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CHAPTER 1

Commutative and Noncommutative Algebraic Geometry

Introduction

Throughout we will fix a base field K. The reader may consider it as real numbers
or complex numbers or any other of his most favorite fields.

A fundamental and powerful tool for geometry is to associate with each space
X the algebra of functions O(X) from X to the base field (of coefficients). The
dream of geometry is that this construction is bijective, i.e. that two different spaces
are mapped to two different function algebras and that each algebra is the function
algebra of some space.

Actually the spaces and the algebras will form a category. There are admissible
maps. For algebras it is quite clear what these maps will be. For spaces this is
less obvious, partly due to the fact that we did not say clearly what spaces exactly
are. Then the dream of geometry would be that these two categories, the category of
(certain) spaces and the category of (certain) algebras, are dual to each other.

Algebraic geometry, noncommutative geometry, and theoretical physics have as a
basis this fundamental idea, the duality of two categories, the category of spaces (state
spaces in physics) and the category of function algebras (algebras of observables) in
physics. We will present this duality in the 1. chapter. Certainly the type of spaces
as well as the type of algebras will have to be specified.

Theoretical physics uses the categories of locally compact Hausdorff spaces and
of commutative C∗-algebras. A famous theorem of Gelfand-Naimark says that these
categories are duals of each other.

(Affine) algebraic geometry uses a duality between the categories of affine algebraic
schemes and of (reduced) finitely generated commutative algebras.

To get the whole framework of algebraic geometry one needs to go to more gen-
eral spaces by patching affine spaces together. On the algebra side this amounts to
considering sheaves of commutative algebras. We shall not pursue this more general
approach to algebraic geometry, since generalizations to noncommutative geometry
are still in the state of development and incomplete.

Noncommutative geometry uses either (imaginary) noncommutative spaces and
not necessarily commutative algebras or (imaginary) noncommutative spaces and not
necessarily commutative C∗-algebras.

We will take an approach to the duality between geometry and algebra that heavily
uses functorial tools, especially representable functors. The affine (algebraic) spaces
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2 1. COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAIC GEOMETRY

we use will be given in the form of sets of common zeros of certain polynomials, where
the zeros can be taken in arbitrary (commutative) K-algebras B. So an affine space
will consist of many different sets of zeros, depending on the choice of the coefficient
algebra B.

We first give a short introduction to commutative algebraic geometry in this setup
and develop a duality between the category of affine (algebraic) spaces and the cate-
gory of (finitely generated) commutative algebras.

Then we will transfer it to the noncommutative situation. The functorial approach
to algebraic geometry is not too often used but it lends itself particularly well to the
study of the noncommutative situation. Even in that situation one obtains space-like
objects.

The chapter will close with a first step to construct automorphism “groups” of
noncommutative spaces. Since the construction of inverses presents special problems
we will only construct endomorphism “monoids” in this chapter and postpone the
study of invertible endomorphisms or automorphisms to the next chapter.

At the end of the chapter you should

• know how to construct an affine scheme from a commutative algebra,
• know how to construct the function algebra of an affine scheme,
• know what a noncommutative space is and know examples of such,
• understand and be able to construct endomorphism quantum monoids of

certain noncommutative spaces,
• understand, why endomorphism quantum monoids are not made out of en-

domorphisms of a noncommutative space.

1. The Principles of Commutative Algebraic Geometry

We will begin with simplest form of (commutative) geometric spaces and see a
duality between these very simple “spaces” and certain commutative algebras. This
example will show how the concept of a function algebra can be used to fulfill the
dream of geometry in this situation. It will also show the functorial methods that
will be applied throughout this text. It is a particularly simple example of a duality
as mentioned in the introduction. This example will not be used later on, so we will
only sketch the proofs for some of the statements.

Example 1.1.1. Consider a set of points without any additional geometric struc-
ture. So the geometric space is just a set. We introduce the notion of its algebra of
functions.

Let X be a set. Then KX := Map(X,K) is a K-algebra with componentwise
addition and multiplication: (f + g)(x) := f(x) + g(x) and (fg)(x) := f(x)g(x). We
study this fact in more detail.

The set KX considered as a vector space with the addition (f+g)(x) := f(x)+g(x)
and the scalar multiplication (αf)(x) := αf(x) defines a representable contravariant
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functor

K- : Set −→ Vec .

This functor is a representable functor represented by K. In fact Kh : KY −→ KX is
a linear map for every map h : X −→ Y since Kh(αf + βg)(x) = (αf + βg)(h(x)) =
αf(h(x))+βg(h(x)) = (αfh+βgh)(x) = (αKh(f)+βKh(g))(x) hence Kh(αf+βg) =
αKh(f) + βKh(g).

Consider the homomorphism τ : KX ⊗KY −→ KX×Y , defined by τ(f ⊗ g)(x, y) :=
f(x)g(y). In order to obtain a unique homomorphism τ defined on the tensor product
we have to show that τ ′ : KX ×KY −→ KX×Y is a bilinear map : τ ′(f + f ′, g)(x, y) =
(f+f ′)(x)g(y) = (f(x)+f ′(x))g(y) = f(x)g(y)+f ′(x)g(y) = (τ ′(f, g)+τ ′(f ′, g))(x, y)
gives the additivity in the left hand argument. The additivity in the right hand
argument and the bilinearity is checked similarly. One can check that τ is always
injective. If X or Y are finite then τ is bijective.

As a special example we obtain a multiplication ∇ : KX ⊗KX τ−→ KX×X K∆

−→ KX

where ∆ : X −→ X ×X in Set is the diagonal map ∆(x) := (x, x). Furthermore we

get a unit η : K{∗} Kε

−→ KX where ε : X −→ {∗} is the unique map into the one element
set. One verifies easily that (KX , η,∇) is a K-algebra. Two properties are essential
here, the associativity and the unit of K and the fact that (X,∆, ε) is a “comonoid”
in the category Set :

X ×X X ×X ×X-
∆×1

X X ×X-∆

?

∆

?

1×∆

X X ×X-∆

?

∆ 1X

PPPPPPPPPPq ?

1×ε

X ×X {∗} ×X ∼= X ∼= X × {∗}.-
ε×1

Since K- is a functor these two diagrams carry over to the category Vec and produce
the required diagrams for a K-algebra.

For a map f : X −→ Y we obtain a homomorphism of algebras Kf : KY −→ KX

because the diagrams

KY ⊗KY KY×Y-τ

KX ⊗KX KX×X-τ

KY-K∆

KX-K∆
?

Kf⊗Kf

?

Kf×f

?

Kf
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and
K{∗} ∼= K

η

A
A
A
AAU

η

�
�

�
���

KY KX-Kf

commute.
Thus

K- : Set −→ K-cAlg

is a contravariant functor.
By the definition of the set-theoretic (cartesian) product we know that KX =∏

X K. This identity does not only hold on the set level, it holds also for the algebra
structures on KX resp.

∏
X K.

We now construct an inverse functor

Spec : K-cAlg −→ Set .

For each point x ∈ X there is a maximal ideal mx of
∏

X K defined by mx := {f ∈
Map(X,K)|f(x) = 0}. If X is a finite set then these are exactly all maximal ideals
of

∏
X K. To show this we observe the following. The surjective homomorphism px :∏

X K −→ K has kernel mx hence mx is a maximal ideal. If m ⊆
∏

X K is a maximal
ideal and a = (α1, . . . , αn) ∈ m then for any αi 6= 0 we get (0, . . . , 0, 1i, 0, . . . , 0) =
(0, . . . , 0, α−1

i , 0, . . . , 0)(α1, . . . , αn) ∈ m hence the i-th factor 0× . . .×K× . . .× 0 of∏
X K is in m. So the elements a ∈ m must have at least one common component

αj = 0 since m 6= K. But more than one such a component is impossible since we
would get zero divisors in the residue class algebra. Thus m = mx where x ∈ X is
the j-th elements of the set.

One can easily show more namely that the ideals mx are precisely all prime ideals
of Map(X,K).

With each commutative algebra A we can associate the set Spec(A) of all prime
ideals of A. That defines a functor Spec: K-Alg −→ Set . Applied to algebras of the
form KX =

∏
X K with a finite set X this functor recovers X as X ∼= Spec(KX).

Thus the dream of geometry is satisfied in this particular example.

The above example shows that we may hope to gain some information on the
space (set) X by knowing its algebra of functions KX and applying the functor Spec
to it. For finite sets and certain algebras the functors K- and Spec actually define a
category duality. We are going to expand this duality to larger categories.

We shall carry some geometric structure into the sets X and will study the con-
nection between these geometric spaces and their algebras of functions. For this
purpose we will describe sets of points by their coordinates. Examples are the circle
or the parabola. More generally the geometric spaces we are going to consider are
so called affine schemes described by polynomial equations. We will see that such
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geometric spaces are completely described by their algebras of functions. Here the
Yoneda Lemma will play a central rôle.

We will, however, take a different approach to functions algebras and geometric
spaces, than one does in algebraic geometry. We use the functorial approach, which
lends itself to an easier access to the principles of noncommutative geometry. We
will define geometric spaces as certain functors from the category of commutative
algebras to the category of sets. These sets will have a strong geometrical meaning.
The functors will associate with each algebra A the set of points of a “geometric
variety”, where the points have coordinates in the algebra A.

Definition 1.1.2. The functor A = A1 : K-cAlg −→ Set (the underlying functor)
that associates with each commutative K-algebra A its space (set) of points (elements)
A is called the affine line.

Lemma 1.1.3. The functor “affine line” is a representable functor.

Proof. By Lemma 2.3.5 the representing object is K[x]. Observe that it is unique
up to isomorphism. �

Definition 1.1.4. The functor A2 : K-cAlg −→ Set that associates with each
commutative algebra A the space (set) of points (elements) of the plane A2 is called
the affine plane.

Lemma 1.1.5. The functor “affine plane” is a representable functor.

