true that the limit

lim
K→∞

infN EN,K
K

exists. This is a version of what is called the existence of the thermodynamic

limit. It was proved in a somewhat different form by Lieb and Lebowitz12.

7 Second quantization

We now introduce operators on the bosonic and fermionic Fock spaces that are

an important tool in studying many body problems.

10Dyson, Freeman J. and Lenard, Andrew, Stability of matter. I, Jour. Math. Phys. 8,

423–434, (1967).
11 Dyson, Freeman J. and Lenard, Andrew, Stability of matter. II, Jour. Math. Phys. 9,

698–711 (1968).
12Lieb, Elliott H. and Lebowitz, Joel L. , The constitution of matter: Existence of ther-

modynamics for systems composed of electrons and nuclei. Advances in Math. 9, 316–398

(1972).
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For any vector in the one-particle Hilbert space f ∈ h. We first introduce two

operators a(f) and a∗(f) on the Fock Hilbert space

F =
∞⊕
N=0

HN , HN =
N⊗

h.

These operators are defined by the following actions on the pure tensor products

a(f)(f1 ⊗ · · · ⊗ fN) = N1/2(f, f1)hf2 ⊗ · · · ⊗ fN
a∗(f)(f1 ⊗ · · · ⊗ fN) = (N + 1)1/2f ⊗ f1 ⊗ · · · ⊗ fN .

On the 0-particle space C they act as a(f)Ω = 0 and a∗(f)Ω = f . We extend the

action of a(f) and a∗(f) by linearity to the domain ∪∞M=0

⊕M
N=0HN . Then a(f)

and a∗(f) are densely defined operators in F with the property that they map

a(f) : HN → HN−1, a∗(f) : HN → HN+1.

We call a(f) an annihilation operator and a∗(f) a creation operator. We think of

a(f) as annihilating a particle in the one-particle state f and of a∗(f) as creating

a particle in this state.

PROBLEM 7.1. Show that the operators a(f) and a∗(f) may be extended to

the domain

{Ψ =
∞⊕
N=0

ΨN |
∞∑
N=0

N‖ΨN‖2 <∞}.

PROBLEM 7.2. Show that for all vectors Ψ,Φ ∈ ∪∞M=0

⊕M
N=0HN we have

(a(f)Ψ,Φ)F = (Ψ, a∗(f)Φ)F ,

when f ∈ h. For this reason we say that a(f) and a∗(f) are formal adjoints.

It is more important to define creation and annihilation operators on the

bosonic and fermionic Fock spaces. The annihilation operators may simply be re-

stricted to the bosonic and fermionic subspaces . The creation operators however

require that we project back onto the appropriate subspaces using the projections

P± defined in (5) now considered on the Fock space. Thus we define

a±(f) = a(f), a∗±(f) = P±a
∗(f) (22)



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 37

PROBLEM 7.3. Show that a±(f) and a∗±(f) for all vectors f ∈ h define densely

defined operators on the spaces FB(h) (in the + case) and FF(h) (in the − case).

Show moreover that on their domains these operators satisfy

(a+(f)Ψ,Φ)FB = (Ψ, a∗+(f)Φ)FB , (a−(f)Ψ,Φ)FF = (Ψ, a∗−(f)Φ)FF .

The maps h 3 f → a∗±(f) are linear whereas the maps h 3 f → a±(f) are

anti-linear (i.e. conjudate linear). Correction

since August

30, 09: anti-

linear=conjugate

linear.

PROBLEM 7.4. We introduce the commutator [A,B] = AB−BA and the anti-

commutator {A,B} = AB +BA of two operators. Show that on their domain of

definition the operators a+ and a∗+ satisfy the Canonical Commutation Relations

(CCR)

[a+(f), a+(g)] = [a∗+(f), a∗+(g)] = 0, [a+(f), a∗+(g)] = (f, g)hI (23)

Show that on their domain of definition the operators a− and a∗− satisfy the

Canonical Anti-Commutation Relations (CAR)

{a−(f), a−(g)} = {a∗−(f), a∗−(g)} = 0, {a−(f), a∗−(g)} = (f, g)hI. (24)

PROBLEM 7.5. Show that if dim h = n then dim(FF(h)) = 2n. If e1, . . . , en are

orthonormal basis vectors in h describe the action of the operators a−(ei), a
∗
−(ei)

on an appropriate basis in FF(h).

PROBLEM 7.6. In this exercise we will give two descriptions of the Fock space

FB(C).

Show that FB(C) in a natural way may be identified with the space `2(N)

such that the vacuum vector Ω is the sequence (1, 0, 0, 0 . . .). Let |n〉 denote the

sequence with 1 in the n-th position and 0 elsewhere. Write the actions of the

operators a+(1), a∗+(1) on the basis vector |n〉. Correction

since May 3

vacuum vector

normalization

corrected

Show that we may also identify FB(C) with the space L2(R) such that the

vacuum vector Ω is the function (π)−1/4e−x
2/2 and a+(1) = 1√

2
(x + d

dx
), a∗+(1) =

1√
2
(x− d

dx
). For this last question it is useful to know that the space of functions

of the form p(x)e−x
2/2, where p(x) is a polynomial, is a dense subspace in L2(R).

PROBLEM 7.7. 1. Show that if u ∈ h is a unit vector then we have a direct

sum decomposition FB(h) =
⊕∞

n=0Hn such that Hn is an eigenspace of

eigenvalue n for the operator a∗+(u)a+(u).
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2. If u1, . . . , ur ∈ h are orthonormal vectors then we have a direct sum decom-

position FB(h) =
⊕∞

n1=0 . . .
⊕∞

nr=0Hn1,...,nr such that Hn1,...,nr is a joint

eigenspace for the operators a∗+(u1)a+(u1),. . . , a∗+(ur)a+(ur) of eigenvalues

n1, . . . , nr respectively.

3. Likewise for fermions show that if u1, . . . , ur ∈ h are orthonormal vectors

then we have a direct sum decomposition FF(h) =
⊕1

n1=0 . . .
⊕1

nr=0Hn1,...,nr

such that Hn1,...,nr is a joint eigenspace (i.e. the intersections of eigenspaces)

for the operators a∗−(u1)a−(u1),. . . , a∗−(ur)a−(ur) with eigenvalues n1, . . . , nr

respectively. Correction since

August 30, 09:

Definition of joint

spaces is added.LEMMA 7.8 (2nd quantization of 1-body operator). Let h be a symmetric

operator on h and let {uα}∞α=1 be an orthonormal basis for h with elements from

the domain D(h). We may then write

∞⊕
N=1

N∑
j=1

hj =
∞∑
β=1

∞∑
α=1

(uα, huβ)a∗±(uα)a±(uβ) (25)

as quadratic forms on the domain ∪∞M=0

⊕M
N=1 P±D(

∑N
j=1 hj) (for M = 0 the

domain is C).

Proof. We first observe that if f, g ∈ D(h) then

∞∑
β=1

∞∑
α=1

(g, uα)h(uα, huβ)h(uβ, f)h =
∞∑
β=1

(g, huβ)h(uβ, f)h =
∞∑
β=1

(hg, uβ)h(uβ, f)h

= (hg, f)h = (g, hf)h.

This in fact shows that the identity (25) holds in the sense of quadratic forms on

D(h).

Let us consider the action of a∗(uα)a(uβ) on a pure tensor product

a∗(uα)a(uβ)f1 ⊗ · · · ⊗ fN = N(uβ, f1)huα ⊗ f2 ⊗ · · · ⊗ fN

where f1, . . . , fN ∈ D(h). Thus we have

∞∑
β=1

∞∑
α=1

(uα, huβ)ha
∗(uα)a(uβ) = Nh1
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as quadratic forms on finite linear combinations of N -fold pure tensor products

of vectors from D(h). Correction since

August 30, 09:

functions →
vectors.

Since P± projects onto symmetrized or anti-symmetrized vectors we have

P±Nh1P± = P±
∑N

j=1 hjP± =
∑N

j=1 hjP± on
⊗N h. Hence

∞∑
β=1

∞∑
α=1

(uα, huβ)ha
∗
±(uα)a±(uβ)P± =

∞∑
β=1

∞∑
α=1

(uα, huβ)hP±a
∗(uα)a(uβ)P±

=
∞⊕
N=1

N∑
j=1

hjP±.

DEFINITION 7.9 (2nd quantization of 1-body operator). The operator

∞⊕
N=1

N∑
j=1

hj

is called the second quantization of the operator h. It is sometimes denoted

dΓ(h), but we will not use this notation here.

REMARK 7.10. If U is an operator on h another way to lift U to the Fock space

FB,F(h) is muliplicatively

Γ(U) =
∞⊕
N=0

N⊗
U

(
⊗N U = I when N = 0.) This is also denoted the second quantization of U . It Correction since

May 3: Case

N = 0 addedis the relevant operation for transformation operators, e.g., unitary maps.

PROBLEM 7.11. Show that one can always find an orthonormal basis for h

consisting of vectors from a given dense subspace.

Note that the second quantization of the identity operator I on h is the

number operator N =
⊕∞

N=0N on FB(h) or FF(h). The number operator may

be written as

N =
∞∑
α=1

a∗±(uα)a±(uα), (26)

for any orthonormal basis {uα}∞α=1 on h.

We have a similar result for 2-body potentials.
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LEMMA 7.12 (2nd quantization of 2-body operator). Let {uα}∞α=1 be an or-

thonormal basis for h. Let W be a 2-body potential for identical particles, i.e., a

symmetric operator on h ⊗ h such that ExWEx = W . Assume that uα ⊗ uβ ∈
D(W ) for all α, β = 1, 2, . . .. Then as quadratic forms on finite linear combina-

tions of pure symmetric (+) or antisymmetric (-) tensor products of basis vectors

from {uα}∞α=1 we have

∞⊕
N=2

∑
1≤i<j≤N

Wij = 1
2

∞∑
α,β,µ,ν=1

(uα ⊗ uβ,Wuµ ⊗ uν)a∗±(uα)a∗±(uβ)a±(uν)a±(uµ).

(27)

Proof. We have

Wu1 ⊗ u2 =
∞∑

α,β,µ,ν=1

(uα ⊗ uβ,Wuµ ⊗ uν)h⊗h(uµ, u1)h(uν , u2)huα ⊗ uβ

and

a∗(uα)a∗(uβ)a(uν)a(uµ)u1 ⊗ u2 ⊗ · · · ⊗ uN =

N(N − 1)(uµ, u1)(uν , u2)uα ⊗ uβ ⊗ u3 ⊗ · · · ⊗ uN .

Since this is true for any N -fold pure tensor product of basis vectors we conclude

that on such tensor products

1
2

∞∑
α,β,µ,ν=1

(uα ⊗ uβ,Wuµ ⊗ uν)a∗(uα)a∗(uβ)a(uν)a(uµ) =
N(N − 1)

2
W12.

As in the previous proof we have that on N -fold tensor products

N(N − 1)

2
P±W12P± =

∑
1≤i<j≤N

WijP±

(we are here using that ExWEx = W ). Note that P±a
∗(f)P± = P±a

∗(f) (if we

symmetrize or anti-symmetrize after creating an extra particle it plays no role

whether we had symmetrized or anti-symmetrized before). Thus

∞⊕
N=2

∑
1≤i<j≤N

WijP± =
∞⊕
N=2

N(N − 1)

2
P±W12P±

= P±
1
2

∞∑
α,β,µ,ν=1

(uα ⊗ uβ,Wuµ ⊗ uν)a∗(uα)a∗(uβ)a(uν)a(uµ)P±
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= 1
2

∞∑
α,β,µ,ν=1

(uα ⊗ uβ,Wuµ ⊗ uν)P±a∗(uα)P±a
∗(uβ)a(uν)a(uµ)P±

= 1
2

∞∑
α,β,µ,ν=1

(uα ⊗ uβ,Wuµ ⊗ uν)a∗±(uα)a∗±(uβ)a±(uν)a±(uµ)P±.

DEFINITION 7.13 (2nd quantization of 2-body operator). The operator

∞⊕
N=2

∑
1≤i<j≤N

Wij

is called the second quantization of the two-body operator W .

8 One- and two-particle density matrices for bo-

sonic or fermionic states

DEFINITION 8.1 (One-particle density matrix). Let Ψ =
⊕∞

N=0 ΨN be a Correction since

May 3: Formula

for Ψ correctednormalized vector on the bosonic Fock space FB(h) or the fermionic Fock space

FF(h) with finite particle expectation

(Ψ,NΨ) =
∞∑
N=0

N‖ΨN‖2 <∞.

We define the 1-particle density matrix (or 2-point function) of Ψ as the operator

γΨ on the one-body space h given by

(f, γΨg)h = (Ψ, a∗±(g)a±(f)Ψ).

PROBLEM 8.2. Show that γΨ is a positive semi-definite trace class operator

with

TrγΨ = (Ψ,NΨ).

PROBLEM 8.3. Show that if Ψ is a finite linear combination of pure tensor

products of elements from a subspace X ⊆ h then γΨ is a finite rank operator

whose range is a subspace of X.
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THEOREM 8.4 (Fermionic 1-particle density matrix). If Ψ is a normalized

vector on the fermionic Fock space FF(h) then γΨ satisfies the operator inequality

0 ≤ γΨ ≤ I. (28)

In particular, the eigenvalues of γΨ are in the interval [0, 1].

Proof. We simply have to prove that for all f ∈ h we have

0 ≤ (f, γΨf)h ≤ ‖f‖2.

The first inequality follows from Problem 7.3 since

(f, γΨf)h = (Ψ, a∗−(f)a−(f)Ψ) = (a−(f)Ψ, a−(f)Ψ) = ‖a−(f)Ψ‖2 ≥ 0.

The second inequality above follows from Problem 7.3 and the CAR relations

(24) since

(f, γΨf)h = (Ψ, a∗−(f)a−(f)Ψ) ≤ (Ψ, a∗−(f)a−(f)Ψ) + (a∗−(f)Ψ, a∗−(f)Ψ)

= (Ψ, a∗−(f)a−(f) + a−(f)a∗−(f)Ψ) = (Ψ, {a−(f), a∗−(f)}Ψ) = ‖f‖2.

PROBLEM 8.5. If u1, . . . , uN are orthonormal vectors in h we consider the nor-

malized (see Problem 1.24) vector Ψ = u1∧· · ·∧uN . Show that the corresponding

1-particle density matrix γΨ is the projection in h onto the N-dimensional space

spanned by u1, . . . , uN .

We are now ready to prove the result corresponding to Corollary 2.10 for

fermions.

THEOREM 8.6 (Ground state of non-interacting Fermi system). We consider

the Hamiltonian H in
N =

∑N
j=1 hj for N identical particles restricted to the anti-

symmetric subspace
∧N h, i.e., with domain

D−(H in
N ) = P−D(H in

N ).

We assume that the one-body operator h is bounded from below. The ground state

energy of this fermionic system is

inf{Tr(Ph) | P an orth. projection onto an N-dimensional subspace of D(h)}.
(29)
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If the infimum is attained for an N-dimensional projection P then H in
N has a

ground state eigenvector f1 ∧ · · · ∧ fN , where f1, . . . , fN is an orthonormal basis

for the space P (h). This basis may be chosen to consist of eigenvectors of h. All

expectations of h restricted to the orthogonal complement P (h)⊥ ∩ D(h) will be

greater than all expectations of h restricted to P (h).

Notice that according to Problem 4.13 the ground state energy of the N -

particle fermionic system may be described as
∑N

n=1 µn(h), where µn(h) are the

min-max values of h.

Proof. Choose an orthonormal basis {uα}∞α=1 for h with vectors from D(h) (see

Problem 7.11) Let Ψ ∈ D−(H in
N ) be normalized. It follows from Lemma 7.8 that

(Ψ, H in
NΨ) =

∞∑
β=1

∞∑
α=1

(uα, huβ)(Ψ, a∗−(uα)a−(uβ)Ψ) =
∞∑
β=1

∞∑
α=1

(uα, huβ)(uβ, γΨuα).

Recall that Ψ is assumed to be a finite linear combination of pure tensor products

of elements from D(h). Thus from Problem 8.3 we know that γΨ has finite rank.

Let γΨ have eigenvectors v1, . . . , vn and corresponding eigenvalues λ1, . . . , λn. It

follows again from Problem 8.3 that v1, . . . , vn ∈ D(h). Then

(Ψ, H in
NΨ) =

n∑
j=1

∞∑
β=1

∞∑
α=1

λj(uα, huβ)(uβ, vj)(vj, uα) =
n∑
j=1

λj(vj, hvj)

The state Ψ has fixed particle number N therefore we have that

n∑
j=1

λj = TrγΨ = (Ψ,NΨ) = N.

Since 0 ≤ λj ≤ 1 we must have n ≥ N .

We may assume that we had chosen the eigenvectors ordered such that

(v1, hv1) ≤ (v2, hv2) ≤ . . . ≤ (vn, hvn).

If we define the N -dimensional projection P that projects onto the space spanned

by v1, . . . , vN we find that

Tr[Ph] =
N∑
j=1

(vj, hvj) ≤
n∑
j=1

λj(vj, hvj) ≤ (Ψ, H in
NΨ).
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Thus

inf{Tr(Ph) | P an orth. projection onto an N-dimensional subspace of D(h)}

≤ inf{(Ψ, H in
NΨ) | Ψ ∈ D(H in

N ), ‖Ψ‖ = 1}

The opposite inequality is also true. In fact, given N orthonormal vectors

f1, . . . , fN ∈ D(h). Let Ψ = f1 ∧ · · · ∧ fN . Then according to Problem 8.5

γΨ = P is the projection onto the space spanned by f1, . . . , fN . As above we find

that (Ψ, H in
NΨ) = Tr[Ph].