Proof. Similar to Lemma 2.3.9 the representing object is K[x1, x2]. This algebra
is unique up to isomorphism. �

Let p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) ∈ K[x1, . . . , xn] be a family of polynomials.
We want to consider the (geometric) variety of zeros of these polynomials. Observe
that K may not contain sufficiently many zeros for these polynomials. Thus we are go-
ing to admit zeros in extension fields of K or more generally in arbitrary commutative
K-algebras.

In the following rather simple buildup of commutative algebraic geometry, the
reader should carefully verify in which statements and proofs the commutativity is
really needed. Most of the following will be verbally generalized to not necessarily
commutative algebras.

Definition 1.1.6. Given a set of polynomials {p1, . . . , pm} ⊆ K[x1, . . . , xn]. The
functor X that associates with each commutative algebra A the set X (A) of zeros of
the polynomials (pi) in An is called an affine algebraic variety or an affine scheme
(in An) with defining polynomials p1, . . . , pm. The elements in X (A) are called the
A-points of X .

Theorem 1.1.7. The affine scheme X in An with defining polynomials p1, . . . , pm
is a representable functor with representing algebra

O(X ) := K[x1, . . . , xn]/(p1, . . . , pm),
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called the affine algebra of the functor X .

Proof. First we show that the affine scheme X : K-cAlg −→ Set with the
defining polynomials p1, . . . , pm is a functor. Let f : A −→ B be a homomorphism
of commutative algebras. The induced map fn : An −→ Bn defined by applica-
tion of f on the components restricts to X (A) ⊆ An as X (f) : X (A) −→ X (B).
This map is well-defined for let (a1, . . . , an) ∈ X (A) be a zero for all polynomi-
als p1, . . . , pm then pi(f(a1), . . . , f(an)) = f(pi(a1, . . . , an)) = f(0) = 0 for all i
hence fn(a1, . . . , an) = (f(a1), . . . , f(an)) ∈ Bn is a zero for all polynomials. Thus
X (f) : X (A) −→ X (B) is well-defined. Functoriality of X is clear now.

Now we show that X is representable by O(X ) = K[x1, . . . , xn]/(p1, . . . , pm). Ob-
serve that (p1, . . . , pm) denotes the (two-sided) ideal in K[x1, . . . , xn] generated by the
polynomials p1, . . . , pm. We know that each n-tupel (a1, . . . , an) ∈ An uniquely deter-
mines an algebra homomorphism f : K[x1, . . . , xn] −→ A by f(x1) = a1, . . . , f(xn) =
an. (The polynomial ring K[x1, . . . , xn] in K-cAlg is free over the set {x1, . . . , xn},
or K[x1, . . . , xn] together with the embedding ι : {x1, . . . , xn} −→ K[x1, . . . , xn] is
a couniversal solution of the problem given by the underlying functor A : K-cAlg
−→ Set and the set {x1, . . . , xn} ∈ Set .) This homomorphism of algebras maps poly-
nomials p(x1, . . . , xn) into f(p) = p(a1, . . . , an). Hence (a1, . . . , an) is a common zero
of the polynomials p1, . . . , pm if and only if f(pi) = pi(a1, . . . , an) = 0, i.e. p1, . . . , pm
are in the kernel of f . This happens if and only if f vanishes on the ideal (p1, . . . , pm)
or in other word can be factorized through the residue class map

ν : K[x1, . . . , xn] −→ K[x1, . . . , xn]/(p1, . . . , pm)

This induces a bijection

MorK-cAlg(K[x1, . . . , xn]/(p1, . . . , pm), A) 3 f 7→ (f(x1), . . . , f(xn)) ∈ X (A).

Now it is easy to see that this bijection is a natural isomorphism (in A). �

If no polynomials are given for the above construction, then the functor under this
construction is the affine space An of dimension n. By giving polynomials the functor
X becomes a subfunctor of An, because it defines subsets X (A) ⊆ An(A) = An. Both
functors are representable functors. The embedding is induced by the homomorphism
of algebras ν : K[x1, . . . , xn] −→ K[x1, . . . , xn]/(p1, . . . , pm).

Problem 1.1.1. (1) Determine the affine algebra of the functor “unit circle”
S1 in A2.

(2) Determine the affine algebra of the functor “unit sphere” Sn−1 in An.
(3) Determine the affine algebra of the functor “torus” T and find an “embed-

ding” of T into A3.
Actually T can be considered as product §1 × §1(B) = §1(B) × §1(B).

Take the first copy of §1(B) as the circle with radius 2, then we have §11(B)×
S1

2(B) = {(u, v, x, y)|u2 + v2 = 4;x2 + y2 = 1}. The embedding is

(u, v, x, y) 7→ (u, v, 0) + 1/2x(u, v, 0) + (0, 0, y)
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hence the algebra map is

K[x, y, z] −→ K[u, v]/(u2 + v2 − 4)⊗K[x, y]/(x2 + y2 − 1)

with
x 7→ u+ 1/2xu,
y 7→ v + 1/2xv,
z 7→ y.

(4) Let U denote the plane curve xy = 1. Then U is not isomorphic to the affine
line. (Hint: An isomorphism K[x, x−1] −→ K[y] sends x to a polynomial p(y)
which must be invertible. Consider the highest coefficient of p(y) and show
that p(y) ∈ K. But that means that the map cannot be bijective.)
U is also called the unit functor. Can you explain, why?

(5) Let X denote the plane curve y = x2. Then X is isomorphic to the affine
line.

(6) Let K = C be the field of complex numbers. Show that the unit functor U :
K-cAlg −→ Set in Problem (3) is naturally isomorphic to the unit circle S1.
(Hint: There is an algebra isomorphism between the representing algebras
K[e, e−1] and K[c, s]/(c2 + s2 − 1).)

(7) ∗ Let K be an algebraically closed field. Let p be an irreducible square
polynomial in K[x, y]. Let Z be the conic section defined by p with the affine
algebra K[x, y]/(p). Show that Z is naturally isomorphic either to X or to
U from parts (4) resp. (5).

Remark 1.1.8. Affine algebras of affine schemes are finitely generated commu-
tative algebras and any such algebra is an affine algebra of some affine scheme, since
A ∼= K[x1, . . . , xn]/(p1, . . . , pm) (Hilbert basis theorem).

The polynomials p1, . . . , pm are not uniquely determined by the affine algebra of
an affine scheme. Not even the ideal generated by the polynomials in the polynomial
ring K[x1, . . . , xn] is uniquely determined. Also the number of variables x1, . . . , xn is
not uniquely determined.

The K-points (α1, . . . , αn) ∈ X (K) of an affine scheme X (with coefficients in the
base field K) are called rational points. They do not suffice to completely describe
the affine scheme.

Let for example K = R the set of rational numbers. If X and Y are affine
schemes with affine algebras O(X ) := K[x, y]/(x2 +y2 +1) and O(Y) := K[x]/(x2 +1)
then both schemes have no rational points. The scheme Y , however, has exactly
two complex points (with coefficients in the field C of complex numbers) and the
scheme X has infinitely many complex points, hence X (C) 6∼= Y(C). This does not
result from the embeddings into different spaces A2 resp. A1. In fact we also have
O(Y) = K[x]/(x2+1) ∼= K[x, y]/(x2+1, y), so Y can be considered as an affine scheme
in A2.

Since each affine scheme X is isomorphic to the functor MorK-cAlg(O(X ), -) we will
henceforth identify these two functors, thus removing annoying isomorphisms.
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Definition 1.1.9. Let K-Aff denote the category of all commutative finitely
generated (or affine cf. 1.1.8) K-algebras. An affine algebraic variety is a representable
functor K-Aff (A, -) : K-Aff −→ Set . The affine algebraic varieties together with the
natural transformations form the category of affine algebraic varieties K-Var over
K. The functor that associates with each affine algebra A its affine algebraic variety
represented by A is denoted by Spec : K-Aff −→ K-Var , Spec(A) = K-Aff (A, -).

By the Yoneda Lemma the functor

Spec : K-Aff −→ K-Var
is an antiequivalence (or duality) of categories with inverse functor

O : K-Var −→ K-Aff .

An affine algebraic variety is completely described by its affine algebra O(X ). Thus
the dream of geometry is realized.

Arbitrary (not necessarily finitely generated) commutative algebras also define
representable functors (defined on the category of all commutative algebras). Thus we
also have “infinite dimensional” varieties which we will call geometric spaces or affine
varieties. We denote their category by Geom (K) and get a commutative diagram

K-cAlg Geom (K)-∼=o

K-Aff K-Var-Spec

? ?

We call the representable functors X : K-cAlg −→ Set geometric spaces or affine
varieties, and the representable functors X : K-Aff −→ Set affine schemes or affine
algebraic varieties. This is another realization of the dream of geometry.

The geometric spaces can be viewed as sets of zeros in arbitrary commutative
K-algebras B of arbitrarily many polynomials with arbitrarily many variables. The
function algebra of X will be called the affine algebra of X in both cases.

Example 1.1.10. A somewhat less trivial example is the state space of a circular
pendulum (of length 1). The location is in L = {(a, b) ∈ A2|a2 + b2 = 1}, the
momentum is in M = {p ∈ A} which is a straight line. So the whole geometric space
for the pendulum is (L×M)(A) = {(a, b, p)|a, b, p ∈ A; a2 + b2 = 1}. This geometric
space is represented by K[x, y, z]/(x2 + y2 − 1) since

(L×M)(A) = {(a, b, p)|a, b, p ∈ A; a2 + b2 = 1} ∼= K-cAlg (K[x, y, z]/(x2 +y2−1), A).

The two antiequivalences of categories above give rise to the question for the func-
tion algebra. If a representable functor X = K-cAlg (A, -) is viewed as geometric sets
of zeros of certain polynomials, i.e. as spaces with coordinates in arbitrary commuta-
tive algebras B, (plus functorial behavior), then it is not clear why the representing
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algebra A should be anything like an algebra of functions on these geometric sets. It
is not even clear where these functions should assume their values. Only if we can
show that A can be viewed as a reasonable algebra of functions, we should talk about
a realization of the dream of geometry. But this will be done in the following theo-
rem. We will consider functions as maps (coordinate functions) from the geometric
set X (B) to the set of coordinates B, maps that are natural in B. Such coordinate
functions are just natural transformations from X to the underlying functor A.

Theorem 1.1.11. Let X be a geometric space with the affine algebra A = O(X ).
Then A ∼= Nat(X ,A) as K-algebras, where A : K-cAlg −→ Set is the underlying func-
tor or affine line. The isomorphism A ∼= Nat(X ,A) induces a natural transformation
A×X (B) −→ B (natural in B).

Proof. First we define an isomorphism between the sets A and Nat(X ,A).
Because of X = MorK-cAlg(A, -) =: K-cAlg (A, -) and A = MorK-cAlg(K[x], -) =:
K-cAlg (K[x], -) the Yoneda Lemma gives us

Nat(X ,A) = Nat(K-cAlg (A, -),K-cAlg (K[x], -)) ∼= K-cAlg (K[x], A) = A(A) ∼= A

on the set level. Let φ : A −→ Nat(X ,A) denote the given isomorphism. φ is
defined by φ(a)(B)(p)(x) := p(a). By the Yoneda Lemma its inverse is given by
φ−1(α := α((A)(1)(x).

Nat(X ,A) carries an algebra structure given by the algebra structure of the coef-
ficients. For a coefficient algebra B, a B-point p : A −→ B in X (B) = K-Alg (A,B),
and α, β ∈ Nat(X ,A) we have α(B)(p) ∈ A(B) = B. Hence (α + β)(B)(p) :=
(α(B) + β(B))(p) = α(B)(p) + β(B)(p) and (α · β)(B)(p) := (α(B) · β(B))(p) =
α(B)(p) · β(B)(p) make Nat(X ,A) an algebra.

Let a be an arbitrary element in A. By the isomorphism given above this ele-
ment induces an algebra homomorphism ga : K[x] −→ A mapping x onto a. This
algebra homomorphism induces the natural transformation φ(a) : X −→ A. On

the B-level it is just the composition with ga, i.e. φ(a)(B)(p) = (K[x]
ga−→ A

p−→
B). Since such a homomorphism is completely described by the image of x we
get φ(a)(B)(p)(x) = p(a). To compare the algebra structures of A and Nat(X ,A)
let a, a′ ∈ A. We have φ(a)(B)(p)(x) = p(a) and φ(a′)(B)(p)(x) = p(a′), hence
φ(a + a′)(B)(p)(x) = p(a + a′) = p(a) + p(a′) = φ(a)(B)(p)(x) + φ(a′)(B)(p)(x) =
(φ(a)(B)(p)+φ(a′)(B)(p))(x) = (φ(a)(B)+φ(a′)(B))(p)(x) = (φ(a)+φ(a′))(B)(p)(x).
Analogously we get φ(aa′)(B)(p)(x) = p(aa′) = p(a)p(a′) = (φ(a) · φ(a′))(B)(p)(x),
and thus φ(a + a′) = φ(a) + φ(a′) and φ(aa′) = φ(a) · φ(a′). Hence addition and
multiplication in Nat(X ,A) are defined by the addition and the multiplication of the
values p(a) + p(a′) resp. p(a)p(a′).

We describe the action ψ(B) : A × X (B) −→ B of A on X (B). Let p : A −→ B
be a B-point in K-cAlg (A,B) = X (B). For each a ∈ A the image φ(a) : X −→ A
is a natural transformation hence we have maps ψ(B) : A × X (B) −→ B such that
ψ(B)(a, p) = p(a). Finally each homomorphism of algebras f : B −→ B′ induces a
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commutative diagram

A×X (B′) B′-
ψ(B′)

A×X (B) B-
ψ(B)

?

A×X (f)

?

f

Thus ψ(B) : A×X (B) −→ B is a natural transformation. �

Remark 1.1.12. Observe that the isomorphism A ∼= Nat(X ,A) induces a natural
transformation A×X (B) −→ B (natural in B). In particular the affine algebra A can
be viewed as the set of functions from the set of B-points X (B) into the “base” ring
B (functions which are natural in B). In this sense the algebra A may be considered
as function algebra of the geometric space X . Thus we will call A the function algebra
of X .

One can show that the algebra A is universal with respect to the property, that
for each commutative algebra D and each natural transformation ρ : D × X (-) −→ -
there is a unique homomorphism of algebras f : D −→ A, such that the triangle

A×X (B) B-
ψ(B)

ρ(B)

@
@

@
@@R

D ×X (B)

?

f×1X (B)

commutes. We will show this result later on for noncommutative algebras. The
universal property implies that the function algebra A of an geometric space X is
unique up to isomorphism.

Let X be an geometric space with function algebra A = O(X ). If p : A −→ K
is a rational point of X , i.e. a homomorphism of algebras, then Im(p) = K hence
Ker(p) is a maximal ideal of A of codimension 1. Conversely let m be a maximal
ideal of A of codimension 1 then this defines a rational point p : A −→ A/m ∼= K. If
K is algebraicly closed and m an arbitrary maximal ideal of A, then A/m is a finitely
generated K-algebra and a field extension of K, hence it coincides with K. Thus the
codimension of m is 1. The set of maximal ideals of A is called the maximal spectrum
Specm(A). This is the approach of algebraic geometry to recover the geometric space
of (rational) points from the function algebra A. We will not follow this approach
since it does not easily extend to noncommutative geometry.

Problem 1.1.2. 1. Let X be an geometric space with affine algebra A. Show that
the algebra A is universal with respect to the property, that for each commutative
algebra D and each natural transformation ρ : D × X (-) −→ - there is a unique
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homomorphism of algebras f : D −→ A, such that the triangle

A×X (B) B.-
ψ(B)

ρ(B)

@
@

@
@@R

D ×X (B)

?

f×1X (B)

2. Let X be an affine scheme with affine algebra

A = K[x1, . . . , xn]/(p1, . . . , pm).

Define “coordinate functions” qi : X (B) −→ B which describe the coordinates of
B-points and identify these coordinate functions with elements of A.

Now we will study morphisms between geometric spaces.

Theorem 1.1.13. Let X ⊆ Ar and Y ⊆ As be affine algebraic varieties and let
φ : X −→ Y be a natural transformation. Then there are polynomials

p1(x1, . . . , xr), . . . , ps(x1, . . . , xr) ∈ K[x1, . . . , xr],

such that
φ(A)(a1, . . . , ar) = (p1(a1, . . . , ar), . . . , ps(a1, . . . , ar)),

for all A ∈ K-Aff and all (a1, . . . , ar) ∈ X (A), i.e. the morphisms between affine
algebraic varieties are of polynomial type.

Proof. Let O(X ) = K[x1, . . . , xr]/I and O(Y) = K[y1, . . . , ys]/J . For A ∈
K-Alg and (a1, . . . , ar) ∈ X (A) let f : K[x1, . . . , xr]/I −→ A with f(xi) = ai be
the homomorphism obtained from X (A) ∼= K-Alg (K[x1, . . . , xr]/I, A). The natural
transformation φ is given by composition with a homomorphism g : K[y1, . . . , ys]/J
−→ K[x1, . . . , xr]/I hence we get

φ(A) : K-cAlg (K[x1, . . . , xr]/I, A) 3 f 7→ fg ∈ K-cAlg (K[y1, . . . , ys]/J,A).

Since g is described by g(yi) = pi(x1, . . . , xr) ∈ K[x1, . . . , xr] we get

φ(A)(a1, . . . , as) = (fg(y1), . . . , fg(ys))
= (f(p1(x1, . . . , xr)), . . . , f(ps(x1, . . . , xr)))
= (p1(a1, . . . , ar), . . . , ps(a1, . . . , ar)).

�

An analogous statement holds for geometric spaces.

Example 1.1.14. The isomorphism between the affine line (1.1.2) and the para-
bola is given by the isomorphism f : K[x, y]/(y − x2) −→ K[z], f(x) = z, f(y) = z2

that has the inverse function f−1(z) = x. On the affine schemes A, the affine line,
and P, the parabola, the induced map is f : A(A) 3 a 7→ (a, a2) ∈ P(A) resp.
f−1 : P(A) 3 (a, b) 7→ a ∈ A(A).
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2. Quantum Spaces and Noncommutative Geometry

Now we come to noncommutative geometric spaces and their function algebras.
Many of the basic principles of commutative algebraic geometry as introduced in 1.1
carry over to noncommutative geometry. Our main aim, however, is to study the
symmetries (automorphisms) of noncommutative spaces which lead to the notion of
a quantum group.

Since the construction of noncommutative geometric spaces has deep applications
in theoretical physics we will also call these spaces quantum spaces.

Definition 1.2.1. Let A be a (not necessarily commutative) K-algebra. Then
the functor X := K-Alg (A, -) : K-Alg −→ Set represented by A is called (affine)
noncommutative (geometric) space or quantum space. The elements of K-Alg (A,B)
are called B-points of X . A morphism of noncommutative spaces f : X −→ Y is a
natural transformation.

This definition implies immediately

Corollary 1.2.2. The noncommutative spaces form a category QS that is dual
to the category of K-algebras.

Remark 1.2.3. Thus one often calls the dual category K-Alg op category of non-
commutative spaces.

If A is a finitely generated algebra then it may be considered as a residue class
algebra A ∼= K〈x1, . . . , xn〉/I of a polynomial algebra in noncommuting variables (cf.
[Advanced Algebra] 2.2). If I = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)) is the two-sided
ideal generated by the polynomials p1, . . . , pm then the sets K-Alg (A,B) can be con-
sidered as sets of zeros of these polynomials inBn. In fact, we have K-Alg (K〈x1, . . . , xn〉, B) ∼=
Map({x1, . . . , xn}, B) = Bn. Thus K-Alg (A,B) can be considered as the set of those
homomorphisms of algebras from K〈x1, . . . , xn〉 to B that vanish on the ideal I or as
the set of zeros of these polynomials in Bn.