Assume now that P minimizes the variational problem in (29). It is clear

from the above proof that the vector Ψ = f1 ∧ · · · ∧ fN is a ground state for H in
N

if f1, . . . , fN is an orthonormal basis for P (h).

We now show the stated properties of the space P (h) corresponding to a

minimizing projection.

It is first of all clear that if φ ∈ P (h) and ψ ∈ P (h)⊥ ∩D(h) are normalized

then

(φ, hφ) ≤ (ψ, hψ).

In fact, consider the projection Q onto the N -dimensional space

span(P (h) ∩ {φ}⊥) ∪ {ψ},

i.e., the space where we have replaced φ by ψ. We then have since P is minimizing

0 ≤ Tr[Qh]− Tr[Ph] = (ψ, hψ)− (φ, hφ).

The same argument actually shows that if ψ ∈ D(h) ∩ (P (h) ∩ {φ}⊥)⊥ is

normalized then (φ, hφ) ≤ (ψ, hψ). We will now use this to show that h maps

the space P (h) into itself. Assume otherwise, that there is a φ ∈ P (h) such that

hφ 6∈ P (h). Since D(h) is dense there is a g ∈ D(h) such that ((I − P )g, hφ) =

(g, (I − P )hφ) 6= 0. Assume that Re((I − P )g, hφ) 6= 0 (otherwise we simply

multiply g by i). We have (I − P )g ∈ D(h). Consider for t ∈ R (close to 0)

φt =
φ+ t(I − P )g

‖φ+ t(I − P )g‖
.

Note that φt ∈ D(h)∩(P (h)∩{φ}⊥)⊥. Hence (φ, hφ) ≤ (φt, hφt). This is however

in contradiction with the fact that

d

dt
(φt, hφt)|t=0 = ((I − P )g, hφ) + (φ, h(I − P )g) = 2Re((I − P )g, hφ) 6= 0.
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Thus h maps P (h) to itself and this space is hence spanned by eigenvectors of

h.

PROBLEM 8.7 (Bosonic 1-particle density matrix). If φ ∈ h is normalized we

consider the N-fold tensor product of φ with itself Ψ = φ ⊗ φ ⊗ · · ·φ. Note that

Ψ ∈
⊗N

sym h ⊆ FB(h). Determine the 1-particle density matrix γΨ.

8.1 Two-particle density matrices

DEFINITION 8.8 (Two-particle density matrix). Let Ψ =
⊕∞

N=0 ΨN be a Correction since

August 30,

09:
⊕∞
N=0 →⊕∞

N=0 ΨN .

normalized vector on the bosonic Fock space FB(h) or the fermionic Fock space

FF(h) with

(Ψ,N 2Ψ) =
∞∑
N=0

N2‖ΨN‖2 <∞.

We define the 2-particle density matrix (or 4-point function) of Ψ as the operator

Γ
(2)
Ψ on the two-body space h⊗ h uniquely given by

(f1 ⊗ f2,Γ
(2)
Ψ g1 ⊗ g2)h⊗h = (Ψ, a∗±(g2)a∗±(g1)a±(f1)a±(f2)Ψ). (30)

(in the fermionic case the ordering of the creation and annihilation operators is

important).
Correction

since June 24:

equation number

added, problem

reformulated

PROBLEM 8.9. Show that (30) indeed uniquely defines a positive semi-definite

trace class operator Γ
(2)
Ψ is with

TrΓ
(2)
Ψ = (Ψ,N (N − 1)Ψ).

Show also that

ExΓ
(2)
Ψ = ±Γ

(2)
Ψ (31)

where (+) is for bosons and (−) is for fermions The exchange operator Ex was

defined on Page 9.

PROBLEM 8.10. (Compare Problem 8.5) If u1, . . . , uN are orthonormal vectors

in h we consider the normalized (see Problem 1.24) vector Ψ = u1 ∧ · · · ∧ uN .

Show that the corresponding 2-particle density matrix Γ
(2)
Ψ is given by

Γ
(2)
Ψ = γΨ ⊗ γΨ − ExγΨ ⊗ γΨ
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(see Page 9 for the definition of the tensor product of operators). Determine the

eigenvectors and eigenvalues of Γ
(2)
Ψ and conclude, in particular, that the largest

eigenvalue of Γ
(2)
Ψ is at most 2.

Correction since

May 3 1→ 2

PROBLEM 8.11 (Bosonic 2-particle density matrix). Determine the 2-particle

density matrix for the bosonic state in Problem 8.7.

THEOREM 8.12 (Fermionic 2-particle density matrix). If dim h = M and

Ψ ∈
∧N h for some N ≤M and Ψ is normalized then if N and M are even

0 ≤ Γ
(2)
Ψ ≤

N(M −N + 2)

M
I. (32)

For all M including M =∞ we have Correction since

May 3: Last

sentence of

lemma improved0 ≤ Γ
(2)
Ψ ≤ NI. (33)

REMARK 8.13. • For N = 2 the upper bound in (32) is equal to the simple

bound Γ
(2)
Ψ ≤ N(N − 1)I, which follows from Problem 8.9. For all N > 2

the bound in (32) is strictly smaller than the simple bound. (This is left

for the reader to check.)

• If N = M the upper bound in (32) is Γ
(2)
Ψ ≤ 2I. Only in this case does the

upper bound in (32) agree with the upper bound for Slater determinants

(see Problem 8.10).

• We shall see in the proof of Theorem 8.12 that the upper bound in (32) is

achieved for special pair states, in which certain pairs of states are either

both occupied or both empty. This is an example of what is called Cooper

pairs and states of this type was very important in the famous Bardeen-

Cooper-Schrieffer theory of superconductivity13

Correction since

May 3: there →
their• A discussion of other results on bounds of 1-,2- and n-point functions and

their relations to physics may be found in a classical paper of C.N. Yang14

In order to prove the above theorem we need a little lemma. Correction since

May 3: Lemma

formulation

corrected

13 J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity, Phys. Rev.,

108, 1175–1204 (1957).
14C.N. Yang, Concept of Off-Diagonal Long Range Order and the Quantum Phases of Liquid

He and of Superconductors, Rev. of Mod. Phys., 34, 694–704, 1962.
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LEMMA 8.14. If dim(h) = M and f ∈ h ∧ h there exist orthonormal vec-

tors u1, . . . , u2r, where r is a positive integer less than or equal to M/2 and Correction since

August 30, 09:

”less than” →
”less than or

equal to”.

λ1, . . . , λr ≥ 0 such that

f =
r∑
i=1

λiu2i−1 ∧ u2i = λ1u1 ∧ u2 + λ2u3 ∧ u4 + . . . .

This lemma is proved in Appendix E.

Proof of Theorem 8.12. (See also Appendix A in the paper by C.N.Yang in foot-

note 14.) We will write M = 2m and N = 2n where m,n are positive integers.

We will proceed by induction on M . If M = 2 then N must be 2 (the case N = 0

is trivial). If u1, u2 is an orthonormal basis for M then the only possible state

with two particles is Ψ = u1∧u2. This is the case studied in Problem 8.10, where

we saw that indeed the largest eigenvalue is 2 = N(M−N+2)
M

. The same argument

actually may be used whenever M = N .

Assume now that M > 2 and N < M − 2 and that the theorem has been

proved for M − 2 and all N ≤M − 2.

Let f ∈ h ⊗ h and Ψ ∈
∧N h be normalized vectors such that (f,Γ

(2)
Ψ f)h⊗h

is as large as possible. Then similarly to Problem 2.5 we conclude that f is an

eigenvector of Γ
(2)
Ψ . As a consequence of (31) f is antisymmetric, i.e., f ∈ h ∧ h.

According to Lemma 8.14 we may write

f =
m∑
i=1

λiu2i−1 ∧ u2i.

Let ai = a−(ui) hence a∗i = a∗−(ui). Define

F =
m∑
i=1

√
2λia2i−1a2i.

The definition of Γ
(2)
Ψ implies that

(f,Γ
(2)
Ψ f)h⊗h = (Ψ, F ∗FΨ)FF(h). (34)

Since f is normalized, i.e.,
∑m

i=1 λ
2
i = 1 we may without loss of generality assume

that λ1 > 0. Let us introduce F ′ =
∑m

i=2

√
2λia2i−1a2i such that F = F ′ +

√
2λ1a1a2. Then

F ∗F = F ′∗F ′ +
√

2λ1F
′∗a1a2 +

√
2λ1a

∗
2a
∗
1F
′ + 2λ2

1a
∗
2a
∗
1a1a2 (35)
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We write

Ψ = Φ00 + Φ01 + Φ10 + Φ11,

corresponding to the direct sum decomposition described in Problem 7.7(3) for

the operators a∗1a1 and a∗2a2, i.e., Φk` for k, ` = 0, 1 is the projection of Ψ onto

the subspace where the number of particles in states u1 and u2 are k and ` or

more explicitly

a∗1a1Φk` = kΦk`, and a∗2a2Φk` = `Φk`.

From (35) we obtain

(Ψ, F ∗FΨ) = (Φ00, F
′∗F ′Φ00) + (Φ01, F

′∗F ′Φ01) + (Φ10, F
′∗F ′Φ10)

+(Φ11, (F
′∗F ′ + 2λ2

1a
∗
2a
∗
1a1a2)Φ11)

+(Φ00,
√

2λ1F
′∗a1a2Φ11) + (Φ11,

√
2λ1a

∗
2a
∗
1F
′Φ00)

= (Φ00, F
′∗F ′Φ00) + (Φ01, F

′∗F ′Φ01) + (Φ10, F
′∗F ′Φ10)

+(Φ11, F
′∗F ′Φ11) + 2λ2

1(Φ11,Φ11)

+
√

2λ1(Φ00, F
′∗a1a2Φ11) + (Φ11,

√
2λ1a

∗
2a
∗
1F
′Φ00).

We observe that this expression is a sum of two quadratic forms

(Ψ, F ∗FΨ) = Q1(Φ00 + Φ11) +Q2(Φ01 + Φ10).

We will now argue that without decreasing the value of (Ψ, F ∗FΨ) we may assume Correction since

August 30, 09:

changing →
decreasing.

that either Φ00 = Φ11 = 0 or Φ01 = Φ10 = 0. In fact, if this were not already the

case we would have

(Ψ, F ∗FΨ) ≤ max

{
Q1(Φ00 + Φ11)

‖Φ00‖2 + ‖Φ11‖2
,
Q2(Φ01 + Φ10)

‖Φ01‖2 + ‖Φ10‖2

}
,

i.e., we would do just as well by choosing either Φ00 = Φ11 = 0 or Φ01 = Φ10 = 0. Correction since

May 3: 01 → 10

Since Q2 does not depend on λ1 we see that the best choice cannot be Φ00 =

Φ11 = 0 because in this case we could increase the value of Q2(Φ01 + Φ10) to

(1− λ2
1)−1Q2(Φ01 + Φ10) by replacing f by f ′ = (1− λ2

1)−1/2
∑r

i=2 λiu2i−1 ∧ u2i in

contradiction with the fact that the value was already chosen optimal. Therefore Correction

since May 3:

Explanation of

Φ01 = Φ10 = 0

improved

we may assume that Φ01 = Φ10 = 0.

We therefore have

(Ψ, F ∗FΨ) = (Φ00, F
′∗F ′Φ00) + (Φ11, F

′∗F ′Φ11) + 2λ2
1(Φ11,Φ11)

+
√

2λ1(Φ00, F
′∗a1a2Φ11) + (Φ11,

√
2λ1a

∗
2a
∗
1F
′Φ00).
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We will now apply the Cauchy-Schwarz inequality

(Φ00, F
′∗a1a2Φ11) + (Φ11, a

∗
2a
∗
1F
′Φ00)

= (F ′Φ00, a1a2Φ11) + (a1a2Φ11, F
′Φ00)

≤ 2(a1a2Φ11, a1a2Φ11)1/2(Φ00, F
′∗F ′Φ00)1/2

≤ 2(Φ11, a
∗
2a
∗
1a1a2Φ11)1/2(Φ00, F

′∗F ′Φ00)1/2

= 2(Φ11,Φ11)1/2(Φ00, F
′∗F ′Φ00)1/2.

Inserting this into the identity above we finally obtain

(Ψ, F ∗FΨ) ≤ (Φ00, F
′∗F ′Φ00) + (Φ11, F

′∗F ′Φ11)

+2λ2
1(Φ11,Φ11) + 2

√
2λ1(Φ11,Φ11)1/2(Φ00, F

′∗F ′Φ00)1/2. (36)

Since Φ00 ∈
∧N h′, where h′ =span{u3, . . . , uM} and F ′ only contains a3, . . . , aM

we infer from the induction hypothesis that

(Φ00, F
′∗F ′Φ00) ≤ (1− λ2

1)‖Φ00‖2N(M −N)

M − 2
= (1− λ2

1)(1− ‖Φ11‖2)
N(M −N)

M − 2

Likewise since Φ11 = u1 ∧ u2 ∧ Φ′, with Φ′ ∈
∧N−2 h′ we get

(Φ11, F
′∗F ′Φ11) ≤ (1− λ2

1)‖Φ11‖2 (N − 2)(M −N + 2)

M − 2
.

If we denote by Y = ‖Φ11‖ we have 0 ≤ Y ≤ 1. We conclude from (36) that

(Ψ, F ∗FΨ) ≤ G(λ, Y ) where

G(λ, Y ) = (1− λ2
1)(1− Y 2)

N(M −N)

M − 2

+(1− λ2
1)Y 2 (N − 2)(M −N + 2)

M − 2
+ 2λ2

1Y
2

+2
√

2λ1Y (1− λ2
1)1/2(1− Y 2)1/2

(
N(M −N)

M − 2

)1/2

. (37)

One may now analyze (see Appendix D for details) the function G(λ, Y ) and show

that for 0 ≤ λ ≤ 1 and 0 ≤ Y ≤ 1 its maximum is attained for

λ1 = (2/M)1/2, Y = (N/M)1/2. (38)

where the maximal value is N(M−N+2)
N

.
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It follows from the proof above that the upper bound in Theorem 8.12 is

optimal and one may go through the proof to find the Ψ that optimizes the

bound. In the next example we directly construct a Ψ that achieves the bound

in Theorem 8.12.

EXAMPLE 8.15 (A 2-particle density matrix with maximal eigenvalue). Our goal

in this example is to show that the bound in the previous example is, in fact,

optimal. We will explicitly write down a state ΨN ∈
∧N h, where dim h = M

such that the 2-particle density matrix Γ
(2)
ΨN

has eigenvalue N(M−N+2)
M

, i.e., the

largest possible. We will assume that M = 2m and N = 2n where m and n are

positive integers. Let u1, . . . , uM be an orthonormal basis for h. Let ai = a−(ui).

Hence a∗i = a∗−(ui). We define first a vector that does not have a fixed particle

number

Ψ = c0

m∏
j=1

(1 + a∗2j−1a
∗
2j)|0〉. (39)

Here c0 is a positive normalization constant. We choose ΨN to be a normalized

vector in
∧N h proportional (by a positive constant) to the projection of Ψ onto∧N h. We have

ΨN =

(
m

n

)−1/2 ∑
1≤i1<...<in≤m

n∏
k=1

a∗2ik−1a
∗
2ik
|0〉.

We claim that

f =
m∑
i=1

m−1/2u2i−1 ∧ u2i

is an eigenfunction of Γ
(2)
ΨN

with the largest possible eigenvalue.

PROBLEM 8.16. Show that the above vector f is normalized.

Let

F =
m∑
i=1

√
2m−1/2a2i−1a2i.

Then as in (34) we have

(f,Γ
(2)
ΨN
f) = (ΨN , F

∗FΨN).

PROBLEM 8.17. Show (combinatorically) that (ΨN , F
∗FΨN) = N(M−N+2)

M
.
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It follows from the previous problem that (f,Γ
(2)
ΨN
f) has the largest possible

value among normalized f . It follows as in Problem 2.5 (used on −Γ
(2)
ΨN

) that f

must be an eigenvector of Γ
(2)
ΨN

with eigenvalue N(M−N+2)
M

.

The state in (39) as well as the Slater determinant states in Problem 1.24

and 8.5 are special cases of what are called quasi-free states. We will study these

states in more detail in Section 10.

8.2 Generalized one-particle density matrix

If Ψ ∈ FB,F(h) does not have a fixed particle number it is also important to know

(Ψ, a±(f)a±(g)Ψ) and (Ψ, a∗±(f)a∗±(g)Ψ). We will therefore consider a general-

ization of the one-particle density matrix.

DEFINITION 8.18 (Generalized one-particle density matrix). If Ψ ∈ FB,F(h)

is a normalized vector with finite particle expectation we define the corresponding Correction since

August 30, 09:

Finite particle

expectation

added

generalized one-particle density matrix to be the positive semi-definite operator

ΓΨ defined on h⊕ h∗ by

(f1 ⊕ Jg1,ΓΨf2 ⊕ Jg2)h⊕h∗ = (Ψ, (a∗±(f2) + a±(g2))(a±(f1) + a∗±(g1))Ψ)FB,F .

Here as usual J : h→ h∗ is the conjugate linear map such that Jg(f) = (g, f).