Similar to Theorem 1.1.13 one shows also in the noncommutative case that mor-
phisms between noncommutative spaces are described by polynomials.

The Theorem 1.1.11 on the operation of the affine algebra A = O(X ) on X as
function algebra can be carried over to the noncommutative case as well: the natural
transformation ψ(B) : A× X (B) −→ B (natural in B) is given by ψ(B)(a, p) := p(a)
and comes from the isomorphism A ∼= Nat(X ,A).

Now we come to a claim on the function algebra A that we did not prove in the
commutative case, but that holds in the commutative as well as in the noncommuta-
tive situation.
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Lemma 1.2.4. Let D be a set and φ : D × X (-) −→ A(-) be a natural transfor-
mation. Then there exists a unique map f : D −→ A such that the diagram

A×X (B) B-
ψ(B)

D ×X (B)

?
f×1 φ(B)

PPPPPPq

commutes.

Proof. Let φ : D×X −→ A be given. We first define a map f ′ : D −→ Nat(X ,A)
by f ′(d)(B)(p) := φ(B)(d, p).

We claim that f ′(d) : X −→ A is a natural transformation. Observe that the
diagram

D ×X (B′) A(B′) = B′-
φ(B′)

D ×X (B) A(B) = B-
φ(B)

?

D ×X (g)

?

g

commutes for any g : B −→ B′, since φ is a natural transformation. Thus the diagram

X (B′) A(B′) = B′-
f ′(d)(B′)

X (B) A(B) = B-
f ′(d)(B)

?

X (g)

?

g

commutes since

(g ◦ f ′(d)(B))(p) = (g ◦ φ(B))(d, p)
= φ(B′) ◦ (1×X (g))(d, p)
= φ(B′)(d,X (g)(p))
= f ′(d)(B′)(X (g)(p)).

Hence f ′(d) ∈ Nat(X,A) and f ′ : D −→ Nat(X ,A).

Now we define f : D −→ A as D
f ′−→ Nat(X ,A) ∼= A. By using the isomorphism

from 1.1.11 we get f(d) = f ′(d)(A)(1). (Actually we get f(d) = f ′(d)(A)(1)(x) but
we identify A(B) and B by A(B) 3 p 7→ p(x) ∈ B.)
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Then we get

ψ(B)(f × 1)(d, p) = ψ(B)(f(d), p)
= ψ(B)(f ′(d)(A)(1)(x), p) (by definition of f)
= p ◦ f ′(d)(A)(1) (since we may omit x)
= p ◦ φ(A)(d, 1) (by definition of f ′)
= φ(B)(D ×X (p))(d, 1) (since φ is a natural transformation)
= φ(B)(d, p).

Hence the diagram in the Lemma commutes.
To show the uniqueness of f let g : D −→ A be a homomorphism such that

ψ(B)(g × 1) = φ(B). Then we have

f(d) = f ′(d)(A)(1) = φ(A)(d, 1) = ψ(A)(g×1)(d, 1) = ψ(A)(f(d), 1) = 1◦g(d) = g(d)

hence f = g. �

Problem 1.2.3. Definition: Let X be an geometric space with affine algebra A.
Let D be an algebra. A natural transformation ρ : D × X −→ A is called an algebra
action if ρ(B)(-, p) : D −→ A(B) = B is an algebra homomorphism for all B and all
p ∈ X (B).

Give proofs for:
Lemma: The natural transformation ψ : A×X −→ A is an algebra action.
Theorem: Let D be an algebra and ρ : D × X (-) −→ A(-) be an algebra action.

Then there exists a unique algebra homomorphism f : D −→ A such that the diagram

A×X (B) B-
ψ(B)

ρ(B)

@
@

@
@@R

D ×X (B)

?

f×1

commutes.

Definition 1.2.5. The noncommutative space A2|0
q with the function algebra

O(A2|0
q ) := K〈x, y〉/(xy − q−1yx)

with q ∈ K\{0} is called the (deformed) quantum plane. The noncommutative space

A0|2
q with the function algebra

O(A0|2
q ) := K〈ξ, η〉/(ξ2, η2, ξη + qηξ)

is called the dual (deformed) quantum plane. We have

A2|0
q (A) =

{(
x
y

)∣∣x, y ∈ A;xy = q−1yx

}
and

A0|2
q (A) =

{(
ξ, η

)∣∣ξ, η ∈ A; ξ2 = 0, η2 = 0, ξη = −qηξ
}
.
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Definition 1.2.6. Let X be a noncommutative space with function algebra A
and let Xc be the restriction of the functor X : K-Alg −→ Set to the category of
commutative algebras: Xc : K-cAlg −→ Set . Then we call Xc the commutative part
of the noncommutative space X .

Lemma 1.2.7. The commutative part Xc of a noncommutative space X is an
affine variety.

Proof. The underlying functor A : K-cAlg −→ K-Alg has a left adjoint functor
K-Alg 3 A 7→ A/[A,A] ∈ K-cAlg where [A,A] denotes the two-sided ideal of A
generated by the elements ab− ba. In fact for each homomorphism of algebras f : A
−→ B with a commutative algebra B there is a factorization through A/[A,A] since
f vanishes on the elements ab− ba.

Hence if A = O(X ) is the function algebra of X then A/[A,A] is the representing
algebra for Xc. �

Remark 1.2.8. For any commutative algebra (of coefficients) B the spaces X
and Xc have the same B-points: X (B) = Xc(B). The two spaces differ only for
noncommutative algebras of coefficients. In particular for commutative fields B as

algebras of coefficients the quantum plane A2|0
q has only B-points on the two axes

since the function algebra K〈x, y〉/(xy − q−1yx, xy − yx) ∼= K[x, y]/(xy) defines only
B-points (b1, b2) where at least one of the coefficients is zero.

Problem 1.2.4. Let S3 be the symmetric group and A := K[S3] be the group
algebra on S3. Describe the points of X (B) = K-Alg (A,B) as a subspace of A2(B).
What is the commutative part Xc(B) of X and what is the affine algebra of Xc?

To understand how Hopf algebras fit into the context of noncommutative spaces
we have to better understand the tensor product in K-Alg .

Definition 1.2.9. Let A = O(X ) and A′ = O(Y) be the function algebras of the
noncommutative spaces X resp. Y . Two B-points p : A −→ B in X (B) and p′ : A′

−→ B in Y(B) are called commuting points if we have for all a ∈ A and all a′ ∈ A′

p(a)p′(a′) = p′(a′)p(a),

i.e. if the images of the two homomorphisms p and p′ commute.

Remark 1.2.10. To show that the points p and p′ commute, it is sufficient to
check that the images of the algebra generators p(x1), . . . , p(xm) commute with the
images of the algebra generators p′(y1), . . . , p

′(yn) under the multiplication. This
means that we have

bib
′
j = b′jbi

for the B-points (b1, . . . , bm) ∈ X (B) and (b′1, . . . , b
′
n) ∈ Y(B).

Definition 1.2.11. The functor

(X ⊥ Y)(B) := {(p, p′) ∈ X (B)× Y(B)|p, p′ commute}
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is called the orthogonal product of the noncommutative spaces X and Y .

Remark 1.2.12. Together with X and Y the orthogonal product X ⊥ Y is again
a functor, since homomorphisms f : B −→ B′ are compatible with the multiplication
and thus preserve commuting points. Hence X ⊥ Y is a subfunctor of X × Y .

Lemma 1.2.13. If X and Y are noncommutative spaces, then X ⊥ Y is a non-
commutative space with function algebra O(X ⊥ Y) = O(X )⊗O(Y).

If X and Y have finitely generated function algebras then the function algebra of
X ⊥ Y is also finitely generated.

Proof. Let A := O(X ) and A′ := O(Y). Let (p, p′) ∈ (X ⊥ Y)(B) be a pair
of commuting points. Then there is a unique homomorphism of algebras h : A ⊗ A′

−→ B such that the following diagram commutes

A A⊗ A′-ι

p
@

@
@

@@R
B.
?

h

A′�ι′

p′
�

�
�

��	

Define h(a ⊗ a′) := p(a)p′(a′) and check the necessary properties. Observe that for
an arbitrary homomorphism of algebras h : A ⊗ A′ −→ B the images of elements of
the form a⊗ 1 and 1⊗ a′ commute since these elements already commute in A⊗A′.
Thus we have

(X ⊥ Y)(B) ∼= K-Alg (A⊗ A′, B).

If the algebra A is generated by the elements a1, . . . , am and the algebra A′ is
generated by the elements a′1, . . . , a

′
n then the algebra A ⊗ A′ is generated by the

elements ai ⊗ 1 and 1⊗ a′j. �

Proposition 1.2.14. The orthogonal product of noncommutative spaces is asso-
ciative, i.e. for noncommutative spaces X , Y, and Z we have

(X ⊥ Y) ⊥ Z ∼= X ⊥ (Y ⊥ Z).

Proof. Let B be a coefficient algebra and let px ∈ X (B), py ∈ Y(B), and
pz ∈ Z(B) be points such that ((px, py), pz) is a pair of commuting points in ((X ⊥
Y) ⊥ Z)(B). In particular (px, py) is also a pair of commuting points. Thus we have
for all a ∈ A := O(X ), a′ ∈ A′ := O(Y), and a′′ ∈ A′′ := O(Z)

px(a)py(a
′)pz(a

′′) = (px, py)(a⊗ a′)pz(a
′′) = pz(a

′′)(px, py)(a⊗ a′) = pz(a
′′)px(a)py(a

′)

and
px(a)py(a

′) = py(a
′)px(a).

If we choose a = 1 then we get py(a
′)pz(a

′′) = pz(a
′′)py(a

′). For arbitrary a, a′, a′′ we
then get

px(a)py(a
′)pz(a

′′) = pz(a
′′)px(a)py(a

′) = pz(a
′′)py(a

′)px(a) = py(a
′)pz(a

′′)px(a)
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hence (py, pz) and (px, (py, pz)) are also pairs of commuting points. �

Problem 1.2.5. Show that the orthogonal product of quantum spaces X ⊥ Y is
a tensor product for the category QS (in the sense of monoidal categories – if you
know already what that is).