PROBLEM 8.19. Show that ΓΨ as defined above is indeed linear.
Correction since

August 30, 09:

Bosonic case

added

PROBLEM 8.20. Show that for fermions 0 ≤ ΓΨ ≤ Ih⊕h∗ and for bosons

ΓΨ ≥ 0, ΓΨ ≥ −S. (Compare Theorem 8.4).

We may write ΓΨ in block matrix form corresponding to the direct sum de-

composition h⊕ h∗

ΓΨ =

(
γΨ αΨ

α∗Ψ 1± JγΨJ
∗

)
. (40)

Here + is for bosons and − is for fermions. The map γΨ : h → h is the usual

one-particle density matrix and αΨ : h∗ → h is the linear map given by

(f, αΨJg) = (Ψ, a±(g)a±(f)Ψ). (41)

The adjoint J∗ of the conjugate linear map J , which is, in fact, also the inverse

J∗ = J−1, is discussed in Appendix E. The fact that the lower right corner of
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the matrix has the form given follows from the canonical commutation or anti-

commutation relations in Problem 7.4

(Ψ, a±(g2)a∗±(g1)Ψ) = (g2, g1)± (Ψ, a∗±(g1)a±(g2)Ψ) = (g2, g1)± (g2, γΨg1)

= (Jg1, Jg2)± (Jg1, JγΨJ
∗Jg2) = (Jg1, (1± JγΨJ

∗)Jg2).

The linear map αΨ has the property

α∗Ψ = ±JαΨJ. (42)

In fact, from the definition (41) we have

(α∗Ψf, Jg) = (f, αΨJg) = ±(g, αΨJf) = ±(JαΨJf, Jg).

Thus we may also write the generalized one-particle density matrix as

ΓΨ =

(
γΨ αΨ

±JαΨJ 1± JγΨJ
∗

)
, (43)

where + is for bosons and − is for fermions.

It will also be convenient to introduce the generalized annihilation and cre-

ation operators

A±(f ⊕ Jg) = a±(f) + a∗±(g) (44)

A∗±(f ⊕ Jg) = a∗±(f) + a±(g). (45)

Note that A± is a conjugate linear map from h⊕ h∗ to operators on FB,F(h) and

A∗± is a linear map. We have the relation

A∗±(F ) = A±(JF ) where J =

(
0 J∗

J 0

)
: h⊕ h∗ → h⊕ h∗, (46)

for all F ∈ h⊕ h∗. Using the generalized creation and annihilation operators we

may express the canonical commutation relations as

[A+(F1), A∗+(F2)] = (F1,SF2)h⊕h∗ , where S =

(
1 0

0 −1

)
: h⊕h∗ → h⊕h∗ (47)

and the canonical anti-commutation relations as

{A−(F1), A∗−(F2)} = (F1, F2)h⊕h∗ . (48)
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We warn the reader that in general

[A+(F1), A+(F2)] 6= 0, {A−(F1), A−(F2)} 6= 0.

In terms of the generalized creation and annihilation operators the generalized

one-particle density matrix satisfies

(F1,ΓΨF2)h⊕h∗ = (Ψ, A∗±(F2)A±(F1)Ψ), (49)

for all F1, F2 ∈ h⊕ h∗. Correction since

August 30, 09:

A±(F2)∗ →
A∗±(F2).

9 Bogolubov transformations

DEFINITION 9.1 (Bogolubov maps). A linear bounded isomorphism V : h⊕
h∗ → h ⊕ h∗ is called a bosonic Bogolubov map if A∗+(VF ) = A+(VJF ) for all

F ∈ h⊕ h∗ and

[A+(VF1), A∗+(VF2)] = (F1,SF2), (50)

for all F1, F2 ∈ h ⊕ h∗. It is called a fermionic Bogolubov map if A∗−(VF ) =

A−(VJF ) for all F ∈ h⊕ h∗ and

{A−(VF1), A∗−(VF2)} = (F1, F2). (51)

for all F1, F2 ∈ h⊕ h∗.

This definition simply says that a Bogolubov map V is characterized by F 7→
A±(VF ) having the same properties ((46) and (47) or (48)) as F 7→ A±(F ).

If V is a Bogolubov map then one often refers to the operator transformation

A±(F )→ A±(VF ) as a Bogolubov or (Bogolubov-Valatin) transformation.

Using (46) and (47) we may rewrite the conditions for being a bosonic Bogol-

ubov map as

(VF1,SVF2) = (F1,SF2), and JVF = VJF

for all F, F1, F2 ∈ h ⊕ h∗. Likewise, using (46) and (48) we may rewrite the

conditions for being a fermionic Bogolubov map as

(VF1,VF2) = (F1, F2), and JVF = VJF
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for all F, F1, F2 ∈ h⊕ h∗.

Since we are assuming that V is invertible we see that

V−1 = SV∗S (52)

in the bosonic case and

V−1 = V∗ (53)

in the fermionic case.

Thus we immediately conclude the following reformulation of the definition

of Bogolubov maps. Correction since

June 24: Theorem

reformulated

THEOREM 9.2 (Bogolubov maps). A linear map V : h ⊕ h∗ → h ⊕ h∗ is a

bosonic Bogolubov map if and only if

V∗SV = S, VSV∗ = S, JVJ = V . (54)

It is a fermionic Bogolubov map if and only if

V∗V = Ih⊕h∗ , VV∗ = Ih⊕h∗ , JVJ = V . (55)

A fermionic Bogolubov map is, in particular, unitary.

PROBLEM 9.3. Show that the Bogolubov maps form a subgroup of the group

of isomorphism of h⊕ h∗.

We may write a Bogolubov map as a block matrix

V =

(
U J∗V J∗

V JUJ∗

)
, (56)

where U : h → h, V : h → h∗. That a Bogolubov map must have the special

matrix form (56) follows immediately from the condition JVJ = V . In order for

the matrix (56) to be a Bogolubov map we see from (54) and (55) that U and V

must also satisfy the conditions

U∗U = 1± V ∗V, JV ∗JU = ±JU∗J∗V (57)

where + is for bosons and − is for fermions. We also get from (54) and (55) that Correction since

August 30, 09:

∓ → ±
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UU∗ = 1± J∗V V ∗J (58)

again with − for bosons and + for fermions.

We shall next show that the Bogolubov transformations A±(F ) 7→ A±(VF )

may be implemented by a unitary map on the Fock spaces FB,F. We will need

the following result.

PROBLEM 9.4. Assume that u1, u2 . . . are orthonormal vectors in h. Consider

for some positive integers, M,n1, . . . , nM the vector

a∗±(uM)nM · · · a∗±(u1)n1|0〉 ∈ FB,F(h).

Show that in the bosonic case the vector has norm (n1! · · ·nM !)1/2 for all non-

negative integers n1, . . . , nM . Show that in the fermionic case the vector vanishes

unless n1, . . . , nM are all either 1 or 0 and in this cases the vector is normalized.
Correction since

August 30, 09:

”either 1” →
”either 1 or 0”.THEOREM 9.5 (Unitary Bogolubov implementation). If V : h⊕h∗ → h⊕h∗ is

a Bogolubov map (either fermionic or bosonic) of the form (56) then there exists

a unitary transformation

UV : FB,F(h)→ FB,F(h)

such that

UVA±(F )U∗V = A±(VF )

for all F ∈ h⊕ h∗ if and only if V ∗V is trace class. This trace class condition is

referred to as the Shale-Stinespring condition.

Proof. The proof is somewhat complicated and we will give a sketchy presentation

leaving details to the interested reader.

We assume first V ∗V is trace class and will construct the unitary UV . Let

u1, u2, . . . be an orthonormal basis for h. We have an orthonormal basis for

FB,F(h) given by (see Problem 9.4)

|ni1 , . . . , niM 〉 = (ni1 ! · · ·niM !)−1/2a∗±(uiM )niM · · · a∗±(ui1)ni1 |0〉,

where M = 1, 2, . . ., 1 ≤ i1 < i2 < . . . < iM run over the positive integers. For

bosons n1, . . . , nM run over positive integers and for fermions they are all 1.



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 56

We will construct the unitary UV by constructing the orthonormal basis

|ni1 , . . . , niM 〉V = UV |ni1 , . . . , niM 〉.

The main difficulty is to construct the vacuum |0〉V = UV |0〉. Recall that A±(u⊕
0) = a±(u) are the annihilation operators and that A±(0⊕ Ju)) = a∗±(u) are the

creation operators. Thus if UV exists the new vacuum must be characterized by

A±(V(ui ⊕ 0))|0〉V = UVA±(ui ⊕ 0)U∗VUV |0〉 = UVA±(ui ⊕ 0)|0〉 = 0,

for all i = 1, 2, i.e., by being annihilated by all the new annihilation operators

A±(V(ui ⊕ 0)). We shall construct the new vacuum below.

Having constructed the new vacuum |0〉V the rest of the proof is fairly easy.

We must have

|ni1 , . . . , niM 〉V = UV |ni1 , . . . , niM 〉

= (ni1 ! · · ·niM !)−1/2UVA±(0⊕ JuiM )niM · · ·A±(0⊕ Jui1)ni1U∗VUV |0〉

= (ni1 ! · · ·niM !)−1/2A±(V(0⊕ JuiM ))niM · · ·A±(V(0⊕ Jui1))ni1 |0〉V .

It follows from the fact, that the new creation operators and the new annihilation

operators satisfy the canonical commutation or anti-commutation relations that

the vectors |ni1 , . . . , niM 〉V will form an orthonormal family. All we have to show

is that they form a basis. To do this we simply revert the construction and

construct the old basis vectors |ni1 , . . . , niM 〉 from the new |ni1 , . . . , niM 〉V by Correction since

August 30, 09:

old basis vectors

|ni1 , . . . , niM 〉V →
|ni1 , . . . , niM 〉

simply interchanging the roles of the old and the new basis vectors and of V and

V−1. Doing this we will be able to express the old basis vectors as (possibly

infinite) linear combinations of the new basis vectors, thus showing that the

new vectors indeed span the whole space. We will leave this reversion of the

construction to the interested reader.

It remains to construct the new vacuum. We first choose a particularly useful

orthonormal basis of h. We use the notation of (56). Note that the linear Hermi-

tian matrix U∗U commutes with the conjugate linear map C = U∗J∗V . In fact,

from (58) and (57) we have

U∗UC = U∗UU∗J∗V = U∗(1± J∗V V ∗J)J∗V = U∗J∗V ± U∗J∗V V ∗V

= U∗J∗V + U∗J∗V (U∗U − 1) = CU∗U.
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Since V ∗V is trace class it has an orthonormal basis of eigenvectors. The relation

(57) shows that this is also an eigenbasis for U∗U . It follows from (58) that

C∗C = V ∗JUU∗JV = V ∗(1± V V ∗)V = V ∗V ± (V ∗V )2

and thus C∗C is trace class.

Since the eigenvalues of U∗U are real it follows that C maps each eigenspace

of U∗U into itself. Indeed, if v ∈ h satisfies U∗Uv = λv for λ ∈ R we have

U∗UCv = CU∗Uv = λCv.

From (57) we see that the map C is a conjugate Hermitian map for bosons

and a conjugate anti-Hermitian map for fermions. We may therefore find an

orthonormal basis for each eigenspace of U∗U according to Theorem E.2.

This means that we can find an orthonormal basis u1, u2 . . . of h consist-

ing of eigenvectors of U∗U , denoting the eigenvalues µ2
1, µ

2
2 . . . (assuming that

µ1, . . . ≥ 0), such that in the bosonic case they are also eigenvectors of C

with real eigenvalues λ1, λ2 . . ., or in the fermionic case there are I ′ ⊂ N and

I ′′ = N\{2i, 2i− 1|i ∈ I ′} satisfying Correction since

August 30, 09:

Redefine I′ and

I′′.Cu2i = λiu2i−1, Cu2i−1 = −λiu2i, i ∈ I ′

where λi > 0 and

Cui = 0, i ∈ I ′′.

We have according to (56) the new annihilation operators

A±(V(ui ⊕ 0)) = A±((Uui ⊕ V ui)) = µia±(fi) + a∗±(gi), (59)

where for i = 1, 2 . . . we have introduced gi = J∗V ui and

fi =

{
µ−1
i Uui, if µi 6= 0

0, if µi = 0
.

The new creation operators are (of course) the adjoints of the annihilation oper-

ators, but this indeed agrees with (56) since

A±(V(0⊕ Jui)) = A±((J∗V ui ⊕ JUui) = a±(gi) + µia
∗
±(fi).

In the bosonic case it follows from (57) that µi ≥ 1, thus in this case we

have (fi, fj) = µ−2
i (ui, U

∗Uuj) = δij and the fi are orthonormal. Since U is Correction since

June 22 injective

→ surjective
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a surjective map (since U∗ is invertible by (58)) the fi form an orthonormal

basis for h. Moreover, (fi, gj) = µ−1
i (Uui, J

∗V uj) = µ−1
i (ui, Cuj) = λi/µiδij. Let

νi = λi/µi. Thus gi = νifi. From (57)

ν2
i =

λ2
i

µ2
i

= (gi, gi) = (ui, V
∗V ui) = (ui, (U

∗U − 1)ui) = µ2
i − 1.

We conclude that in the bosonic case there is an orthonormal basis f1, f2 . . . , for h

and numbers µi ≥ 1, νi ∈ R, for i = 1, . . . such that the new bosonic annihilation

operators are

A+(V(ui ⊕ 0)) = µia+(fi) + νia
∗
+(fi), µ2

i − ν2
i = 1 (60)

for i = 1, 2 . . ..

We can now in the bosonic case find the new vacuum vector |0〉V characterized

by being annihilated by all the new annihilation operators. Indeed,

|0〉V = lim
M→∞

M∏
j=1

(1− (νj/µj)
2)1/4

∞∑
n=0

(
−νj
2µj

)n a∗+(fj)
2n

n!
|0〉

=
∏
j=1

(1− (νj/µj)
2)1/4

∞∑
n=0

(
−νj
2µj

)n a∗+(fj)
2n

n!
|0〉

=

(∏
j=1

(1− (νj/µj)
2)1/4

)
exp

[
−
∑
i=1

νi
2µi

a∗+(fi)
2

]
|0〉. (61)

Here the exponential is really just a convenient way of writing the power series.

The normalization factor follows from the Taylor series expansion

(1− 4t2)−1/2 =
∞∑
n=0

t2n(2n)!

(n!)2
,

which gives for all i

(1− (νi/µi)
2)1/2

∞∑
n=0

〈0|a+(fi)
2na∗+(fi)

2n|0〉(νi/2µi)2n

(n!)2

= (1− (νi/µi)
2)1/2

∞∑
n=0

(2n)!(νi/2µi)
2n

(n!)2
= 1.

Using that V ∗V is trace class and hence that
∑

i=1 ν
2
i <∞ we shall now see that

the limit M →∞ above exists. Define

ΨM =
M∏
j=1

(1− (νj/µj)
2)1/4 exp

[
−

M∑
i=1

νi
2µi

a∗+(fi)
2

]
|0〉.
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We have

‖ΨN −ΨM‖2 = 2− 2
N∏

j=M+1

(1− (νj/µj)
2)1/4 → 0

as M →∞ uniformly in N > M . Thus ΨM is Cauchy sequence.

Since fi is orthogonal to fj for i 6= j the creation and annihilation operators

a+(fi), a
∗
+(fi) commute with a+(fj), a

∗
+(fj) if i 6= j. Using this it is a fairly

straightforward calculation to see that

(µia+(fi) + νia
∗
+(fi))|0〉V = 0

for all i = 1, . . ., which is what we wanted to prove.

We turn to the fermionic case. Our goal is to show that if we define

ηi =

{
fi, if µi 6= 0

gi, if µi = 0
(62)

then η1, η2 . . . is an orthonormal basis for h. We claim moreover that the new

annihilation operators may be written Correction since

June 24: i → 2i

several places

Correction since

August 30, 09:

undo correc-

tion June 24;

A−(V(ηj ⊕ 0))→
A−(V(uj ⊕ 0));

adding the

possibility of αi

A−(V(u2i−1 ⊕ 0)) = αia−(η2i−1)− βia∗−(η2i), i ∈ I ′ (63)

A−(V(u2i ⊕ 0)) = αia−(η2i) + βia
∗
−(η2i−1), i ∈ I ′ (64)

A−(V(ui ⊕ 0)) = a∗−(ηi), i ∈ I ′′k (65)

A−(V(ui ⊕ 0)) = a−(ηi), i ∈ I ′′ \ I ′′k , (66)

where k is a non-negative integer and I ′′k refers to the first k elements of I ′′,

αi = µ2i > 0, βi ≥ 0 and α2
i + β2

i = 1, for i ∈ I ′.
Before proving this we observe that it is easy to see from this representation

that the following normalized vector is annihilated by all the operators in (63–65)

Correction since

August 30, 09:

βi → −βi

|0〉V =

∏
i∈I′′k

a∗−(ηi)

 ∏
2i∈I′

(αi − βia∗−(η2i)a
∗
−(η2i−1))|0〉

=

∏
i∈I′′k

a∗−(ηi)

(∏
2i∈I′

αi

)
exp

(
−
∑
2i∈I′

βi
αi
a∗−(η2i)a

∗
−(η2i−1)

)
|0〉. (67)

Again this vector should really be defined by a limiting procedure. Since V ∗V

is trace class we have from (57) that
∑

i(1 − µ2
i ) < ∞ and thus

∏
i∈I′ α

2
i =∏

i∈I′ µ
2
2i > 0. The limiting procedure is hence justified as in the bosonic case. Correction since

August 30, 09:

Positivity of∏
i∈I′ α

2
i added.
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To prove (63)–(65) we return to (59). We have as in the bosonic case (fi, fj) =

µ−1
i µ−1

j (Uui, Uuj) = δij if µi, µj 6= 0. From (57) we have

(gi, gj) = (uj, V
∗V ui) = (uj, (1− U∗U)ui) = (1− µ2

i )δij.

Thus for all i, j = 1, 2, . . . with i 6= j, gi is orthogonal to gj and if µi = 0 gi is

normalized.

We now prove that Correction since

August 30, 09:

Some small

changes in this

part of the proof

J∗V Ker(U) = Ker(U∗). (68)

Indeed, if g ∈ Ker(U) then g = V ∗V g, and J∗V g ∈ Ker(U∗) due to

UU∗J∗V g = (1− J∗V V ∗J)J∗V g = J∗V (1− V ∗V )g = 0.

Similarly, if g ∈ Ker(U∗) then g = J∗V V ∗Jg ∈ J∗V Ker(U) since

U∗UV ∗Jg = (1− V ∗V )V ∗Jg = V ∗J(1− J∗V V ∗J)g = 0.

From (68) and

Span{ηi : µi = 0} = Ker(U∗) = Ran(U)⊥ = Span{ηi : µi 6= 0}⊥,

we conclude that η1, η2,... form an orthonormal basis for h.

Now we give a deeper description for ηi with respect to i ∈ I ′ and i ∈ I ′′. We

first consider i ∈ I ′. Since u2i /∈ Ker(C) ⊃ Ker(U), we have Uu2i 6= 0 and hence

µ2i 6= 0. Likewise µ2i−1 6= 0. Thus η2i = f2i and η2i−1 = f2i−1.

Moreover, for all j we have

(Uuj, g2i) = (Uuj, J
∗V u2i) = (uj, Cu2i) = λiδ2i−1,j. (69)

Thus since g2i is orthogonal to all ηj with j 6= 2i− 1 we conclude that

g2i = λiµ
−1
2i−1η2i−1. (70)

and likewise

g2i−1 = −λiµ−1
2i η2i. (71)

From (70) we obtain

λ2
iµ
−2
2i−1 = (g2i, g2i) = (V ∗V u2i, u2i) = ((1− U∗U)u2i, u2i) = 1− µ2

2i
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and likewise from (71) we get

λ2
iµ
−2
2i = 1− µ2

2i−1.

These two identities imply that µ2i = µ2i−1.

Then (63–64) follow from (70)–(71) with αi = µ2i = µ2i−1 and βi = λiµ
−1
2i =

λiµ
−1
2i−1.

For i ∈ I ′′ we have

0 = (ui, C
∗Cui) = (ui, U

∗U(U∗U − 1)ui) = µ2
i (µ

2
i − 1).

Thus we conclude that either µi = 1 and hence gi = 0, or µi = 0 and hence

gi = ηi. In the former case we must have A−(V(ui ⊕ 0)) = a−(ηi) and in the

latter case A−(V(ui ⊕ 0)) = a∗−(ηi). Since V ∗V is trace class the eigenvalue 1

has finite multiplicity. This means that the eigenvalue µi = 0 for U∗U has finite

multiplicity k. We can assume that I ′′ has been ordered such that µi = 0 occurs

for the first k i.

The necessity of the Shale-Stinespring condition is proved in Appendix F.

In the rest of this chapter we shall see that for each normalized state Ψ ∈
FB,F (h) we may find a Bogolubov map V diagonalizing the 1-pdm of U∗VΨ.

Correction since

August 30,

09: Lemma

refomulated for

infinite dimension

LEMMA 9.6. Assume that a Hermitian A : h⊕ h∗ → h⊕ h∗ satisfies

JAJ = ±A (+ for bosons and − for fermions). (72)

Assume moreover in the fermionic case that A admits an eigenbasis for h ⊕ h∗,

and assume in the bosonic case that A is positive definite and SA admits an

eigenbasis for h⊕h∗. Then for any orthonormal basis u1, u2, ... for h, there exists

a bosonic (+) or fermionic (-) Bogolubov map V such that the operator V∗AV
has eigenvectors of the form {un ⊕ 0} ∪ {0⊕ Jun}.

Note that in general V need not admit a unitary implementation.

Proof. We will construct V by finding the vectors

v2n = V(un ⊕ 0), ṽn = V(0⊕ Jun).
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We first consider the fermionic case. It is straightforward to check that V
will satisfy the required properties if {vn} ∪ {ṽn} form an orthonormal basis of

eigenvectors of A such that for all n = 1, 2, . . .

ṽn = J vj.

Let v1 be a normalized eigenvector of A with eigenvalue λ1. Define ṽ1 = J v1.

Then ṽ1 is a normalized vector and from (72) we have that

Aṽ1 = −JAv1 = −J λ1v1 = −λ1ṽ1,

where we have used that λ1 is real.

Thus ṽ1 is an eigenvector of A. Moreover, if λ1 6= 0 it follows that the

eigenvalues λ1 and −λ1 are different and hence that ṽ1 is orthogonal to v1. We

may then restrict A to the orthogonal complement of the space spanned by v1

and ṽ1 and continue the process in this way we will find an orthonormal family of

vectors of the desired form. They will however not necessarily form a basis since

we still have to consider the kernel of A.

It follows from (72) that J maps the kernel of A to itself. We may then using

Theorem E.2 to find an orthonormal basis for the kernel consisting of eigenvectors Correction since

August 30, 09:

Theorem E.2

formulated for

non-compact

operators.

of J with non-negative eigenvalues. Since, J 2 = I the eigenvalues are 1. If w1

and w2 are two basis vectors the vectors v± = w1±iw2√
2

are orthonormal and they

Correction since

August 30, 09:

w1 ± iw2 →
w1±iw2√

2
.

satisfy J v± = v∓. By pairing the basis vectors for the kernel of A in this manner

we find a basis of the desired form. This completes the proof in the fermionic

case.

We turn to the bosonic case. It is again straightforward to check that we have

to show the existence of a basis {vi}∪{ṽi} for h⊕h∗ with the following properties

1. (vi,Svj) = δij, (ṽi,S ṽj) = −δij and (vi,S ṽj) = 0 for all i, j = 1, 2, . . .

2. vj, ṽj are eigenvectors of SA for all j = 1, 2, . . .

3. J vj = ṽj for all j = 1, 2, . . .

Note that item 2 is not an eigenvalue problem for A, but for SA, which is not

Hermitian. Still it can be analyzed in much the same way as the eigenvalue

problem for a Hermitian matrix.
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Let v1 be a normalized eigenvector of SA with eigenvalue λ1. We have from

Av1 = λ1Sv1 that

(v1,Av1) = λ1(v1,Sv1).

Since A is possitive definite and S is Hermitian, λ1 must be real and non-

zero, moreover we can assume that v1 has been normalized in such a way that

(v1,Sv1) = ±1. Correction since

August 30, 09:

(v1,Sv1) = 1 →
±1

Define ṽ1 = J v1 then using (72) we have that

SAṽ1 = SJAv1 = −JSAv1 = −J λ1v1 = −λ1vM+1,

where we have used that λ1 is real and that JS = −SJ . Thus ṽ1 satisfies 2 with

λ̃1 = −λ1.

Since λ1 6= 0 then λ̃1 6= λ1 and we conclude from

λ̃1(v1,S ṽ1) = (v1,Aλ̃1) = (Av1, ṽ1) = λ1(v1,S ṽ1)

that (v1,S ṽ1) = 0. Since we also have

(ṽ1,S ṽ1) = (J v1,SJ v1) = (J v1,−JSv1) = −(Sv1, v1) = −(v1,Sv1),

by interchanging v1 and ṽ1 if necessary, we can assume that (v1,Sv1) = 1 and

(ṽ1,S ṽ1) = −1. Now we see that v1 and ṽ1 satisfy item 1.

We next show that SA maps the subspace

X = {w | (v1,Sw) = (ṽ1,Sw) = 0}

into itself. Indeed, if w is in this space we have

(v1,SSAw) = (v1,Aw) = (Av1, w) = λ1(Sv1, w) = 0

and likewise for ṽ1. We then can restrict SA on X and we can continue the

argument by induction. The fact that SA admits an eigenbasis on X is an

exercise left for the reader.
Correction since

August 30, 09:

Problem addedPROBLEM 9.7 (Compare to E.3). Let h be a Hilbert space, V be a closed

subspace of h⊕ h∗ and

W = {w ∈ h⊕ h∗|(v,Sw) = 0 for all v ∈ V }.
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Prove that

W = S(V ⊥) = (SV )⊥ and h⊕ h∗ = V ⊕W.

Let f be a linear operator on h⊕ h∗ which leaves invariant V and W . Show that

if f has an eigenvector u ∈ h⊕ h∗\V then f also has an eigenvector v ∈ W such

that u ∈ Span(V ∪ {v}).

PROBLEM 9.8. Consider h = C. The map J may be identified with complex

conjugation. We use the basis 1⊕0 and 0⊕1 for h⊕h∗. In this basis we consider

A =

(
1 a

a 1

)
,

for 0 < a < 1. Show that we have a bosonic Bogolubov map defined by Correction since

June 24: b→B

V =
1√
2


a√√

1−a2−1+a2

(
√

1−a2−1)√√
1−a2−1+a2

(
√

1−a2−1)√√
1−a2−1+a2

a√√
1−a2−1+a2


which diagonalizes A and determine the diagonal elements. What happens when

a = 1?
Correction since

August 30,

09: Theorem

refomulated for

infinite dimension

THEOREM 9.9 (Diagonalizing generalized 1pdm). Let Ψ ∈ FB,F(h) be a nor-

malized vector with finite particle expectation and u1, u2, . . . be an orthonormal
Correction since

August 30, 09:

Finite particle

expectation

added

basis for h. Then there exists a Bogolubov map V : h ⊕ h∗ → h ⊕ h∗, such

that the corresponding unitary map UV has the property that the generalized 1-

particle density matrix of U∗VΨ is a diagonal matrix in the orthonormal basis

{un ⊕ 0} ∪ {0⊕ Jun} for h⊕ h∗.

Proof. Using (49) it is straightforward to check that

ΓU∗VΨ = V∗ΓΨV .

We observe that (43) may be reformulated as

J (ΓΨ ± 1
2
S±)J = ΓΨ + 1

2
S± (73)

where (+) for boson with S+ = S and (-) for fermion with S− = I. To apply

Lemma 9.6, this observation suggests us to introduce the operators

A± = ΓΨ ± 1
2
S± =

(
γ ± 1

2
α

α∗ ±JγJ∗ + 1
2

)
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where γ and α stand for γΨ and αΨ in (40).

Let us first consider the fermionic case. It is straightforward to see that

1

4
− A2

− = ΓΨ(1− ΓΨ) =

(
γ(1− γ)− αα∗ −γα + αJγJ∗

−α∗γ + JγJ∗α∗ Jγ(1− γ)J∗ − α∗α

)
is of trace class since both γ and αα∗ are of trace class operators on h. Thus

A2
− admits an eigenbasis for h⊕ h∗. If u is an eigenvector of A2

− then A− leaves

invariant the subspace {u,Au}, which is at most 2-dimensional, and hence A
can be diagonalized in this subspace. Thus A admits an orthonormal eigenbasis

for h⊕ h∗ and Lemma 9.6 can be applied to imply that there exixts a fermionic

Bogolubov map V such that V∗A−V , and hence V∗ΓΨV , has eigenvectors {un ⊕
0} ∪ {0⊕ Jun}.

It remains to show that V admits a unitary implementation. Assume that

under the basis {un ⊕ 0} ∪ {0⊕ Jun} the diagonal matrix V∗ΓΨV has the form

V∗ΓΨV =



λ1

λ2 0
. . .

1− λ1

0 1− λ2

. . .


(74)

for 0 ≤ λi ≤ 1/2 for i = 1, 2, .... Since ΓΨ(1− ΓΨ) is of trace class, we must have∑∞
i=1 λi(1 − λi) < ∞ and hence

∑∞
i=1 λi < ∞. This means that the upper left

block of the matrix V∗ΓΨV has finite trace on h, i.e.

Trh[U
∗γU + U∗αV + V ∗α∗U + V ∗V + V ∗JγJ∗V ] <∞

here we use the matrix form (56) for V . It is clear that U∗γU and V ∗JγJ∗V are

of trace class. Using the Cauchy-Schwarz inequality

Tr[XY + Y ∗X∗] ≤ 2(Tr[X∗X])1/2(Tr[Y ∗Y ])1/2

we have

∞ > Tr[U∗αV + V ∗α∗U + V ∗V ]

≥ −2(Tr[U∗Uαα∗])1/2(Tr[V ∗V ])1/2 + Tr[V ∗V ].
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Thus Tr[V ∗V ] < ∞ and Theorem (9.5) ensures that V admits a unitary imple-

mentation UV .

We turn now on the bosonic case which needs some subtle adjustments. We

need to check that A+ fulfills the conditions of Lemma 9.6. The positivity of

A+ is left as an exericise for the reader. Now we prove that SA+ admits an

eigenbasis for h ⊕ h∗. Because SA+ is not a Hermitian we associate it with the

Hermitian C = A1/2
+ SA

1/2
+ where A1/2

+ is the square root of the possitive definite

operator A+. Note that A+ has an orthonormal eigenbasis since A+ − 1
2

is a

Hilbert-Schmidt operator, and hence A1/2
+ is well-defined. The point is that if

v is an eigenvector of C then SA1/2
+ is an eigenvector of SA+ since SA1/2

+ is

injective and

SA+(SA1/2
+ ) = SA1/2

+ (A1/2
+ SA

1/2
+ ) = SA1/2

+ C.

On the other hand, since

C2 − 1

4
= A1/2

+ (SA+S)A+ −
1

4

= A1/2
+

(
γ −α
−α∗ JγJ∗

)
A1/2

+ +
1

2

(
γ α

α∗ JγJ∗

)

is a Hilbert-Schimidt operator we may argue similarly to the fermionic case to

veryfy that C has an orthonormal eigenbasis .

Thus employing Lemma 9.6 we deduce that there exists a bosonic Bogolubov

transformation V such that V∗A+V , and hence V∗ΓΨV , has eigenvectors {un⊕0}∪
{0⊕ Jun}. We may use the fact that ΓΨS(ΓΨ + S) has finite trace to prove that

the upper left of the matrix V∗ΓΨV is of trace class on h and then process similarly

as in the fermionic case to verify that V admits a unitary implementation.

Theorem 9.9 may also be rewritten that if ΓΨ is the 1-pdm of a normalized

vector Ψ ∈ FB,F (h) then there exists a Bogolubov map V , which admits a unitary

implementation, such that

V∗ΓV =

(
ξ 0

0 1± JξJ∗

)

where ξ is a positive semi-definite trace class operator on h. In the fermionic case

we can impose moreover that ξ ≤ 1
2
I.



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 67

Correction since

August 30, 09:

Problem added
PROBLEM 9.10. Show that if ΓΨ is the 1-pdm of a normalized vector Ψ in the

bosonic Fock space then ΓΨ + 1
2
S is positive definite.

(Hint: If Ker(ΓΨ + 1
2
S) is nontrivial then it includes an element f ⊕ Jf for

some f ∈ h\{0}. It is impossible since ΓΨ ≥ 0.)

10 Quasi-free pure states
Correction since

August 30, 09:

Quasi-free states

→ quasi-free pure

states

DEFINITION 10.1 (Quasi-free pure states). A vector Ψ ∈ FF,B(h) is called a

quasi-free pure state if there exists a Bogolubov map V : h⊕h∗ → h⊕h∗ which is

unitarily implementable on FF,B(h) such that Ψ = UV |0〉, where UV : FF,B(h)→
FF,B(h) is the unitary implementation of V .

THEOREM 10.2 (Wick’s Theorem).

If Ψ ∈ FF,B(h) is a quasi-free pure state and F1, . . . , F2m ∈ h ⊕ h∗ for m ≥ 1

then Correction since

June 24: π → σ

(Ψ, A±(F1) · · ·A±(F2m)Ψ) = (75)∑
σ∈P2m

(±1)σ(Ψ, A±(Fσ(1))A±(Fσ(2))Ψ) · · · (Ψ, A±(Fσ(2m−1))A±(Fσ(2m))Ψ),

and

(Ψ, A±(F1) · · ·A±(F2m−1)Ψ) = 0. (76)

Here P2m is the set of pairings

P2m = {σ ∈ S2m | σ(2j − 1) < σ(2j + 1), j = 1, . . . ,m− 1,

σ(2j − 1) < σ(2j), j = 1, . . . ,m}.

Note that the number of pairings is (2m)!
2mm!

.

PROBLEM 10.3. Prove Theorem 10.2.

According to Theorem 10.2 we can calculate all expectations of quasi-free

pure states from knowing only the generalized 1-particle density matrix. Recall,

in fact, that Correction since

August 30, 09:

V → V−1.