3. Quantum Monoids and their Actions on Quantum Spaces

We use the orthogonal product introduced in the previous section as “product”
to define the notion of a monoid (some may call it an algebra w.r.t. the orthogonal
product). Observe that on the geometric level the orthogonal product consists only
of commuting points. So whenever we define a morphism on the geometric side with
domain an orthogonal product of quantum spaces f : X ⊥ Y −→ Z then we only have
to define what happens to commuting pairs of points. That makes it much easier to
define such morphisms for noncommutative coordinate algebras.

We are going to define monoids in this sense and study their actions on quantum
spaces.

Let E be the functor represented by K. It maps each algebra H to the one-element
set {ι : K −→ H}.

Definition 1.3.1. Let M be a noncommutative space and let

m : M⊥M−→M and e : E −→M
be morphisms in QS such that the diagrams

M⊥M M-
m

M⊥M⊥M M⊥M-m ⊥ 1

?

1 ⊥ m

?

m

and

E ⊥M ∼= M∼= M⊥ E M⊥M-id⊥η

?

η⊥id

?

∇

M⊥M M-
∇

1M

HH
HHH

HHHHj

commute. Then (M,m, e) is called a quantum monoid.

Proposition 1.3.2. Let M be a noncommutative space with function algebra H.
Then H is a bialgebra if and only if M is a quantum monoid.

Proof. Since the functors M ⊥ M, M ⊥ E and E ⊥ M are represented by
H ⊗H resp. H ⊗ K ∼= H resp. K ⊗H ∼= H the Yoneda Lemma defines a bijection
between the morphisms m : M⊥M −→M and the algebra homomorphisms ∆ : H
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−→ H ⊗ H and similarly a bijection between the morphisms e : E −→ M and the
algebra homomorphisms ε : H −→ K. Again by the Yoneda Lemma the bialgebra
diagrams in K-Alg commute if and only if the corresponding diagrams for a quantum
monoid commute. �

Observe that a similar result cannot be formulated for Hopf algebras H since
neither the antipode S nor the multiplication ∇ : H⊗H −→ H are algebra homomor-
phisms. In contrast to affine algebraic groups (2.3.2) Hopf algebras in the category
K-Alg op ∼= QR are not groups. Nevertheless, one defines

Definition 1.3.3. A functor defined on the category of K-algebras and repre-
sented by a Hopf algebra H is called a quantum group.

Definition 1.3.4. Let X be a noncommutative space and let M be a quantum
monoid. A morphism (a natural transformation) of quantum spaces ρ : M⊥ X −→ X
is called an operation of M on X if the diagrams

M⊥ X X-
ρ

M⊥M⊥ X M ⊥ X-m ⊥ 1

?

1 ⊥ ρ

?

ρ

and

X ∼= E ⊥ X M ⊥ X-η⊥id

X
?

ρidX

HHH
HHH

HHHj

commute. We call X a noncommutative M-space.

Proposition 1.3.5. Let X be a noncommutative space with function algebra A =
O(X ). Let M be a quantum monoid with function algebra B = O(M). Let ρ :
M ⊥ X −→ X be a morphism in QS and let f : A −→ B ⊗ A be the associated
homomorphism of algebras. Then the following are equivalent

1. (X ,M, ρ) is an operation of the quantum monoid M on the noncommutative
space X ;

2. (A,H, f) define an H-comodule algebra.

Proof. The homomorphisms of algebras ∆ ⊗ 1A, 1B ⊗ f , ε ⊗ 1A etc. represent
the morphisms of quantum spaces m ⊥ id, id ⊥ ρ, η ⊥ id etc. Hence the required
diagrams are transferred by the Yoneda Lemma. �

Example 1.3.6. 1. The quantum monoid of “quantum matrices”:
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We consider the algebra

Mq(2) := K〈a, b, c, d〉/I = K
〈
a b
c d

〉
/I

where the two-sided ideal I is generated by the elements

ab− q−1ba, ac− q−1ca, bd− q−1db, cd− q−1dc, ad− da− (q−1 − q)bc, bc− cb.

The quantum space Mq(2) associated with the algebra Mq(2) is given by

Mq(2)(A)= K-Alg (Mq(2), A)

=

{(
a′ b′

c′ d′

)
|a′, b′, c′, d′ ∈ A; a′b′ = q−1b′a′, . . . , b′c′ = c′b′

}
where each homomorphism of algebras f : Mq(2) −→ A is described by the quadruple
(a′, b′, c′, d′) of images of the algebra generators a, b, c, d. The images must satisfy the
same relations that generate the two-sided ideal I hence

a′b′ = q−1b′a′, a′c′ = q−1c′a′, b′d′ = q−1d′b′, c′d′ = q−1d′c′,
b′c′ = c′b′, a′d′ − q−1b′c′ = d′a′ − qc′b′.

We write these quadruples as 2 × 2-matrices and call them quantum matrices. The
unusual commutation relations are chosen so that the following examples work.

The quantum space of quantum matrices turns out to be a quantum monoid. We
give both the algebraic (with function algebras) and the geometric (with quantum
spaces) approach to define the multiplication.

a) The algebraic approach:
The algebra Mq(2) is a bialgebra with the diagonal

∆

(
a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
,

i.e. by ∆(a) = a ⊗ a + b ⊗ c, ∆(b) = a ⊗ b + b ⊗ d, ∆(c) = c ⊗ a + d ⊗ c and
∆(d) = c⊗ b+ d⊗ d, and with the counit

ε

(
a b
c d

)
=

(
1 0
0 1

)
,

i.e. ε(a) = 1, ε(b) = 0, ε(c) = 0, and ε(d) = 1. We have to prove that ∆ and ε are
homomorphisms of algebras and that the coalgebra laws are satisfied. To obtain a
homomorphism of algebras ∆ : Mq(2) −→ Mq(2) ⊗Mq(2) we define ∆ : K〈a, b, c, d〉
−→Mq(2)⊗Mq(2) on the free algebra (the polynomial ring in noncommuting variables)
K〈a, b, c, d〉 generated by the set {a, b, c, d} and show that it vanishes on the ideal I
or more simply on the generators of the ideal. Then it factors through a unique
homomorphism of algebras ∆ : Mq(2) −→Mq(2)⊗Mq(2). We check this only for one



20 1. COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAIC GEOMETRY

generator of the ideal I:

∆(ab− q−1ba) = ∆(a)∆(b)− q−1∆(b)∆(a) =
= (a⊗ a+ b⊗ c)(a⊗ b+ b⊗ d)− q−1(a⊗ b+ b⊗ d)(a⊗ a+ b⊗ c)
= aa⊗ ab+ ab⊗ ad+ ba⊗ cb+ bb⊗ cd− q−1(aa⊗ ba+ ab⊗ bc+ ba⊗ da+ bb⊗ dc)
= aa⊗ (ab− q−1ba) + ab⊗ (ad− q−1bc) + ba⊗ (cb− q−1da) + bb⊗ (cd− q−1dc)
= ba⊗ (q−1ad− q−2bc+ cb− q−1da) ≡ 0 mod (I).

The reader should check the other identities.
The coassociativity follows from

(∆⊗ 1)∆

(
a b
c d

)
= ∆

(
a b
c d

)
⊗

(
a b
c d

)
= (

(
a b
c d

)
⊗

(
a b
c d

)
)⊗

(
a b
c d

)
=

=

(
a b
c d

)
⊗ (

(
a b
c d

)
⊗

(
a b
c d

)
) =

(
a b
c d

)
⊗∆

(
a b
c d

)
= (1⊗∆)∆

(
a b
c d

)
.

The reader should check the properties of the counit.
b) The geometric approach:
Mq(2) has a rather remarkable (and actually well known) comultiplication that is

better understood by using the induced multiplication of commuting points. Given

two commuting quantum matrices

(
a1 b1
c1 d1

)
and

(
a2 b2
c2 d2

)
in Mq(2)(A). Then their

matrix product (
a1 b1
c1 d1

) (
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
is again a quantum matrix. To prove this we only check one of the relations

(a1a2 + b1c2)(a1b2 + b1d2) = a1a2a1b2 + a1a2b1d2 + b1c2a1b2 + b1c2b1d2

= a1a1a2b2 + a1b1a2d2 + b1a1c2b2 + b1b1c2d2

= q−1a1a1b2a2 + q−1b1a1(d2a2 + (q−1 − q)b2c2) + b1a1b2c2 + q−1b1b1d2c2
= q−1(a1a1b2a2 + a1b1b2c2 + b1a1d2a2 + b1b1d2c2)
= q−1(a1b2a1a2 + a1b2b1c2 + b1d2a1a2 + b1d2b1c2)
= q−1(a1b2 + b1d2)(a1a2 + b1c2)

We have used that the two points are commuting points. This multiplication obviously
is a natural transformation Mq(2) ⊥ Mq(2)(A) −→ Mq(2)(A) (natural in A). It is

associative and has unit

(
1 0
0 1

)
. For the associativity observe that by 1.2.14

((

(
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

)
),

(
a3 b3
c3 d3

)
)

is a pair of commuting points if and only if

(

(
a1 b1
c1 d1

)
, (

(
a2 b2
c2 d2

)
,

(
a3 b3
c3 d3

)
))
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is a pair of commuting points.

Since

(
1 0
0 1

) (
a b
c d

)
=

(
a b
c d

)
=

(
a b
c d

) (
1 0
0 1

)
for all quantum matrices(

a b
c d

)
∈Mq(2)(B) we see that Mq(2) is a quantum monoid.

It remains to show that the multiplication of Mq(2) and the comultiplication of
Mq(2) correspond to each other by the Yoneda Lemma. The identity morphism of
Mq(2)⊗Mq(2) is given by the pair of commuting points

(ι1, ι2) ∈Mq(2) ⊥Mq(2)(Mq(2)⊗Mq(2)) = K-Alg (Mq(2)⊗Mq(2),Mq(2)⊗Mq(2)).

Since ι1 =

(
a b
c d

)
⊗ 1 =

(
a⊗ 1 b⊗ 1
c⊗ 1 d⊗ 1

)
and ι2 = 1 ⊗

(
a b
c d

)
=

(
1⊗ a 1⊗ b
1⊗ c 1⊗ d

)
we have id = (ι1, ι2) = (

(
a b
c d

)
⊗ 1, 1 ⊗

(
a b
c d

)
). The Yoneda Lemma defines the

diagonal as the image of the identity under K-Alg (Mq(2) ⊗Mq(2),Mq(2) ⊗Mq(2))

−→ K-Alg (Mq(2),Mq(2) ⊗ Mq(2)) by the multiplication. So ∆(

(
a b
c d

)
) = ∆ =

ι1 ∗ ι2 = (

(
a b
c d

)
⊗ 1) ∗ (1⊗

(
a b
c d

)
) =

(
a b
c d

)
⊗

(
a b
c d

)
.

Thus Mq(2) defines a quantum monoid Mq(2) with

Mq(2)(B) =

{(
a′ b′

c′ d′

)∣∣a′, b′, c′, d′ ∈ B; a′b′ = q−1b′a′, . . . , b′c′ = c′b′
}
.

This is the deformed version of M×
2 the multiplicative monoid of the 2× 2-matrices

of commutative algebras.

2. Let A
2|0
q = K〈x, y〉/(xy− q−1yx) be the function algebra of the quantum plane

A2|0
q . By the definition 1.2.5 we have

A2|0
q (A′) =

{(
x
y

)∣∣x, y ∈ A′;xy = q−1yx

}
.

The set

Mq(2)(A′) =

{(
u x
y z

)∣∣u, x, y, z ∈ A′;ux = q−1xu, . . . , xy = yx

}
operates on this quantum plane by matrix multiplication

Mq(2)(A′) ⊥ A2|0
q (A′) 3 (

(
a b
c d

)
,

(
x
y

)
) 7→

(
a b
c d

)
·
(
x
y

)
∈ A2|0

q (A′).

Again one should check that the required equations are preserved. Since we have
a matrix multiplication we get an operation as in the preceding proposition. In

particular A
2|0
q is a Mq(2)-comodule algebra.
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As in example 1. we get the comultiplication as δ(

(
x
y

)
) = δ = (

(
a b
c d

)
⊗ 1) ∗

(1⊗
(
x
y

)
) =

(
a b
c d

)
⊗

(
x
y

)
.

3. Let A
0|2
q = K〈ξ, η〉/(ξ2, η2, ξη+qηξ) be the function algebra of the dual quantum

plane A0|2
q . By the definition 1.2.5 we have

A0|2
q (A′) =

{(
a′ b′

)∣∣∣a′, b′ ∈ A′; a′2 = 0, b′
2

= 0, a′b′ = −qb′a′
}
.

The quantum monoid Mq(2) also operates on the dual quantum plane by matrix
multiplication

A0|2
q (A′) ⊥Mq(2)(A′) 3 (

(
ξ η

)
,

(
a b
c d

)
) 7→

(
ξ η

)
·
(
a b
c d

)
∈ A0|2

q (A′).

This gives another example of a Mq(2)-comodule algebra A
0|2
q −→ A

0|2
q ⊗Mq(2) with

δ(
(
ξ η

)
) = δ = (

(
ξ η

)
⊗ 1) ∗ (1⊗

(
a b
c d

)
) =

(
ξ η

)
⊗

(
a b
c d

)
.

What is now the reason for the remarkable relations on Mq(2)? It is based on
a fact that we will show later namely that Mq(2) is the universal quantum monoid

acting on the quantum plane A2|0
q from the left and on the dual quantum plane A0|2

q

from the right. This however happens in the category of quantum planes represented
by quadratic algebras. Here we will show a simpler theorem for finite dimensional
algebras.

Problem 1.3.6. (1) Consider the following subset H of the set of complex
2× 2-matrices:

H :=

{(
x −y
ȳ x̄

)
∈MC(2× 2)|x, y ∈ C

}
We call H the set of Hamiltonian quaternions. For

h =

(
x −y
ȳ x̄

)
we define:

h̄ :=

(
x̄ y
−ȳ x

)
Show:
(a) hh̄ = (|x|2 + |y|2)E (E the unit matrix),
(b) H is a real subalgebra of the complex algebra of 2× 2-matrices.
(c) H is a division algebra, i. e. each element different from zero has an

inverse under the multiplication.
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(d) Let

I :=

(
i 0
0 −i

)
J :=

(
0 −1
1 0

)
K :=

(
0 −i
−i 0

)
Then E, I, J,K is an R-basis of H an we have the following multiplica-
tion table:

I2 = J2 = K2 = −1

IJ = −JI = K JK = −KJ = I KI = −IK = J.

(2) Compute the H-points A2|0(H) of the quantum plane.

Definition 1.3.7. (1) Let X be a quantum space. A quantum space M(X )
together with a morphism of quantum spaces µ : M(X ) ⊥ X −→ X is called
a quantum space acting universally on X (or simply a universal quantum
space for X ) if for every quantum space Y and every morphism of quantum
spaces f : Y ⊥ X −→ X there is a unique morphism of quantum spaces g : Y
−→M(X ) such that the following diagram commutes

M(X ) ⊥ X X .-
µ

f

@
@

@
@@R

Y ⊥ X

?

g⊥1X

(2) Let A be a K-algebra. A K-algebra M(A) together with a homomorphism
of algebras δ : A −→ M(A) ⊗ A is called an algebra coacting universally
on A (or simply a universal algebra for A) if for every K-algebra B and
every homomorphism of K-algebras f : A −→ B ⊗ A there exists a unique
homomorphism of algebras g : M(A) −→ B such that the following diagram
commutes

A M(A)⊗ A-δ

f

@
@

@
@@R
B ⊗ A

?

g⊗1A

By the universal properties the universal algebra M(A) for A and the universal
quantum space M(X ) for X are unique up to isomorphism.

Proposition 1.3.8. (1) Let A be a K-algebra with universal algebra M(A)
and δ : A −→ M(A) ⊗ A. Then M(A) is a bialgebra and A is an M(A)-
comodule algebra by δ.
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(2) If B is a bialgebra and if f : A −→ B ⊗ A defines the structure of a B-
comodule algebra on A then there is a unique homomorphism g : M(A) −→ B
of bialgebras such that the following diagram commutes

A M(A)⊗ A-δ

f
@

@
@

@@R
B ⊗ A

?

g ⊗ 1A

The corresponding statement for quantum spaces and quantum monoids is the
following.

Proposition 1.3.9. (1) Let X be a quantum space with universal quantum
space M(X ) and µ : M(X ) ⊥ A −→ A. Then M(X ) is a quantum monoid
and X is an M(X )-space by µ.

(2) If Y is another quantum monoid and if f : Y ⊥ X −→ X defines the structure
of a Y-space on X then there is a unique morphism of quantum monoids g : Y
−→M(X ) such that the following diagram commutes

M(X ) ⊥ X X .-
µ

f

@
@

@
@@R

Y ⊥ X

?

g⊥1X

Proof. We give the proof for the algebra version of the proposition. Consider
the following commutative diagram

M(A)⊗ A M(A)⊗M(A)⊗ A-
1M(A)⊗δ

A M(A)⊗ A-δ

?
δ

?

∆⊗1A

where the morphism of algebras ∆ is defined by the universal property of M(A)
with respect to the algebra morphism (1M(A) ⊗ δ)δ. Furthermore there is a unique
morphism of algebras ε : M(A) −→ K such that

A M(A)⊗ A-δ

1A

@
@

@
@@R

A ∼= K⊗ A
?

ε⊗1A

commutes.
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The coalgebra axioms arise from the following commutative diagrams

A M(A)⊗ A-δ

?
δ

?

∆⊗1A

M(A)⊗ A M(A)⊗M(A)⊗ A-
1M(A)⊗δ

?

∆⊗1A

?

1M(A)⊗δ

?

∆⊗1M(A)⊗1A

?

1M(A)⊗∆⊗1A

M(A)⊗M(A)⊗ A M(A)⊗M(A)⊗M(A)⊗ A-
1M(A)⊗1M(A)⊗δ

and

A M(A)⊗ A-δ

?
δ

?

∆⊗1A

?

1M(A)⊗1AM(A)⊗ A M(A)⊗M(A)⊗ A-
1M(A)⊗δ

1M(A)⊗1A

PPPPPPPPPPq
M(A)⊗ A ∼= M(A)⊗K⊗ A

?

1M(A)⊗ε⊗1A

and

A M(A)⊗ A-δ

?

1A

?
δ

?

∆⊗1A

M(A)⊗ A M(A)⊗M(A)⊗ A-
1M(A)⊗δ

?

ε⊗1A

?

ε⊗1M(A)⊗1A

A M(A)⊗ A ∼= K⊗M(A)⊗ A.-δ

In fact these diagrams imply by the uniqueness of the induced homomorphisms of
algebras (∆ ⊗ 1M(A))∆ = (1M(A) ⊗∆)∆, (1M(A) ⊗ ε)∆ = 1M(A) and ε ⊗ (1M(A))∆ =
1M(A). Finally A is an M(A)-comodule algebra by the definition of ∆ and ε.