(F1,ΓΨF2) = (Ψ, A∗±(F2)A±(F1)Ψ) = 〈0|A∗±(V−1F2)A±(V−1F1)|0〉.
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In particular, we have that the expected particle number of a quasi-free pure

state is Correction since

August 30, 09:

U → U∗, V →
∓V ∗J since

U∗VA±(F )UV =

A±(V−1F )

(Ψ,NΨ) =
∑
i=1

(Ψ, a∗±(fi)a±(fi)Ψ)

=
∑
i=1

〈0|(a∗±(U∗fi) + a±(∓V ∗Jfi))(a±(U∗fi) + a∗±(∓V ∗Jfi))|0〉

=
∑
i=1

〈0|(a±(V ∗Jfi)a
∗
±(V ∗Jfi)|0〉 =

∑
i=1

(V fi, V fi) = TrV ∗V,

where (fi) is an orthonormal basis for h.

We see that the expected particle number is finite since we assume that V

satisfies the Shale-Stinespring condition.

In the next theorem we characterize the generalized 1-particle density matrices

of quasi-free pure states.

THEOREM 10.4 (Generalized 1-pdm of quasi-free pure state). If Ψ ∈ FB,F(h)

is a quasi-free pure state then the generalized 1-particle density matrix Γ = ΓΨ :

h⊕ h∗ → h⊕ h∗ satisfies

For fermions: Γ is a projection, i.e., Γ2 = Γ

For bosons: ΓSΓ = −Γ.
(77)

Conversely, if Γ : h ⊕ h∗ → h ⊕ h∗ is a positive semi-definite operator satisfying

(77) of the form

Γ =

(
γ α

±JαJ 1± JγJ∗

)
. (78)

with γ a trace class operator, then there is a quasi-free pure state Ψ ∈ FB,F(h)

such that ΓΨ = Γ.

Proof. Since Ψ is a quasi-free pure state we may assume that Ψ = UV |0〉 for a

Bogolubov map V : h ⊕ h∗ → h ⊕ h∗. Thus for all F1, F2 ∈ h ⊕ h∗ we have

according to Theorem 9.5

(F1,V∗ΓΨVF2) = (VF1,ΓΨVF2) = (Ψ, A∗±(VF2)A±(VF1)Ψ) = 〈0|A∗±(F2)A±(F1)|0〉.

If we write Fi = fi ⊕ Jgi, i = 1, 2 we have

〈0|A∗±(F2)A±(F1)|0〉 = 〈0|(a∗±(f2) + a±(g2))(a±(f1) + a∗±(g1)|0〉 = (g2, g1)h.
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We conclude that

V∗ΓΨV =

(
0 0

0 I

)
.

From (54) or (55) we find that

ΓΨ = S±VS±

(
0 0

0 I

)
S±V∗S± = S±V

(
0 0

0 I

)
V∗S±,

where we have introduced the notation S− = I and S+ = S. Hence using (54) or

(55) we find

ΓΨS±ΓΨ = S±V

(
0 0

0 I

)
S±

(
0 0

0 I

)
V∗S± = ∓S±V

(
0 0

0 I

)
V∗S± = ∓ΓΨ.

To prove the converse assume now that Γ is a positive semi-definite Hermitian

operator satisfying (77) and of the form (78). Then because Γ ≥ 0 we must have Correction since

August 30, 09:

This part of the

proof formulated.

α = ±JαJ . Thus applying Theorem 9.9 we may find a (+) bosonic or (-) femionic

Bogolubov map V , which admits a unitary implementation UV , such that

V∗ΓV =

(
ξ 0

0 1± JξJ∗

)

where ξ is a positive semi-definite trace class operator on h and ξ ≤ 1
2
I in the

fermionic case. (Infact, Theorem 9.9 is stated for 1-pdm ΓΨ of normalized vector

Ψ but in the proof we just need the specific form of ΓΨ.) It follows from condition

(77) that ξ(1 ± ξ) = 0 and hence ξ = 0. Thus V∗ΓV is just the 1-pdm of the

vacuum. Finally it is straightforward to see that Γ is the 1-pdm of the quasi-free

pure state UV |0〉.

11 Quadratic Hamiltonians
Correction since

August 30,

09: Definition

reformulated for

infinite dimension

DEFINITION 11.1 (Quadratic Hamiltonians). Let A : h ⊕ h∗ → h ⊕ h∗ be a

Hermitian, trace class operator and assume moreover in the bosonic case that it

is positive semi-definite. The operator

H±A =
2M∑
i,j=1

(Fi,AFj)A∗±(Fi)A±(Fj),
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where F1, . . . , F2M is an orthonormal basis for h ⊕ h∗ is called a bosonic (+) of

fermionic (−) quadratic Hamiltonian corresponding to A.

PROBLEM 11.2. Show that H±A is Hermitian and is independent of the choice

of basis for h⊕ h∗ used to define it.
Correction since

August 30, 09:

Problem addedPROBLEM 11.3. Show that H+
A ≥ 0 and H−A ≥ Tr[A−], where Tr[A−] is the

sum of all negative eigenvalue of A. (Hint: (Ψ, H±AΨ) = Tr[AΓΨ].)

Thus the quadratic Hamiltonian H±A is bounded from below and we may

consider its ground state energy. The point is that to determine the ground state

energy for a quadratic Hamiltonians it suffices to consider the quasi-free pure

states.

LEMMA 11.4. If A : h ⊕ h∗ → h ⊕ h∗ is Hermitian, trace class (and positive

semi-definite in the bosonic case) we may find a Hermitian, trace class operator

A′ : h ⊕ h∗ → h ⊕ h∗ (which is positive definite in the bosonic case) satisfying

JA′J = ±A′ (+ in the bosonic case and − in the fermionic case) such that Correction since

June 24: sign

corrected in (79)

H±A′ = H±A ± 1
2
Tr(AS±)I, (79)

where S+ = S and S− = I.

Proof. Using the CCR or CAR relations (47) and (48) we have

H±A = ±
2M∑
i,j=1

(Fi,AFj)A±(Fj)A
∗
±(Fi)∓

2M∑
i,j=1

(Fi,AFj)(Fj,S±Fi)

= ±
2M∑
i,j=1

(Fi,AFj)A∗±(JFj)A±(JFi)∓ Tr(AS±)

where we have also applied (46).

If we now use that from (89)

(Fi,AFj) = (AFi, Fj) = (JJAJJFi, Fj) = (JFj,JAJJFi)

we get

H±A = ±
2M∑
i,j=1

(JFj,JAJJFi)A∗±(JFj)A±(JFi)−Tr(AS±) = ±H±JAJ∓Tr(AS±).
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The last equality follows since JF1, . . . ,JF2M is an orthonormal basis for h⊕h∗.

Thus if we define A′ = 1
2
(A±JAJ ) we have JA′J = ±A′ and the relation (79)

holds.

THEOREM 11.5 (Variational principle for quadratic Hamiltonian).

If A : h ⊕ h∗ → h ⊕ h∗ is Hermitian, trace class (and positive semi-definite in Correction

since June 24:

Theorem addedthe bosonic case) and

EH±A := inf{(Ψ, H±AΨ)|Ψ ∈ FB,F (h), ‖Ψ‖ = 1}

denotes the true ground state energy of the quadratic Hamiltonian H±A then

EH±A = inf{(Ψ, H±AΨ)|Ψ ∈ FB,F (h) is a quasi− free pure state}.

Proof. By a simple approximation we can consider the ground state energy EH±A

as the infimum over normalized vector Ψ ∈ FB,F (h) with finite particle expecta-

tion. The result thus follows if we prove in this case that there exists a quasi-free

pure state Ψ̃ such that

(Ψ̃, H±AΨ̃) ≤ (Ψ, H±AΨ).

Due to Lemma 11.4 we may assume that JAJ = ±A (and A ≥ 0 in the

bosonic case). Moreover using Theorem 9.9 we may represent ΓΨ, the 1-pdm of

Ψ, by

ΓΨ = VΨ

(
ξ 0

0 1± JξJ∗

)
V∗Ψ

where VΨ is a Bogolubov map, which admits a unitary implementation, and

ξ : h→ h is a positive semi-definite trace class operator.

Thus

(Ψ, H±AΨ) = Tr[AΓΨ] = Tr

[
AVΨ

(
ξ 0

0 1± JξJ∗

)
V∗Ψ

]

= Tr

[
V∗ΨAVΨ

(
ξ 0

0 1± JξJ∗

)]
.

Because JAJ = ±A and JcVΨJ = VΨ, we also have

JV∗ΨAVΨJ = ±V∗ΨAVΨ
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and hence we may write V∗ΨAVΨ in the block form

V∗ΨAVΨ =

(
a J∗bJ∗

b ±JaJ∗

)

where a is a Hermitian, trace class operator on h. Thus

(Ψ, H±AΨ) = Tr

[(
a J∗bJ∗

b ±JaJ∗

)(
ξ 0

0 1± JξJ∗

)]
= 2Trh[aξ]± Tr[a].

We first consider the bosonic case. Since A ≥ 0 we must have a ≥ 0 and

hence Tr[aξ] ≥ 0 since ξ ≥ 0. On the other hand, due to Theorem 10.4 there

exists a quasi-free pure state Ψ̃ whose 1-pdm is

VΨ

(
0 0

0 1

)
V ∗Ψ.

Thus we get

(Ψ, H±AΨ)− (Ψ̃, H±AΨ̃) = 2Tr[aξ] ≥ 0.

For the fermionic case we have 0 ≤ ξ ≤ 1. Thus we can choose ξ′ = χ(−∞,0)(a),

i.e. ξ′ =
∑

λi<0 〈ui| for an orthogonal eigenbasis ui of a corresponding to eigen-

values λi. Because ξ′ = (ξ′)2 we may apply Theorem 10.4 to find a quasi-free

pure state Ψ̃ whose 1-pdm is

VΨ

(
ξ′ 0

0 1 + Jξ′J∗

)
V∗Ψ.

It is straightforward to see that

(Ψ, H±AΨ) (Ψ̃, H±AΨ̃) = 2Tr[a(ξ − ξ′)] ≥ 0

since a(ξ − ξ′) = a(1 − ξ′)ξ − aξ′(1 − ξ) ≥ 0. Here we used a(1 − ξ′) ≥ 0 and

aξ′ ≤ 0.

Note that the above theorem says nothing about the existence of a ground

state for the quadratic Hamiltonian. In the next theorem for simplicity we assume

that h is finite dimensional.
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THEOREM 11.6 (Ground state eigenvector for quadratic Hamiltonian).

Assume that h is finite dimensional. Let A : h ⊕ h∗ → h ⊕ h∗ be a Hermitian

operator and assume moreover in the bosonic case that it is positive definite. Then

the quadratic Hamiltonian has a ground state eigenvector which is a quasi-free

pure state. Moreover in the bosonic case the ground state is unique in the class

of quasi-free pure state.

REMARK 11.7. If A is only positive semi-definite then the quadratic bosonic

Hamiltonian H+
A Hamiltonian may not have a ground state eigenvector.

Proof. Due to Lemma 11.4 we may assume that JAJ = ±A (and A is positive

definite in the bosonic case). Thus employing Lemma 9.6 we may represent,

under an orthogonal basis {un ⊕ 0} ∪ {0⊕ Jun},

A = V∗A

(
d 0

0 ±JdJ∗

)
VA

where VA is a (+) bosonic or (-) fermionic Bogolubov map and d : h → h is

positive semi-definite (positive definite in the bosonic case). Moreover, because

h is finite dimensional the Shale-Stinespring condition holds and hence V admits

a unitary implementation.

Thus for any normalized vector Ψ ∈ FB,F (h) we have

(Ψ, H±AΨ) = Tr[AΓΨ] = Tr

[
V∗A

(
d 0

0 ±d

)
VAΓΨ

]
= Tr

[(
d 0

0 ±d

)
VAΓΨV∗A

]
.

We may write VAΓΨV∗A in the block form

VAΓΨV∗A =

(
γ α

α∗ 1± JγJ∗

)
where γ : h→ h is positive semi-definite. Thus

(Ψ, H±AΨ) = Tr

[(
d 0

0 ±d

)(
γ α

α∗ 1± JγJ∗

)]
= 2Trh[dγ]± Trh[d] ≥ ±Trh[d].

The equality occurs if γ = 0 (this is unique for bosons but may not be unique

for fermions). The conclusion that U∗VA |0〉 is a ground state for the Hamiltonian

H±A is left as an exercise for the readers.
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PROBLEM 11.8 (Quadratic Hamiltonians and Bogolubov unitaries).

If V : h ⊕ h∗ → h ⊕ h∗ is a Bogolubov map and UV : FB,F(h) → FB,F(h) is the Correction since

August 30, 09:

Theorem →
Exercise

corresponding unitary implementation then for all Hermitian A : h⊕h∗ → h⊕h∗

we have Correction since

June 24: V and

V∗ interchangedUVH±AU
∗
V = H±VAV∗ .

PROBLEM 11.9. Let h = C2 and let a1± = a±(1, 0) and a2± = a±(0, 1). Find

the ground state energy and ground state of the two Hamiltonians Correction

by July 6

Hamiltonian

correctedH± = (1 + b)(a∗1±a1± + a∗2±a2±) + b(a∗1±a
∗
2± + a2±a1±)

where b > 0.

12 Generalized Hartree-Fock Theory

Generalized Hartree-Fock theory is a theory for studying interacting fermions. In

generalized Hartree-Fock theory one restricts attention to quasi-free pure states.

According to Theorem 10.4 the set of all 1-particle density matrices of quasi-free

fermionic pure states is15
Corrections since

June 24: GHF re-

defined

GHF =
{

Γ : h⊕ h∗ → h⊕ h∗ | Γ∗ = Γ has the form (43) , Γ2 = Γ, Trγ <∞
}
.

Let us for Γ ∈ GHF denote by ΨΓ ∈ FF(h) the (normalized) quasi-free fermionic

state having Γ as its 1-particle density matrix.

We consider a fermionic operator in the grand canonical picture, i.e., an op-

erator on the Fock space FF(h)

H =
∞⊕
N=0

(
N∑
i=1

hi +
∑

1≤i<j≤N

Wi,j

)
. (80)

DEFINITION 12.1 (Generalized Hartree-Fock theory). The generalized Hartree-

Fock functional for the operator H is map EHF : GHF → R defined by

EHF(Γ) = (ΨΓ, HΨΓ).

15We need no longer assume that h is finite dimensional
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The Hartree-Fock ground state energy is

EHF = inf{EHF(Γ) | Γ ∈ GHF}.

If EHF = EHF(Γ0) we call Γ0 (and ΨΓ0) for a Hartree-Fock ground state.

There are several results in the mathematical physics literature that estab-

lish existence of a minimizer of the generalized Hartree-Fock functional. There

are also several results on how well the Hartree-Fock energy approximates the

true ground state energy. Since the generalized Hartree-Fock energy is found by

minimizing over a restricted set of states we have the following obvious result.

THEOREM 12.2 (Hartree-Fock energy upper bound on true energy). If

EF = inf{(Ψ, HΨ) | Ψ ∈ FF(h), ‖Ψ‖ = 1}

denotes the true fermionic ground state energy and EHF the Hartree-Fock ground

state energy for the Hamiltonian H we have

EF ≤ EHF.

Hartree-Fock theory has been widely used in chemistry to calculate the energy

and structure of atoms and molecules. It is fairly successful but has over the years

been generalized in various ways.

Using Theorem 10.2 we may calculate EHF(Γ) explicitly. Assume that Γ is

written in the form (43), i.e.,

Γ =

(
γ α

α∗ 1− JγJ∗

)
, (81)

It is convenient to introduce the vector α̃ ∈ h⊗ h by Correction since

June 24: ⊕ → ⊗
several places

(f ⊗ g, α̃)h⊗h = (f, αΨΓ
Jg) = (ΨΓ, a−(g)a−(f)ΨΓ).

A straightforward calculation using Theorem 10.2 then shows that Correction

since June 24:

Parentheses

includedEHF(Γ) = Trh[hγ] + 1
2
Trh⊗h[W (γ ⊗ γ − Exγ ⊗ γ)] + 1

2
(α̃,Wα̃)h⊗h. (82)
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PROBLEM 12.3. Prove (82) using that if we choose an orthonormal basis

u1, u2, . . . for h and denote a−(ui) = ai we may write the operator H in second

quantized form according to (25) and (27) as

H =
∑
i,j=1

(ui, huj)a
∗
i aj + 1

2

∑
i,j,µ,ν

(ui ⊗ uj,Wuµ ⊗ uν)a∗i a∗jaνaµ.

If α = 0 we say that Γ represents a normal Hartree-Fock state. In this case ΨΓ

is a Slater determinant. If α 6= 0 we call the state ΨΓ a BCS state after Bardeen,

Cooper and Schrieffer (see footnote 13 on Page 46) who used these type of states

to explain the phenomenon of super-conductivity.

We now mention without proof a result that implies that if W ≥ 0 we may

restrict to normal states.

THEOREM 12.4. If W ≥ 0 then

EHF = inf{EHF(Γ) | Γ ∈ GHF,Γ has the form (81) with α = 0}.

It is important in the BCS theory of superconductivity that the minimizing

Hartree-Fock state is not normal. For this reason it is important to understand

where an attractive (negative) two-body interaction between electrons may come

from. It turns out that such an attraction may be explained because of the

interaction of the electrons with the atoms in the superconducting material. More

precisely, it has to do with the vibrational modes that the electrons excite in the

crystal of atoms.

13 Bogolubov Theory

Bogolubov theory is the bosonic analogue of Hartree-Fock theory. We consider

again a Hamiltonian of the form (80) but now on the bosonic Fock space FB(h).

In Bogolubov theory one however does not restrict to quasi-free pure states,

but to a somewhat extended class. To explain this we need a result whose proof

we leave as an exercise to the reader.