Now assume that a structure of a B-comodule algebra on A is given by a bialgebra
B and f : A −→ B ⊗ A. Then there is a unique homomorphism of algebras g : M(A)
−→ B such that the diagram

A M(A)⊗ A-δ

f

@
@

@
@@R
B ⊗ A

?

g⊗1A
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commutes. Then the following diagram

A M(A)⊗ A-δ M(A)⊗ A M(A)⊗M(A)⊗ A-∆⊗1A
-

1M(A)⊗δ

f

Q
Q

Q
QQs ?

g⊗1A

?

g⊗g⊗1A

B ⊗ A B ⊗B ⊗ A-∆B⊗1A
-

1B⊗f

implies ((g ⊗ g)∆ ⊗ 1A)δ = (g ⊗ g ⊗ 1A)(∆ ⊗ 1A)δ = (g ⊗ g ⊗ 1A)(1M(A) ⊗ δ)δ =
(g ⊗ (g ⊗ 1A)δ)δ = (1B ⊗ (g ⊗ 1A)δ)(g ⊗ 1A)δ = (1B ⊗ f)f = (∆B ⊗ 1A)f = (∆B ⊗
1A)(g ⊗ 1A)δ = (∆Bg ⊗ 1A)δ hence (g ⊗ g)∆ = ∆Bg. Furthermore the diagram

A M(A)⊗ A-δ

B ⊗ A

f

HHH
HHHHj ?

g⊗1A

?

ε⊗1A

A ∼= K⊗ A

1A

@
@

@
@

@
@

@
@R ?

εB⊗1A

implies εBg = ε. Thus g is a homomorphism of bialgebras. �

Since universal algebras for algebras A tend to become very big they do not exist
in general. But a theorem of Tambara’s says that they exist for finite dimensional
algebras (over a field K).

Definition 1.3.10. If X is a quantum space with finite dimensional function
algebra then we call X a finite quantum space.

The following theorem is the quantum space version and equivalent to a theorem
of Tambara.

Theorem 1.3.11. Let X be a finite quantum space. Then there exists a (uni-
versal) quantum space M(X ) with morphism of quantum spaces µ : M(X ) ⊥ X
−→ X .

The algebra version of this theorem is

Theorem 1.3.12. (Tambara) Let A be a finite dimensional K-algebra. Then
there exists a (universal) K-algebra M(A) with homomorphism of algebras δ : A
−→M(A)⊗ A.

Proof. We are going to construct the K-algebra M(A) quite explicitly. First we
observe that A∗ = HomK(A,K) is a coalgebra (cf. [Advanced Algebra] Problem 2.25)
with the structural morphism ∆ : A∗ −→ (A⊗A)∗ ∼= A∗ ⊗A∗. Denote the dual basis
by

∑n
i=1 ai ⊗ āi ∈ A ⊗ A∗. Now let T (A ⊗ A∗) be the tensor algebra of the vector
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space A⊗ A∗. Consider elements of the tensor algebra

xy ⊗ ζ ∈ A⊗ A∗,
x⊗ y ⊗∆(ζ) ∈ A⊗ A⊗ A∗ ⊗ A∗ ∼= A⊗ A∗ ⊗ A⊗ A∗,
1⊗ ζ ∈ A⊗ A∗,
ζ(1) ∈ K.

The following elements

(1) xy ⊗ ζ − x⊗ y ⊗∆(ζ)

and

(2) 1⊗ ζ − ζ(1)

generate a two-sided ideal I ⊆ T (A⊗ A∗). Now we define

M(A) := T (A⊗ A∗)/I

and the cooperation δ : A 3 a −→
∑n

i=1(a ⊗ āi) ⊗ ai ∈ T (A ⊗ A∗)/I ⊗ A. This is a
well-defined linear map.

To show that this map is a homomorphism of algebras we first describe the mul-
tiplication of A by aiaj =

∑
k α

k
ijak. Then the comultiplication of A∗ is given by

∆(āk) =
∑

ij α
k
ij ā

i ⊗ āj since (∆(āk), al ⊗ am) = (āk, alam) =
∑

r α
r
lm(āk, ar) =

αklm =
∑

ij α
k
ij(ā

i, al)(ā
j, am) = (

∑
ij α

k
ij ā

i ⊗ āj, al ⊗ am). Now write 1 =
∑
βkak.

Then we get ε(āi) = βi since ε(āi) = (āi, 1) =
∑

j β
j(āi, aj) = βi. So we have

δ(a)δ(b) = (
∑n

i=1(a⊗ āi)⊗ ai) · (
∑n

j=1(b⊗ āj)⊗ aj) =
∑

ij(a⊗ b⊗ āi ⊗ āj)⊗ aiaj =∑
ijk α

k
ij(a⊗ b⊗ āi⊗ āj)⊗ ak =

∑
k(a⊗ b⊗∆(āk))⊗ ak =

∑
k(ab⊗ āk)⊗ ak = δ(ab).

Furthermore we have δ(1) =
∑

i(1⊗ āi)⊗ai =
∑

i ā
i(1)⊗ai = 1⊗

∑
i ā

i(1)ai = 1⊗1.
Hence δ is a homomorphism of algebras.

Now we have to show that there is a unique g for each f . First of all f : A −→ B⊗A
induces uniquely determined linear maps fi : A −→ B with f(a) =

∑
i fi(a)⊗ ai since

the ai form a basis. Since f is a homomorphism of algebras we get from
∑

k fk(a)⊗
ak = f(ab) = f(a)f(b) =

∑
ij(fi(a) ⊗ ai)(fj(b) ⊗ aj) =

∑
ij fi(a)fj(b) ⊗ aiaj =∑

ijk α
k
ijfi(a)fj(b)⊗ ak by comparison of coefficients

fk(ab) =
∑
ij

αkijfi(a)fj(b).

Furthermore we define g(a⊗ ā) := (1⊗ ā)f(a) ∈ B. Then we get in particular g(a⊗
āi) = (1⊗ āi)(

∑
j fj(a)⊗ aj) = fi(a). We can extend the map g to a homomorphism

of algebras g : T (A ⊗ A∗) −→ B. Applied to the generators of the ideal we get
g(ab ⊗ āk − a ⊗ b ⊗ ∆(āk)) = (1 ⊗ āk)

∑
l fl(ab) ⊗ al −

∑
rsij α

k
ij(1 ⊗ āi)(fr(a) ⊗

ar) · (1 ⊗ āj)(fs(b) ⊗ as) = fk(ab) −
∑

ij α
k
ijfi(a)fj(b) = 0. We have furthermore

g(1 ⊗ ζ − ζ(1)) = (1 ⊗ ζ)f(1) − ζ(1) = (1 ⊗ ζ)(1 ⊗ 1) − ζ(1) = 1ζ(1) − ζ(1) = 0.
Thus the homomorphism of algebras g vanishes on the ideal I so it may be factored
through M(A) = T (A)/I. Denote this factorization also by g. Then the diagram
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commutes since (g ⊗ 1A)δ(a) = (g ⊗ 1A)(
∑

i(a ⊗ āi) ⊗ ai) =
∑

i(1 ⊗ āi)f(a) ⊗ ai =∑
ij fj(a)(ā

i, aj)⊗ ai =
∑

i fi(a)⊗ ai = f(a).
We still have to show that g is uniquely determined. Assume that we also have

(h ⊗ 1A)δ = f then
∑

i h(a ⊗ āi) ⊗ ai = (h ⊗ 1A)δ(a) = f(a) =
∑

i fi(a) ⊗ ai hence
h(a⊗ āi) = fi(a) = g(a⊗ āi), i.e. g = h. �

Definition 1.3.13. Let A be a K-algebra. The universal algebra M(A) for A
that is a bialgebra is also called the coendomorphism bialgebra of A.

Problem 1.3.7. (1) Determine explicitly the dual coalgebra A∗ of the alge-
bra A := K〈x〉/(x2). (Hint: Find a basis for A.)

(2) Determine and describe the coendomorphism bialgebra of A from problem
1.1. (Hint: Determine first a set of algebra generators of M(A). Then
describe the relations.)

(3) Determine explicitly the dual coalgebra A∗ of A := K〈x〉/(x3).
(4) Determine and describe the coendomorphism bialgebra of A from problem

1.3.
(5) (*) Determine explicitly the dual coalgebra A∗ of A := K〈x, y〉/I where the

ideal I is generated as a two-sided ideal by the polynomials

xy − q−1yx, x2, y2.

(6) (*) Determine the coendomorphism bialgebra of A from problem 1.5.
(7) Let A be a finite dimensional K-algebra with universal bialgebra A −→ B⊗A.

Show
i) that Aop −→ Bop ⊗ Aop is universal (where Aop has the multiplication
∇τ : A⊗ A −→ A⊗ A −→ A);

ii) that A ∼= Aop implies B ∼= Bop (as bialgebras);
iii) that for commutative algebras A the algebra B satisfies B ∼= Bop but

that B need not be commutative.
iv) Find an isomorphism B ∼= Bop for the bialgebra B = K〈a, b〉/(a2, ab +

ba). (compare Problem 1.7 2).
(8) Consider the algebra K[ε]/(ε2) the so called algebra of dual numbers over a

field K. Consider the algebra B with (noncommuting) generators a, b, c, d
and relations:

ac = acac ad = acad+ adac bc = acbc = bcac

bd = acbd+ adbc = bcad+ bdac bcbc = bcbd+ bdbc = 0

ac = 1 ad = 0

Show that B together with the cooperation

δ : A −→ B ⊗ A

with δ(ε) = bc⊗ 1 + bd⊗ ε is the coendomorphism bialgebra of A.
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Sketch of solution:
1/2. The bialgebra has the form B = K〈a, b〉/(a2, ab+ba) with ∆(a) = a⊗1+b⊗a,

∆(b) = b⊗ b and ε(a) = 0, ε(b) = 1. The coaction is δ(x) = a⊗ 1 + b⊗ x.
3/4. A has the basis 1, x, x2. The dual coalgebra has the dual basis e, ζ, ζ2 with

∆(e) = e⊗ e, ∆(ζ) = ζ ⊗ e+ e⊗ ζ and ∆(ζ2) = ζ2 ⊗ e+ ζ ⊗ ζ + e⊗ ζ2.
The universal bialgebra B = T (A⊗A∗)/I satisfies δ(x) = x⊗ e⊗ 1 + x⊗ ζ ⊗ x+

x⊗ ζ2 ⊗ x2 = a⊗ 1 + b⊗ x+ c⊗ x2. Thus it is generated by the elements a = x⊗ e,
b = x⊗ ζ and c = x⊗ ζ2. The multiplication table and the relations arise from

1⊗ e = 1,
1⊗ ζ = 1⊗ ζ2 = 0,
x2 ⊗ e = (x⊗ e)(x⊗ e),
x2 ⊗ ζ = (x⊗ ζ)(x⊗ e) + (x⊗ e)(x⊗ ζ),
x2 ⊗ ζ2 = (x⊗ ζ2)(x⊗ e) + (x⊗ ζ)(x⊗ ζ) + (x⊗ e)(x⊗ ζ2),

0 = x3 ⊗ e = (x2 ⊗ e)(x⊗ e),
0 = x3 ⊗ ζ = (x2 ⊗ ζ)(x⊗ e) + (x2 ⊗ e)(x⊗ ζ),
0 = x3 ⊗ ζ2 = (x2 ⊗ ζ2)(x⊗ e) + (x2 ⊗ ζ)(x⊗ ζ) + (x2 ⊗ e)(x⊗ ζ2)

We use the abbreviation {u, v} := u2v + uvu+ vu2 and have

a3 = 0,
{a, b} = 0,
{a, c}+ {b, a} = 0.