THEOREM 13.1. If φ ∈ h there exists a unitary Uφ : FB(h) → FB(h) such

that for all f ∈ h

U∗φa+(f)Uφ = a+(f) + (f, φ).
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PROBLEM 13.2. Prove Theorem 13.1. Hint: You may proceed as in the proof

of Theorem 9.5 (or one may proceed from an entirely algebraic point of view).

In Bogolubov theory we restrict to states of the form UφUV |0〉, where φ ∈ h

and V : h⊕ h∗ → h⊕ h∗ is a Bogolubov map. Another way to say this is to first

perform a unitary transformation U∗φHUφ and then to restrict to quasi-free pure

states.

REMARK 13.3. We saw in Section 11 that quadratic Hamiltonians have quasi-

free ground states. If, in the bosonic case, we allow the quadratic operators to

have terms that are linear in creation and annihilation operators then the ground

states belong to the larger class of vectors for the form UφUV |0〉.

According to Theorem 10.4 the set of all 1-particle density matrices of quasi-

free bosonic pure states is Corrections

since June 24:

Definition of GBo

changedGBo = {Γ : h⊕ h∗ → h⊕ h∗ | Γ has the form (43) ,Γ ≥ 0, ΓSΓ = −Γ,Trγ <∞} .

Let us for Γ ∈ GBo denote by ΨΓ ∈ FB(h) the (normalized) quasi-free bosonic

state having Γ as its 1-particle density matrix.

DEFINITION 13.4 (Bogolubov theory). The Bogolubov functional for the

operator H is the map EBo : GBo × h→ R defined by

EBo(Γ, φ) = (ΨΓ,U∗φHUφΨΓ).

The Bogolubov ground state energy is

EBo = inf{EBo(Γ, φ) | Γ ∈ GBo, φ ∈ h}.

If EBo = EBo(Γ0, φ0) we call (Γ0, φ0) (and Uφ0ΨΓ0) for a Bogolubov ground state.

As for the Hartree-Fock energy we also have that the Bogolubov energy is an

upper bound on the true energy.

THEOREM 13.5 (Bogolubov energy upper bound on true energy). If

EB = inf{(Ψ, HΨ) | Ψ ∈ FB(h), ‖Ψ‖ = 1}

denotes the true bosonic ground state energy and EBo the Bogolubov ground state

energy for the Hamiltonian H we have

EB ≤ EBo.
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We leave it to the reader to use Theorem 10.2 to explicitly express the Bogol-

ubov energy in terms of the components γ and α of Γ.
Correction

since June 24:

Footnote changedREMARK 13.6. In 1967 F. Dyson16 used Bogolubov theory to prove that a

system of charged bosons does not satisfy stability of the second kind.

13.1 The Bogolubov approximation

We shall finish this section by explicitly discussing an approximation introduced

by Bogolubov in his study of superfluidity. We will consider bosons moving on a

3-dimensional torus of size L > 0. We identify the torus with [0, L)3.

The Hilbert space is h = L2([0, L)3). We have an orthonormal basis given by

up(x) = L−3/2 exp(ipx), p ∈ 2π

L
Z3.

We have the one-body operator h = −∆ − µ where −∆ is the Laplacian with

periodic boundary conditions and µ > 0 is simply a parameter (the chemical

potential). This means that

hup = (p2 − µ)up.

For the two-body potential we shall use a function that depends only on the

distance between the particles. More precisely on the distance on the torus, i.e,

on

min
k∈Z3
|x− y − Lk|.

This means we have

(up ⊗ uq,Wup′ ⊗ uq′) = L−3Ŵ (p− p′)δp+q,p′+q′ ,

where we have introduced the Fourier coefficients of W

Ŵ (k) =

∫
[0,L)3

W (x) exp(−ikx)dx.

16 Dyson, Freeman J., Ground state energy of a finite system of charged particles, Jour. Math.

Phys. 8, 1538–1545 (1967) Dyson’s result has been improved to give the exact asymptotic

energy in the large particle limit for a system of charged bosons see E.H. Lieb and J.P. Solovej,

Ground State Energy of the Two-Component Charged Bose Gas. Commun. Math. Phys. 252,

485 - 534, (2004) and J.P. Solovej, Upper Bounds to the Ground State Energies of the One-

and Two-Component Charged Bose Gases. Commun. Math. Phys. 266, No. 3, 797-818, 2006



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 79

Let us write a+(up) = ap. We may then express the Hamiltonian in second

quantized form as

H =
∑

p∈ 2π
L
Z3

(p2 − µ)a∗pap +
1

2L3

∑
k,p,q∈ 2π

L
Z3

Ŵ (k)a∗p+ka
∗
q−kaqap.

We shall now explain the Bogolubov approximation for this Hamiltonian. Let

λ > 0 be a parameter. We define Hλ = U∗λu0
HUλu0 . Then (where all sums are

over 2π
L
Z3)

Hλ =
∑
p

(p2 − µ)a∗pap +
1

2L3

∑
k,p,q

Ŵ (k)a∗p+ka
∗
q−kaqap

−µλ(a0 + a∗0)− λ2µ+
λ4

2L3
Ŵ (0) +

λ3

L3
Ŵ (0)(a0 + a∗0)

+
λ2

L3
Ŵ (0)

∑
p

a∗pap +
λ2

2L3

∑
p

Ŵ (p)(a∗pap + a∗−pa−p + a∗pa
∗
−p + apa−p)

+
λ

2L3

∑
p,q

Ŵ (p)(2a∗q+paqap + a∗p+qa
∗
−paq + a∗pa

∗
q−paq). (83)

The motivation for using the transformation Uλu0 is that one believes that most Correction since

June 24: Choice

of λ explainedparticles occupy the state u0, called the condensate. After the transformation we

look for states to restrict to the subspace where a∗0a0 = 0. Thus λ2 is the expected

number of particles in the condensate. We choose λ to minimize the two constant

terms above, without creation or annihilation operators, i.e., −λ2µ + λ4

2L3 Ŵ (0).

Thus we choose λ such that µ = λ2

L3 Ŵ (0). Then

Hλ =
∑
p

p2a∗pap +
1

2L3

∑
k,p,q

Ŵ (k)a∗p+ka
∗
q−kaqap −

λ4

2L3
Ŵ (0)

+
λ2

2L3

∑
p

Ŵ (p)(a∗pap + a∗−pa−p + a∗pa
∗
−p + apa−p)

+
λ

2L3

∑
p,q

Ŵ (p)(2a∗q+paqap + a∗p+qa
∗
−paq + a∗pa

∗
q−paq). (84)

After the unitary transformation Uλ with the specific choice of λ one would

guess that the ground state should in some sense be close to the vacuum state.

Bogolubov argues therefore that one may think of the operators ap and a∗p as

being small. For this reason Bogolubov prescribes that one should ignore the
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terms with 3 and 4 creation and annihilation operators. This approximation,

called the Bogolubov approximation, has only been mathematically justified in

a few limiting cases for specific interactions. If we nevertheless perform this

approximation we arrive at the quadratic Hamiltonian

H̃λ = 1
2

∑
p∈ 2π

L
Z3

[
p2(a∗pap + a∗−pa−p)

+
λ2

L3
Ŵ (p)(a∗pap + a∗−pa−p + a∗pa

∗
−p + apa−p)

]
− λ4

2L3
Ŵ (0). (85)

Since this Hamiltonian is quadratic it has a quasi-free state as ground state. This

is one of the motivations why one for the original Hamiltonian restricts attention

to these states.
Correction since

June 24: Problem

reformulatedPROBLEM 13.7. (a) Show that the ground state energy of the quadratic Hamil-

tonian 2a∗0a0 + a∗0a
∗
0 + a0a0 is −1. (Hint: Use the result of Problem 7.6 to

identify a∗0 + a0 with the multiplication operator
√

2x on the space L2(R).)

(b) Assume that W (x) is smooth with compact support and that Ŵ (p) ≥ 0 and

Ŵ (0) > 0. Use the method described in Section 11, in particular, Prob-

lem 11.9, to calculate the ground state energy of H̃λ.

(c) If we keep µ fixed what is then the ground state energy per volume in the limit

as L→∞? (You may leave your answer as an integral.)
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A Extra Problems

A.1 Problems to Section 1

A.1.1. Show that (4) defines a bounded operator K.

A.1.2. (Difficult) Show that K is a compact operator on a Hilbert space if and

only if it maps the closed unit ball to a compact set.

Hint to the “if” part:

1. Show that there exists a normalized vector u1 that maximizes ‖Ku1‖.

2. Show that u1 is an eigenvector for K∗K (see the hint to Problem 2.5)

3. By induction show that there exists an orthonormal family u1, u2, . . . of

eigenvectors of K∗K that span the closure of the range of K∗K, which is

the orthogonal complement of the kernel of K∗K.

4. Show that (4) holds with λn = ‖Kun‖ and vn = ‖Kun‖−1Kun (remember

to check that v1, v2 . . . is an orthonormal family)

Hint to the “only if” part: Assume K can be written in the form (4). Let

φ1, φ2, . . . be a sequence of vectors from the closed unit ball. By the Banach-

Alouglu Theorem for Hilbert spaces (Corollary B.2 below) there is a weakly

convergent subsequence φn1 , φn2 , . . . with a weak limit point φ in the closed unit

ball. Show that limk→∞Kφnk = Kφ strongly. Conclude that the image of the

closed unit ball by the map K is compact.

A.1.3. Use the result of the previous problem to show that the sum of two

compact operators is compact. (This is unfortunately not immediate from Defi-

nition 1.16.)

A.1.4. Assume that 0 ≤ µn ≤ 1 for n = 1, 2, . . . with
∑∞

n=1 µn = 1 and φn,

n = 1, 2, . . . are unit vectors in a Hilbert space H.

(a) Show that the map Γ : H → H given by

Γu =
∞∑
n=1

µn(φn, u)φn
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is compact and symmetric. [Hint: Use the characterization in Problem A.1.2

(repeat the argument in the “only if” part)].

(b) Show that Γ is trace class with TrΓ = 1.

A.1.5. Let σ ∈ SN and Uσ :
⊗N H →

⊗N H be the unitary defined in Subsec-

tion 1.1. Show that

UσUτ = Uτσ.

A.1.6. For N ≥ 2 show that

N⊗
Sym

H ⊥
N∧
H.

A.1.7. With the notation of Subsection 1.1 show that for all σ ∈ SN

UσP± = (±1)σP±.

What does this mean for the action of Uσ on
⊗N

SymH and on
∧N H?

Correction since

May 3 Two

problems added.
A.1.8. Show that if K maps bounded sequences converging weakly to zero in

sequences converging strongly to 0 then K is compact. [Hint use the characteri-

zation in Problem A.1.2.]

A.1.9. Show that if K is an operator on a Hilbert space such that

∞∑
k=1

‖Kφk‖2 <∞

for some orthonormal basis {φk}∞k=1 then K is Hilbert Schmidt. [Hint: use the

result of the previous problem to show that K∗ is compact and hence from the

definition of compactness that K is compact.]

A.2 Problems to Section 2

A.2.1. Show that if A is a symmetric operator on a Hilbert space then (φ,A2φ) =

(φ,Aφ)2 for some unit vector φ ∈ D(A) if and only if φ is an eigenvector of A.

We interpret this as saying that a measurement of A in a given state φ always

gives the same value if and only if φ is an eigenvector of A.
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A.2.2. (Some remarks on the representation (9)) In general (9) may not

make sense for a general unbounded operator A even if all ψn ∈ D(A). For

simplicity we will here consider only bounded A.

The general statistical average of pure states would be of the form

〈A〉 =
∞∑
n=1

µn(φn, Aφn)

where 0 ≤ µn ≤ 1 for n = 1, 2, . . . with
∑∞

n=1 µn = 1 and φn, n = 1, 2, . . . are

unit vectors, but not necessarily orthonormal.

Use the result of Problem A.1.4 to show that we can find unique 0 ≤ λn ≤ 1

for n = 1, 2, . . . with
∑∞

n=1 λn = 1 and ψn, n = 1, 2, . . . orthonormal such that

〈A〉 =
∞∑
n=1

λn(ψn, Aψn).

A.2.3. Show that the interacting Hamiltonian HN for N identical Particles sat-

isfies HNUσ = UσHN for all permutations σ. Conclude that HNP± = P±HN and

that HN therefore maps the subspaes
∧N h and

⊗N
SYM h into themselves.

A.3 Problems to Section 3
Correction since

May 3 Problem

added.A.3.1. Assume that K is a positive semi-definite operator defined on a Hilbert

space (full domain) such that

∞∑
k=1

(φk, Kφk) <∞

for some orthonormal basis {φk}∞k=1.

(a) Use the Cauchy-Schwartz inequality for the quadratic form Q(φ) = (φ,Kφ)

to show that for all vectors u

‖Ku‖2 ≤ (Ku, u)
∞∑
k=1

(φk, Kφk).

(b) Show that K is a bounded operator

(c) Use the result of Problem A.1.9 to show that K is Hilbert-Schmidt
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(d) Show that K is trace class and that

TrK =
∞∑
k=1

(φk, Kφk).

A.4 Problems to Section 4
Correction since

August 30, 09:

Problem addedA.4.1. Show that the Friedrich’s extension of an operator (which is bounded

below) is self-adjoint.

(Hint: the operator B : H → D(AF ) defined by (u, v)H = (Bu, v)α may be

useful.)

A.6 Problems to Section 6

A.6.1. Show that the molecular Hamiltonian in Example 6.5 is stable.

A.8 Problems to Section 8

A.8.1. Show that for the operator αΨ defined in (41) then αΨα
∗
Ψ is an trace class

operator on h.

(Hint: use the fact ΓΨ ≥ 0 and γΨ is of trace class.)

A.9 Problems to Section 9
Correction since

August 30, 09:

Problem addedA.9.1. Show that the Bogolubov map V and the unitary implementation UV
satisfy

(V∗)−1 = (V−1)∗,UV−1 = U−1
V .

Correction since

August 30, 09:

Problem moved

from Chapter 9A.9.2. Show that if f ∈ h and f 6= 0 then the kernel of a∗+(f) + a+(f) is trivial.

(Hint: Problem 9.10 may be useful. It also follows easily from Theorem 13.1.)

A.11 Problems to Section 11
Correction since

August 30, 09:

Problem addedPROBLEM A.1. Show that for bosons if the Hermitian, trace class operator A
is not positive semi-definite then the quadratic Hamiltonian H+

A is not bounded

from below.
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PROBLEM A.2. Explain why if h is infinite dimensional then the method in

the proof of Theorem 11.6 does not work even though in the bosonic case A is

positive definite.

A.13 Problems to Section 13
Correction since

August 30, 09:

Problem addedPROBLEM A.3. Let an infinite Hilbert space h as the single particle space.

For a constant µ > 2 consider the Hamiltonian

H = −µN +N 2

on the bosonic Fock space FB(h) where N is the number operator. Define

E0 = inf{(Ψ, HΨ)|Ψ ∈ FB(h), ||Ψ|| = 1},

E1 = inf{(Ψ, HΨ)|Ψ ∈ FB(h),Ψ is a Bogolubov variational state},

E2 = inf{(Ψ, HΨ)|Ψ ∈ FB(h),Ψ is a coherent state},

E3 = inf{(Ψ, HΨ)|Ψ ∈ FB(h),Ψ is a quasi− free pure state}.

Prove that E0 < E1 < E2 < E3. Moreover, E0, E1, E2 are achieved for some

ground states while E2 is not achieved.

Here a coherent state is a state of the form Uφ |0〉 for some φ ∈ h, where U
is defined in Theorem 13.1. A Bogolubov variational state is a state of the form

UφΨ, where Ψ is a quasi-free pure state.

B The Banach-Alaoglu Theorem

We shall here give a proof of the Banach-Alaoglu Theorem. It is one of the most

useful tools from abstract functional analysis.

Usually this is proved using Tychonov’s Theorem and thus relies on the axiom

of choice. In the separable case this is however not necessary and we give a

straightforward proof here.

THEOREM B.1 (Banach-Alaoglu). Let X be a Banach space and X∗ the dual

Banach space of continuous linear functionals. Assume that the space X is sepa-

rable, i.e., has a countable dense subset. Then to any sequence {x∗n} in X∗ which
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is bounded, i.e., with ‖x∗n‖ ≤M for some M > 0 there exists a weak-∗ convergent

subsequence {x∗nk} . Weak-∗ convergent means that there exists x∗ ∈ X∗ such

that x∗nk(x)→ x∗(x) as k →∞ for all x ∈ X. Moreover, ‖x∗‖ ≤M .

Proof. Let x1, x2, . . . be a countable dense subset of X. Since {x∗n} is a bounded

sequence we know that all the sequences

x∗1(x1), x∗2(x1), x∗3(x1), . . .

x∗1(x2), x∗2(x2), x∗3(x2), . . .

...

are bounded. We can therefore find convergent subsequences

x∗n11
(x1), x∗n12

(x1), x∗n13
(x1) . . .

x∗n21
(x2), x∗n22

(x2), x∗n23
(x2) . . .

...

with the property that the sequence n(k+1)1, n(k+1)2, . . ., is a a subsequence of

nk1, nk2, . . .. It is then clear that the tail nkk, n(k+1)(k+1), . . . of the diagonal se-

quence n11, n22, . . . is a subsequence of nk1, nk2, . . . and hence that for all k ≥ 1

the sequence

x∗n11
(xk), x

∗
n22

(xk), x
∗
n33

(xk) . . .

is convergent. Now let x ∈ X be any element of the Banach space then

|x∗npp(x)− x∗nqq(x)| ≤ |x∗npp(x)− x∗npp(xk)|+ |x
∗
nqq(x)− x∗nqq(xk)|

+ |x∗npp(xk)− x
∗
nqq(xk)|

≤ 2M‖x− xk‖+ |x∗npp(xk)− x
∗
nqq(xk)|.

Since {xk} is dense we conclude that x∗npp(x) is a Cauchy sequence for all x ∈ X.

Hence x∗npp(x) is a convergent sequence for all x ∈ X. Define x∗ by x∗(x) =

limp→∞ x
∗
npp(x). Then x∗ is clearly a linear map and |x∗(x)| ≤ M‖x‖. Hence

x∗ ∈ X∗ and ‖x∗‖ ≤M .

COROLLARY B.2 (Banach-Alaoglu on Hilbert spaces). If {xn} is a bounded

sequence in a Hilbert space H (separable or not) then there exists a subsequence

{xnk} that converges weakly inH to an element x ∈ H with ‖x‖ ≤ lim infn→∞ ‖xn‖.
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Proof. Consider the space X which is the closure of the space spanned by xn,

n = 1, 2, . . .. This space X is a separable Hilbert space and hence is its own dual.

Thus we may find a subsequence {xnk} and an x ∈ X such that xnk → x weakly

in X. If y ∈ H let y′ be its orthogonal projection onto X. We then have

lim
k

(xnk , y) = lim
n

(xn, y
′) = (x, y′) = (x, y).

Thus xnk → x weakly in H.

C Proof of the min-max principle

In this section we give the proof of Theorem 4.12.

The operator A is bounded from below, i.e., A ≥ −αI. In fact, from (13)

we may choose α = −µ1. We first note that since vectors in D(Q) may be

approximated in the ‖ · ‖α norm by vectors in D(A) we may write

µn = µn(A) = inf

{
max

φ∈M, ‖φ‖=1
Q(φ) : M ⊆ D(Q), dimM = n

}
.

In particular, it is no loss of generality to assume that A is already the Friederichs’

extension. It is clear that the sequence (µn) is non-decreasing.

We shall prove several intermediate results, which we formulate as lemmas.

LEMMA C.1. If for some m ≥ 1 we have µm < µm+1 then µ1 is an eigenvalue

of A.

Proof. Our aim is to prove that there is a unit vectors ψ ∈ D(Q) such that

Q(ψ) = µ1. It then follows from Problem 3.10 that ψ is an eigenfunction of A

with eigenvalue µ1.

We may assume that µ1 = µm < µm+1. We choose a sequence (Mn) of

m-dimensional spaces such that

max
φ∈Mn, ‖φ‖=1

Q(φ) ≤ µ1 + 2−4−n(µm+1 − µ1).

We claim that we can find a sequence of unit vectors ψn ∈Mn, n = 1, 2, . . . such

that

‖ψn − ψn+1‖ ≤ 2−n. (86)
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In particular, the sequence is Cauchy for the norm ‖·‖. We choose ψn inductively.

First ψ1 ∈ M1 is chosen randomly. Assume we have chosen ψn ∈ Mn. If ψn ∈
Mn+1 we simply choose ψn+1 = ψn. Otherwise dim span({ψn} ∪Mn+1) = m + 1

and hence we can find a unit vector ψ̃ ∈ span({ψn} ∪Mn+1) such that Q(ψ̃) ≥ Corrections since

August 30, 09:

span({ψn+1} ∪
Mn+1) →
span({ψn} ∪
Mn+1);

”u1 = λψ1” →
”u1 = λψn”.

µm+1. In particular, we cannot have ψ̃ ∈ Mn or ψ̃ ∈ Mn+1. We may write

ψ̃ = u1 − u2, where u1 = λψn, λ 6= 0 and u2 ∈Mn+1 \ {0}. We therefore have

µm+1 ≤ Q(u1 − u2) = 2Q(u1) + 2Q(u2)−Q(u1 + u2)

≤ 2(µ1 + 2−4−n(µm+1 − µ1))(‖u1‖2 + ‖u2‖2)−Q(u1 + u2)

≤ 2(µ1 + 2−4−n(µm+1 − µ1))(‖u1‖2 + ‖u2‖2)− µ1‖u1 + u2‖2

= µ1‖u1 − u2‖2 + 2−3−n(µm+1 − µ1)(‖u1‖2 + ‖u2‖2)

= µ1 + 2−3−n(µm+1 − µ1)(‖u1‖2 + ‖u2‖2)

where the last inequality follows since Q(φ) ≥ µ1‖φ‖2 for all ψ ∈ D(Q). We can

rewrite this as

2n+3 ≤ ‖u1‖2 + ‖u2‖2. (87)

Since both u1, u2 are non-zero we may use the geometric inequality∥∥∥∥ u1

‖u1‖
− u2

‖u2‖

∥∥∥∥ ≤ 2
‖u1 − u2‖

max{‖u1‖, ‖u2‖}
.

Combining this with (87) and recalling that ‖u1 − u2‖ = 1 we obtain∥∥∥∥ u1

‖u1‖
− u2

‖u2‖

∥∥∥∥2

≤ 8

‖u1‖2 + ‖u2‖2
≤ 2−n

and (86) follows with ψn = u2/‖u2‖. Corrections since

August 30, 09:

ψ2 → ψn.Since (ψn) is Cauchy for the norm ‖ · ‖ we have ψ ∈ H such that ψn → ψ for

n → ∞ . In particular, ψ is a unit vector. We will now prove that ψ ∈ D(Q)

and that Q(ψ) = µ1 thus establishing the claim of the lemma.

Since Q(ψn)→ µ1 as n→∞ we have that

‖ψn‖2
α = (α + 1) +Q(ψn)→ α + 1 + µ1

as n→∞. In particular, ‖ψn‖α is bounded. Since D(Q) is a Hilbert space with

the inner product

(φ1, φ2)α = (α + 1)(φ1, φ2) +Q(φ1, φ2)
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we conclude from the Banach-Alaoglu Theorem for Hilbert spaces Corollary B.2

that there is a subsequence (ψnk) that converges weakly in D(Q) to some ψ′ ∈
D(Q). We must have ψ = ψ′. In fact, for all φ ∈ H we have a continuous

linear functional on D(Q) given by D(Q) 3 u 7→ (φ, u) ∈ C. Simply note that

|(φ, u)| ≤ ‖φ‖‖u‖ ≤ ‖φ‖‖u‖α. Thus for all φ ∈ H we have

(φ, ψ′) = lim
k→∞

(φ, ψnk) = (φ, ψ).

Hence ψ ∈ D(Q). We also have that

‖ψ‖2
α = lim

k→∞
(ψ, ψnk)α ≤ ‖ψ‖α lim

k→∞
‖ψnk‖α

and thus

‖ψ‖α ≤ lim
k→∞
‖ψnk‖α = α + 1 + µ1.

Therefore

Q(ψ) = ‖ψ‖2
α − (α + 1)‖ψ‖2 = ‖ψ‖2

α − (α + 1) ≤ µ1.

Since the opposite inequality Q(ψ) ≥ µ1 holds for all unit vectors in D(Q) we

finally conclude that Q(ψ) = µ1.

By induction on k we will show that if µK < µK+1 for some K ≥ k then

µ1, . . . , µk are eigenvalues for A counted with multiplicities. If k = 1 this is

simply Lemma C.1. Assume the result has been proved for k ≥ 1 and that

µK < µK+1 for some K ≥ k + 1. By the induction assumption we know that

µ1, . . . , µk are eigenvalues for A counted with multiplicities. Let φ1, . . . , φk be

corresponding orthonormal eigenvectors. Consider the space

Vk = span{φ1, . . . , φk}⊥.

Since A is symmetric it will map Vk ∩D(A) into Vk and the restriction Ak of A

to Vk ∩D(A) is the operator corresponding to the restriction Qk of the quadratic

form Q to Vk ∩D(Q).

That µk+1 is an eigenvalue of Ak and hence an additional eigenvalue of A

(counted with mulitplicity) follows from Lemma C.1 and the following claim.

LEMMA C.2.

µn(Ak) = µn+k(A).
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Proof. If M is any n + k-dimensional subspace of D(Q) then the projection of

span{φ1, . . . , φk} onto M is at most k-dimensional and hence M ∩ Vk must have

dimension at least n. Thus

max
φ∈M, ‖φ‖=1

Q(φ) ≥ max
φ∈M∩Vk, ‖φ‖=1

Q(φ) ≥ µn(Ak).

Thus

µk+n(A) ≥ µn(Ak).

To prove the opposite inequality note that if φ = φ1 +φ2 ∈ D(Q) with φ1 ∈ Vk
and φ2 ∈ span{φ1, . . . , φk} we have

Q(φ) = Q(φ1) +Q(φ2). (88)

We first show that µ1(Ak) ≥ µk(A). Assume otherwise that µ1(Ak) < µk(A) we

can then find a unit vector φ′ ∈ Vk such that Q(φ′) < µk(A). Let j be the largest

integer such that µj(A) ≤ µ1(Ak) (this is certainly true for j = 1). Then j < k.

If we consider the j + 1-dimensional space M = span{φ1, . . . , φj, φ
′} we see from

(88) that

µj+1(A) ≤ max
φ∈M, ‖φ‖=1

Q(φ) ≤ µ1(Ak)

which contradicts the fact that j was the largest integer with this property. Hence

we must have µ1(Ak) ≥ µk(A).

From (88) we find that if M ′ is any n-dimensional subspace of Vk for n ≥ 0

we have for the n+ k-dimensional subspace M = M ′ ⊕ span{φ1, . . . , φk} that

max
φ∈M, ‖φ‖=1

Q(φ) = max

{
µk(A), max

φ∈M ′, ‖φ‖=1
Q(φ)

}
.

Hence

µk+n(A) ≤ max {µk(A), µn(Ak)} = µn(Ak).

The statement in the second paragraph of Theorem 4.12 follows immediately

from Lemma C.2. The last statement is an easy exercise left for the reader.
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D Analysis of the function G(λ, Y ) in (37)

If we use the inequality 2ab ≤ a2 + b2 on the last term in G(λ, Y ) we see that

G(λ, Y ) ≤ (1− λ2) (1− Y 2)N (M −N)

M − 2
+

(1− λ2)Y 2 (N − 2) (M −N + 2)

M − 2

+2λ2Y 2 + 2Y 2
(
1− Y 2

)
+
λ2 (1− λ2) (M −N)N

M − 2
.

We see that this expression is a quadratic polynomial p(x, y) in the variables

x = λ2, y = Y 2. Straightforward calculations show that

∂2

∂x2
p(x, y) = −2

N (M −N)

M − 2
,
∂2

∂y2
p(x, y) = −4,

∂2

∂x∂y
p(x, y) = 4

M −N
M − 2

and that

∂

∂x
p(x, y)(2/M,N/M) = 0,

∂

∂y
p(x, y)(2/M,N/M) = 0.

In particular,

∂2p

∂x2

∂2p

∂y2
−
(
∂2p

∂x∂y

)2

= 8
(M −N)M (N − 2)

(M − 2)2 ≥ 0.

This shows (by the second derivative test) that p(x, y) is maximal for (x, y) =

(2/M,N/M). Thus

G(λ, Y ) ≤ p(2/M,N/M) =
N(M −N + 2)

M
= G((2/M)1/2, (N/M)1/2).

E Results on conjugate linear maps

Recall that a conjugate linear map C : H → K between complex vector spaces

H and K is a map such that

C(αu+ βv) = αC(u) + βC(v)

for all u, v ∈ H and α, β ∈ C.

We will concentrate on the situation where H and K are Hilbert spaces.

The map J : H → H∗ given by J(φ)(ψ) = (φ, ψ) (see also Remark 1.2) is

conjugate linear.
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The adjoint of a conjugate linear map C : H → K is the conjugate linear map

C∗ : K → H defined by

(Ch, k)K = (C∗k, h)H, for all h ∈ H, k ∈ K (89)

The map J : H → H∗ is anti-unitary meaning

J∗J = IH and JJ∗ = IH∗ . (90)

PROBLEM E.1. Show that (89), indeed, defines a conjugate linear map C∗

and show the identities in (90).

THEOREM E.2 (Conjugate Hermitian and anti-Hermitian maps).

Let C : H → H be a conjugate linear map such that C∗C admits an orthonormal Correction since

August 30, 09:

Condition on

C∗C refor-

mulated for

non-compact

operators

eigenbasis. If C : H → H is a conjugate Hermitian map, i.e., a conjugate linear

map satisfying C∗ = C then H has an orthonormal basis of eigenvectors for C

and all the eigenvalues are non-negative (in particular real).

If C : H → H is conjugate anti-Hermitian, i.e., a conjugate linear map

satisfying C∗ = −C then ker(C) is a closed subspace of H and the space ker(C)⊥

has an orthonormal basis

u1, u2 . . .

such that

Cu2i = λiu2i−1, Cu2i−1 = −λiu2i,

where λi > 0, i = 1, 2, . . ..

The condition that C∗C can be diagonalized holds if, for example, C∗C is

trace class or C is anti-unitary.

Proof. The operator C∗C is a linear Hermitian positive semi-definite map since

(C∗Cu, u) = (Cu,Cu) ≥ 0. Therefore its eigenvalue must be non-negative (in

particular real). Moreover, if C is Hermitian or anti-Hermitian C maps the

eigenspace of C∗C into itself. Assume that u is a normalized eigenvector for Correction

since June 24:

Invariance of

eigenspaces under

C added

C∗C, i.e.,

C∗Cu = λ2u

for some λ ≥ 0. Correction since

June 24: u,w

in eigenspace of

C∗C added
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We consider first the case C∗ = C. We then have (C + λ)(C − λ)u = (C2 −
λ2)u = 0. Hence either (C − λ)u = 0 or w = (C − λ)u 6= 0 and (C + λ)w = 0.

We have thus found one eigenvector (either u or w) for C, which belong to the

eigenspace of C∗C with eigenvalue λ. We can always assume the eigenvalue is non-

negative by eventually multiplying the eigenvector by i and using the conjugate

linearity, i.e., Ciw = −iCw = λiw if Cw = −λw. We may show that C maps the

orthogonal complement of this eigenvector into itself and then finish the proof by

an induction which is left as an exercise for the reader. Correction since

August 30, 09:

The restricted

problem in

the orthogonal

complement is

formulated as an

exercise.

Consider next the case when C∗ = −C. If the eigenvalue λ2 of C∗C vanishes

then Cu = 0, since (Cu,Cu) = (C∗Cu, u) = 0. We can therefore choose u as one

of the basis vectors. We may then proceed as before and show that C maps the

orthogonal complement of u into itself and then reduce the problem to a space

of lower dimension.

If λ > 0 then ‖Cu‖ = λ and we define the unit vector w = λ−1Cu. Then

Cu = λw and

Cw = λ−1C2u = −λ−1C∗Cu = −λ1λ2u = −λu.

Moreover,

(w, u) = λ−1(Cu, u) = λ−1(C∗u, u) = −λ(Cu, u) = −(w, u).

Thus (w, u) = 0. Thus u and w can be the first two vectors in the orthonormal

basis.

We then can show that C maps the orthogonal complement of {u,w} into

itself and finish the proof by induction.

PROBLEM E.3. Assume that f : H → H is Hermitian or conjugate Hermitian

or conjugate anti-Hermitian. Let X be a closed subspace of H such that f leaves

X invariant. Prove that f leaves X⊥ invariant. Moreover, show that if f has

an eigenvector u ∈ H\X then f also has an eigenvector v ∈ X⊥ such that

u ∈ Span(X ∪ {v}).

Proof of Lemma 8.14. To each element f ∈ h ∧ h we may associate a conjugate

linear map Cf : h→ h by

(φ,Cfψ)h = (φ ∧ ψ, f)h∧h
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for all φ, ψ ∈ h. Then

(φ,C∗fψ)h = (ψ,Cfφ)h = (ψ ∧ φ, f)h∧h = −(φ,Cfψ)h.

Hence Cf is a conjugate anti-Hermitian map. We may then choose an orthonor-

mal basis u1, . . . , u2r, u2r+1, . . . , uM for h such that u2r+1, . . . , uM are in the kernel

of Cf and u1, . . . , u2r are as described in Theorem E.2. We claim that

f =
r∑
i=1

λiu2i−1 ∧ u2i.

This follows from

(φ ∧ ψ, f) = (φ,Cfψ) =
n∑
i=1

n∑
j=1

(φ, ui)(ui, Cf (uj, ψ)uj)

=
n∑
i=1

n∑
j=1

(φ, ui)(ui, Cfuj)(ψ, uj)

=
r∑
i=1

(φ, u2i−1)(u2i−1, Cfu2i)(ψ, u2i) + (φ, u2i)(u2i, Cfu2i−1)(ψ, u2i−1)

=
r∑
i=1

λi((φ, u2i−1)(ψ, u2i)− (φ, u2i)(ψ, u2i−1))

= (φ ∧ ψ,
r∑
i=1

λiu2i−1 ∧ u2i).

F The necessity of the Shale-Stinespring condi-

tion
Correction since

August 30, 09:

Proof addedAssume that there exists a normalized vector |0〉V in FB,F (h) such that

A±(V(u⊕ 0)) |0〉V = 0, ∀u ∈ h. (91)

We need to prove that V ∗V must be trace class. 17.

17The proof follows ideas of Ruijsenaars S.N.M, On Bogoliubov transformations for systems

of relativistic charged particles, J. Math. Phys., Vol. 18, No. 3 (1977) - Theorem 6.1.
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Proof. Denote |0〉V =
⊕∞

N=0 ΨN . Then (91) is equivalent to

a±(Uu)Ψ1 = 0, a±(Uu)ΨN+2+a∗±(J∗V u)ΨN = 0, ∀u ∈ h, N = 0, 1, 2, ... (92)

We first consider the bosonic case. We claim that Ψ0 6= 0. From (58) we have

U∗ is injective and hence Ran(U) = h. Thus (92) implies Ψ1 = Ψ3 = Ψ5 = ... = 0.

If Ψ0 = 0 then Ψ0 = Ψ2 = Ψ4 = ... = 0 which contradicts with |0〉V 6= 0. Thus

Ψ0 ∈ C\{0}. In particular, we deduce from (92) that

J∗V u = −Ψ−1
0 a+(Uu)Ψ2, ∀u ∈ h. (93)

Introducing a conjugate linear map HB : h→ h defined by

(HBϕ1, ϕ2) = (Ψ2, ϕ1 ⊗ ϕ2) , ∀ϕ1, ϕ2 ∈ h.

It is straightforward to check that H∗BHB is trace class (here we do not need the

symmetry of Ψ2) and

Tr(H∗BHB) = ‖Ψ2‖2 .

Moreover using (93) and the symmetry of Ψ2 we have

J∗V = −
√

2Ψ−1
0 HBU

since

(−Ψ0J
∗V ϕ1, ϕ2) = (a+(Uϕ1)Ψ2, ϕ2) = (Ψ2, a

∗
+(Uϕ1)ϕ2, )

=
√

2(Ψ2, Uϕ1 ⊗ Uϕ2) =
√

2(HBUϕ1, ϕ2)

for all ϕ1, ϕ2 ∈ h. Thus

V ∗V = 2Ψ−2
0 U∗H∗BHBU

is indeed a trace class map on h.

We now turn to the fermionic case. This case is a little more complicated

because U∗ is not necessary to be injective and we can not conclude Ψ0 6= 0. Let

u1, u2, ... be an orthonormal basis for h such that ui ∈ Ker(U∗) if i ∈ K ⊂ N and

ui ∈ Ran(U) if i ∈ N\K.

We claim that dimKer(U∗)) = L < ∞ and if Span{u1, ..., uL} = Span(U∗)

then

ΨN = 0 if N < L, (94)

ΨN = P−(ΛN ⊗ (u1 ∧ ... ∧ uL)) with ΛN ∈
∧N−L

Ran(U) if N ≥ L. (95)



JPS— Many Body Quantum Mechanics Version corrected August 30, 2009 115

Indeed, using (68) and (92) we have

a∗−(u)ΨN = 0, ∀u ∈ Ker(U∗), N = 0, 1, 2, ...

Each ΨN can be expressed by

ΨM =
∑

1≤i1<...<iN

αi1,...,iNui1 ∧ ... ∧ uiN , αi1,...,iN ∈ C.

Note that a∗−(uj)ui1 ∧ ... ∧ uiN = 0 if and only if j ∈ {i1, ..., iN}. Thus

K ⊂ {i1, ..., iN} if αi1,...,iN 6= 0. (96)

In particular, denote L = |K| then L ≤ N if ΨN 6= 0. Because |0〉V 6= 0 we must

have ΨN 6= 0 for some N and hence dim Ker(U∗) = L < ∞. We of course can

assume that K = {1, ..., L}, i.e. Span{u1, ..., uL} = Ker(U∗), and (94)-(95) easily

follows from (96).

We now prove ΨL 6= 0. Because (94), it follows from (92) that a−(Uu)ΨL+1 =

0 for all u ∈ h. Using (95) and Ker(U∗) = Ran(U)⊥ we have

a−(Uu)ΨN = cN,LP−((a−(Uu)ΛN)⊗ (u1 ∧ ... ∧ uL)), ∀N ≥ L, (97)

where cN,L ∈ R\{0}. Therefore a−(Uu)ΨL+1 = 0 implies a−(Uu)ΛL+1 = 0 for

all u ∈ h. Because ΛL+1 ∈ Ran(U) we deduce that ΛL+1 = 0, and consequently

ΨL+1 = 0. Using (92) repeatedly we get ΨL+1 = ΨL+3 = ΨL+5 = ... = 0. If

ΨL = 0 then the same argument implies that ΨL = ΨL+2 = ΨL+4 = ... = 0 which

contradicts with |0〉V 6= 0. Thus ΨL 6= 0.

We now can process similarly to the bosonic case in which (ΛL+2,Ran(U))

replaces (Ψ2, h). More precisely, we define a conjugate linear map HF : Ran(U)→
Ran(U) by

(HFϕ1, ϕ2) = (ΛL+2, ϕ1 ⊗ ϕ2) , ∀ϕ1, ϕ2 ∈ Ran(U).

Then H∗FHF is a trace class map on Ran(U). Moreover it is straightforward to

check that J∗V = −βHFU on Ran(U) for some β ∈ R\{0}. Indeed, recall that

ΨL = ΛLu1 ∧ ... ∧ uL and Ker(U∗) = Ran(U)⊥. Using (92) and (97) we have

(−J∗V ϕ1, ϕ2) = L!
√
L+ 1Λ−2

L (−a∗−(J∗V ϕ1)ΨL, ϕ2 ⊗ΨL)
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= L!
√
L+ 1Λ−2

L (a−(Uϕ1)ΨL+2, ϕ2 ⊗ΨL)

= L!
√
L+ 1Λ−3

L cL+2,L(P−(a−(Uϕ1)ΛL+2)⊗ΨL), ϕ2 ⊗ΨL)

= (L+ 1)−1/2Λ−1
L cL+2,L(a−(Uϕ1)ΛL+2, ϕ2)

= (L+ 1)−1/2Λ−1
L cL+2,L(ΛL+2, a

∗
−(Uϕ1)ϕ2)

= β(ΛL+2, Uϕ1 ⊗ ϕ2) = β(HFUϕ1, ϕ2)

for all ϕ1, ϕ2 ∈ Ran(U). Thus V ∗V = β2U∗H∗FHFU is a trace class operator on

Ran(U). Because Ker(U∗) is finite dimensional, we conclude that

V ∗V = V ∗V ◦ ProjRan(U) + V ∗V ◦ ProjKer(U∗)

is indeed a trace class map on h.

G Generalized one-particle density matrices of

quasi-free states
Correction since

August 30, 09:

Section addedThe generalized 1-pdm defined for pure states in Section 8.2 may be extended

for quantum mechanical state. Recall that a quantum state ρ may be considered

as a complex-valued linear map acting on the set of operators of the Fock space

FB,F (h) such that

ρ[B] = Tr(BP )

for all linear bounded operator B, where P is a positive semi-definite trace class

operator with Tr(P ) = 1. In particular, a normalized pure state Ψ ∈ FB,F (h)

may be considered as a quantum state ρ with P = PΨ, the orthogonal projection

onto Span{Ψ}.
From the physical motivation we are mainly interested in quantum states with

finite particle expectation, i.e. ρ[N ] <∞.

DEFINITION G.1 (1-pdm of quantum states). Let ρ be a quantum state with

finite particle expectation. The corresponding one-particle density matrix Γ is a

linear operator on h⊕ h∗ defined by

(F1,ΓF2) = ρ[A∗(F2)A(F1)] for all F1, F2 ∈ h⊕ h∗.
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Similarly to 1-pdm of pure states, the 1-pdm Γ of a quantum state may be

written in the block form

Γ =

(
γ α

±JαJ 1± JγJ∗

)
(98)

with (+) for bosons and (-) for fermions, where γ : h → h and α : h∗ → h are

linear operators.

We shall restrict our consideration on the class of quasi-free states, the quan-

tum states satisfy Wick’s Theorem, i.e.

ρ[A±(F1)...A±(F2m)] (99)

=
∑
σ∈P2m

(±1)σρ[A±(Fσ(1))A±(Fσ(2))]...ρ[A±(Fσ(2m−1))A±(Fσ(2m))]

and

ρ[A±(F1)...A±(F2m−1)] = 0. (100)

for all m ≥ 1 (see also (75) and (76)).

The point is that a quasi-free state is determined uniquely by its 1-pdm.

Moreover, the class of 1-pdm of quasi-free states is invariant under Bogolubov

transformation.

PROBLEM G.2 (Action of Bogolubov maps on 1-pdm of quasi-free states). Let

Γ be the 1-pdm of a quasi-free state ρ. Let V be a Bogolubov map which admits a

unitary implementation UV . Prove that V∗ΓV is the 1-pdm of the quasi-free state

ρ′ defined by

ρ′[B] = ρ[UVBU∗V ].

We now consider the structure of quasi-free states.

THEOREM G.3. Let {un}∞n=1 be an orthogonal basis for h. For a subset I ⊂ N
let λn > 0 such that

∑
n∈I e

−λn <∞. Let

G = Π0 exp

[
−
∑
n∈I

λna
∗
±(un)a±(un)

]
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where Π0 is the projection onto the subspace Ker[
∑

n/∈I a
∗
±(un)a±(un)]. Then G

is a trace class operator on the Fock space FB,F (h) and the state ρ defined by

ρ[B] =
Tr[BG]

Tr[G]

is a quasi-free state.

The subspace Ker[
∑

n/∈I a
∗
±(un)a±(un)] consists of all pure states without par-

ticles {un}n/∈I . In other words it is the Fock space associated with the Hilbert

space spaned by {un}n∈I . If I = ∅ then ρ is just the vacuum while if I = N then

ρ is a Gibbs state.

Proof. We shall prove for the bosons and the fermions is similar. We first consider

the case I = N. We want to check that G is trace class. Denote ai = a+(ui) for

short. Recall that an orthonormal basis of FB(h) is given by

|n1, n2, ...〉 = (n1!n2!...)−1/2(a∗1)n1(a∗2)n2 ... |0〉

where n1, n2... run over 0, 1, 2, ... such that there are only finite j such that nj > 0.

We have

Tr(G) =
∑

nj=0,1,2,...

〈n1, n2, ...|G |n1, n2, ...〉

=
∑

nj=0,1,...;j∈I

(n1!n2!...)−1 〈0|
∏
i∈I

(anii exp[−λia∗i ai](a∗i )ni) |0〉

=
∑

nj=0,1,...;j∈I

(n1!n2!...)−1 〈0|
∏
i∈I

(
anii

∞∑
k=0

(−λi)k(a∗i ai)k

k!
(a∗i )

ni

)
|0〉

=
∑

nj=0,1,...;j∈I

(n1!n2!...)−1 〈0|
∏
i∈I

(
∞∑
k=0

(−ei)k(ni)k(ni!)
k!

)
|0〉

=
∑

nj=0,1,...;j∈I

∏
i

e−λini =
∏
i∈I

1

1− e−λi
<∞

since
∑

i∈I e
−λi <∞. Thus ρ is well-defined.

We now prove that ρ is a quasi-free state18. It suffices to prove (99)-(100) for

ci := A+(Fi) either a creation or annihilation operator. Our aim is to show that

Tr[c1c2c3c4...ckG] =
Tr[c1c2G]

Tr[G]
Tr[c3c4...ckG] (101)

18The proof here is based on ideas of M. Gaudin, Une démonstartion simpliflée du théorème

de Wick en méchanique statistique. Nucl. Phys. 15 (1960)
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+
Tr[c1c3G]

Tr[G]
Tr[c2c4...ckG] + ...+

Tr[c1ckG]

Tr[G]
Tr[c2c3...ck−1G]

and the result follows immediately by a simple induction. By the same way of

computating Tr[G] we may check that

Tr[c1c2G]

Tr[G]
= f(c1)[c1, c2] (102)

where [c1, c2] = c1c2 − c2c1 ∈ {0,−1, 1} and

f(c1) =


(1− e−λj)−1 if c1 = aj, j ∈ I,
(1− eλj)−1 if c1 = a∗j , j ∈ I,
1 if c1 = aj, j /∈ I,
0 if c1 = a∗j , j /∈ I.

(103)

Thus (107) is equivalent to

Tr[c1c2c3c4...ckG] = f(c1)[c1, c2]Tr[c3c4...ckG] (104)

+ f(c1)[c1, c3]Tr[c2c4...ckG] + ...+ f(c1)[c1, ck]Tr[c2c3...ck−1G].

We can prove (104) as follows. From the identity

c1c2c3c4...ck = [c1, c2]c3c4...ck + ...+ c2c4...ck−1[c1, ck] + c2c3c4...ckc1

we deduce that

Tr [c1c2c3c4...ckG] = Tr [[c1, c2]c3c4...ckG] (105)

+...+ Tr [c2c4...ck−1[c1, ck]G] + Tr [c2c3c4...ckc1G] .

We first consider when c1 is either aj or a∗j with j ∈ I. In this case it is

straightforward to see that c1G = e±λjc1G where (+) if c1 = a∗j and (-) if c1 = aj.

This implies that

Tr [c2c3c4...ckc1G] = e±λjTr [c2c3c4...ckGc1] = e±λjTr [c1c2c3c4...ckG] . (106)

Substituting (106) into (106) we conclude that

Tr [c1c2c3c4...ckG] =
[c1, c2]

1− e±λj
Tr [c3c4...ckG]

+
[c1, c3]

1− e±λj
Tr [c2c4...ckG] + ...+

[c1, ck]

1− e±λj
Tr [c2c4...ck−1G] .
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which is precisely the desired identity (104).

If c1 = aj for some j /∈ I then

Tr[c2c3c4...ckc1G] = 0

since ajG = 0 and (104) follows (106).

Finally if c1 = a∗j for some j /∈ I then

Tr[c1c2c3c4...ckG] = Tr[c2c3c4...ckGc1] = 0

since Ga∗j = 0 and we obtain (104) again.

PROBLEM G.4. Prove that for fermions, using notations in Theorem G.3,

Tr(G) =
∏
i∈I

(1 + e−λi) <∞.

In the next theorem we characterize the 1-pdm of all quasi-free states. More-

over, we shall see in the proof that any quasi-free state is associated with a state

described in Theorem G.3 via a Bogolubov transformation.

THEOREM G.5 (1-pdm of quasi-free states). Let Γ : h ⊕ h∗ → h ⊕ h∗ be an

operator having the form as in (98). Then Γ is the 1-pdm of a quasi-free state

with finite particle number if and only if Γ ≥ 0 and Tr[γ] <∞.

Proof. The direct part is simple because if Γ is the 1-pdm of a quasi-free state

ρ with finite particle expectation then it must be positive semi-definite since

ρ(A∗A) ≥ 0 for all operators A and Tr[γ] = ρ[N ] <∞.

Now we prove the reverse part. Assume that Γ ≥ 0 and Tr[γ] < ∞. Note

that from Γ ≥ 0 we obtain that γ ≥ 0 and α∗ = ±JαJ . Using Theorem 9.9 we

may write

Γ = V∗Γ0V with Γ0 =

(
ξ 0

0 1± JξJ

)
where V : h⊕h∗ → h⊕h∗ is a Bogolubov map which is unitary implementable and

ξ is a positive semi-definite trace class operator on h and ξ ≤ 1/2 for fermionic

case. (Infact, Theorem 9.9 is stated for 1-pdm of pure states but in the proof we

just use the specific form of Γ.) Because the set of 1-pdm of quasi-free states is

invariant under Bogolubov transformations we may consider Γ0 instead of Γ.
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We shall construct a quasi-free state whose 1-pdm is Γ0. We shall first consider

the bosonic case. Because ξ is trace class it admits an orthogonal eigenbasis

{ui}∞i=1 for h corresponding to eigenvalues {λi}∞i=1. Let I = {i ∈ N|λi > 0}. Then

we may choose ei ∈ (0,∞) such that

(1− exp(−ei))−1 = 1 + λi, i ∈ I. (107)

Let

G = Π0 exp

[
−
∑
i∈I

eia
∗
+(ui)a+(ui)

]
where Π0 is the projection onto the subspace Ker[

∑
n/∈I a

∗
+(un)a+(un)]. Since∑

i∈I

exp(−ei) =
∑
i∈I

λi
1 + λ1

<∞

it follows from Theorem G.3 that the state ρ defined by

ρ[B] =
Tr[BG]

Tr[G]
(108)

is a quasi-free state. Moreover from (102) we can see immediately that Γ is

precisely the 1-pdm of ρ.

The proof for fermionic case is totally the same where we just need to replace

(107) by

(1 + exp(−ei))−1 = λi.

for λi ∈ (0, 1).

One of the difficulties when dealing with the Hartree-Fock Theory and Bo-

golubov Theory is due to the nonlinearity of the set of variational states. For

example, the convex combination of two quasi-free pure states is not necessarily

a quasi-free pure state, and hence we cannot talk about extremal states.

Although the set of quantum quasi-free states is still nonlinear, using Theorem

G.5 we can in some sense compensate for this by the linearity of the set of the

corresponding one-particle density matrices.

PROBLEMG.6 (Consistency of the quasi-free states and quasi-free pure states).

Let ρ be a quantum quasi-free state. Assume that ρ is also a pure state in the

Fock space FB,F (h). Prove that ρ is a quasi-free pure state as in Definition 10.1.

(Hint: Under a Bogolubov transformation ρ is defined uniquely by (108). Us-

ing the purity to prove that Ran(G) is 1-dimensional.)
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