The condition (1⊗ δ)δ = (∆⊗ 1)δ implies

∆(a) = a⊗ 1 + b⊗ a+ c⊗ a2,
∆(b) = b⊗ b+ c⊗ (ba+ ab),
∆(c) = b⊗ c+ c⊗ b2 + c⊗ (ca+ ac),
ε(a) = 0,
ε(b) = 1,
ε(c) = 0.

5/6. A has the basis 1, x, y, xy. The dual basis of A∗ is denoted by e, ξ, η, θ. The
diagonal is

∆(e) = e⊗ e,
∆(ξ) = ξ ⊗ e+ e⊗ ξ,
∆(η) = η ⊗ e+ e⊗ η,
∆(θ) = θ ⊗ e+ e⊗ θ + ξ ⊗ η + qη ⊗ ξ.

Thus the coendomorphism bialgebra has the algebra generators a ⊗ ζ with a ∈
{1, x, y, xy} and ζ ∈ {e, ξ, η, θ}. The generators of the relations (of I) are given
by the equations 1.1 and 1.2. They imply that 1 ⊗ e is the unit element, that
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1⊗ ξ = 1⊗ η = 1⊗ θ = 0 and that

ab⊗ e = (a⊗ e)(b⊗ e),
ab⊗ ξ = (a⊗ ξ)(b⊗ e) + (a⊗ 1)(b⊗ ξ),
ab⊗ η = (a⊗ η)(b⊗ e) + (a⊗ 1)(b⊗ η),
ab⊗ θ = (a⊗ θ)(b⊗ e) + (a⊗ 1)(b⊗ θ) + (a⊗ ξ)(b⊗ η) + q(a⊗ η)(b⊗ ξ).

Furthermore for ab we have to take into account the relations in A.
We define

a := x⊗ e, b := x⊗ ξ, c := x⊗ η, d := x⊗ θ,
e := y ⊗ e, f := y ⊗ ξ, g := y ⊗ η, h := x⊗ θ,

and get δ(x) = a⊗1+ b⊗x+ c⊗ y+d⊗xy and δ(y) = e⊗1+ f ⊗x+ g⊗ y+h⊗xy.
Hence B is generated by a, . . . , h as an algebra. The relations are

a2 = e2 = 0,
ab+ ba = ac+ ca = ef + fe = eg + ge = 0,
ad+ da+ bc+ qcb = eh+ he+ fg + qgf = 0,
ae = qea,
af + be = q(fa+ eb),
ag + ce = q(ga+ ec),
ah− qha+ de− qed+ bg − q2gb+ qcf − qfc = 0.

The diagonal is

∆(a) = a⊗ 1 + b⊗ a+ c⊗ e+ d⊗ ae,
∆(b) = b⊗ b+ c⊗ f + d⊗ (af + be),
∆(c) = b⊗ c+ c⊗ g + d⊗ (ag + ce),
∆(d) = b⊗ d+ c⊗ h+ d⊗ (ah+ de+ bg + q−1cf) etc.



CHAPTER 2

Hopf Algebras, Algebraic, Formal, and Quantum Groups

Introduction

In the first chapter we have encountered quantum monoids and studied their
role as monoids operating on quantum spaces. The “elements” of quantum monoids
operating on quantum spaces should be understood as endomorphisms of the quantum
spaces. In the construction of the multiplication for universal quantum monoids of
quantum spaces we have seen that this multiplication is essentially the “composition”
of endomorphisms.

We are, however, primarily interested in automorphisms and we know that auto-
morphisms should form a group under composition. This chapter is devoted to finding
group structures on quantum monoids, i.e. to define and study quantum groups.

This is easy in the commutative situation, i.e. if the representing algebra of
a quantum monoid is commutative. Then we can define a morphism that sends
elements of the quantum group to their inverses. This will lead us to the notion of
affine algebraic groups.

In the noncommutative situation, however, it will turn out that such an inversion
morphism (of quantum spaces) does not exist. It will have to be replaced by a more
complicated construction. Thus quantum groups will not be groups in the sense of
category theory. Still we will be able to perform one of the most important and most
basic constructions in group theory, the formation of the group of invertible elements
of a monoid. In the case of a quantum monoid acting universally on a quantum
space this will lead to the good definition of a quantum automorphism group of the
quantum space.

In order to have the appropriate tools for introducing quantum groups we first
introduce Hopf algebras which will be the representing algebras of quantum groups.
Furthermore we need the notion of a monoid and of a group in a category. We will see,
however, that quantum groups are in general not groups in the category of quantum
spaces.

We first study the simple cases of affine algebraic groups and of formal groups.
They will have Hopf algebras as representing objects and will indeed be groups in
reasonable categories. Then we come to quantum groups, and construct quantum
automorphism groups of quantum spaces.

At the end of the chapter you should

• know what a Hopf algebra is,

31
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• know what a group in a category is,
• know the definition and examples of affine algebraic groups and formal groups,
• know the definition and examples of quantum groups and be able to construct

quantum automorphism groups for small quantum spaces,
• understand why a Hopf algebra is a reasonable representing algebra for a

quantum group.

1. Hopf Algebras

The difference between a monoid and a group lies in the existence of an additional
map S : G 3 g 7→ g−1 ∈ G for a group G that allows forming inverses. This map
satisfies the equation S(g)g = 1 or in a diagrammatic form

G {1}-ε G-1

?

∆

G×G G×G-S×id

6
mult

We want to carry this property over to bialgebras B instead of monoids. An “inverse
map” shall be a morphism S : B −→ B with a similar property. This will be called a
Hopf algebra.

Definition 2.1.1. A left Hopf algebra H is a bialgebra H together with a left
antipode S : H −→ H, i.e. a K-module homomorphism S such that the following
diagram commutes:

H K-ε
H-η

?

∆

H ⊗H H ⊗H-S⊗id

6
∇

Symmetrically we define a right Hopf algebra H. A Hopf algebra is a left and right
Hopf algebra. The map S is called a (left, right, two-sided) antipode.

Using the Sweedler notation (2.20) the commutative diagram above can also be
expressed by the equation ∑

S(a(1))a(2) = ηε(a)

for all a ∈ H. Observe that we do not require that S : H −→ H is an algebra
homomorphism.

Problem 2.1.8. (1) Let H be a bialgebra and S ∈ Hom(H,H). Then S is
an antipode for H (and H is a Hopf algebra) iff S is a two sided inverse for
id in the algebra (Hom(H,H), ∗, ηε) (see 2.21). In particular S is uniquely
determined.

(2) Let H be a Hopf algebra. Then S is an antihomomorphism of algebras and
coalgebras i.e. S “inverts the order of the multiplication and the comultipli-
cation”.
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(3) Let H and K be Hopf algebras and let f : H −→ K be a homomorphism of
bialgebras. Then fSH = SKf , i.e. f is compatible with the antipode.

Definition 2.1.2. Because of Problem (22) every homomorphism of bialgebras
between Hopf algebras is compatible with the antipodes. So we define a homomor-
phism of Hopf algebras to be a homomorphism of bialgebras. The category of Hopf
algebras will be denoted by K-Hopf .

Proposition 2.1.3. Let H be a bialgebra with an algebra generating set X. Let
S : H −→ Hop be an algebra homomorphism such that

∑
S(x(1))x(2) = ηε(x) for all

x ∈ X. Then S is a left antipode of H.

Proof. Assume a, b ∈ H such that
∑
S(a(1))a(2) = ηε(a) and

∑
S(b(1))b(2) =

ηε(b). Then∑
S((ab)(1))(ab)(2) =

∑
S(a(1)b(1))a(2)b(2) =

∑
S(b(1))S(a(1))a(2)b(2)

=
∑
S(b(1))ηε(a)b(2) = ηε(a)ηε(b) = ηε(ab).

Since every element of H is a finite sum of finite products of elements in X, for which
the equality holds, this equality extends to all of H by induction. �

Example 2.1.4. (1) Let V be a vector space and T (V ) the tensor algebra over
V . We have seen in Problem 2.2 that T (V ) is a bialgebra and that V generates T (V )
as an algebra. Define S : V −→ T (V )op by S(v) := −v for all v ∈ V . By the universal
property of the tensor algebra this map extends to an algebra homomorphism S :
T (V ) −→ T (V )op. Since ∆(v) = v⊗1+1⊗v we have

∑
S(v(1))v(2) = ∇(S⊗1)∆(v) =

−v + v = 0 = ηε(v) for all v ∈ V , hence T (V ) is a Hopf algebra by the preceding
proposition.

(2) Let V be a vector space and S(V ) the symmetric algebra over V (that is
commutative). We have seen in Problem 2.3 that S(V ) is a bialgebra and that V
generates S(V ) as an algebra. Define S : V −→ S(V ) by S(v) := −v for all v ∈ V . S
extends to an algebra homomorphism S : S(V ) −→ S(V ). Since ∆(v) = v⊗ 1 + 1⊗ v
we have

∑
S(v(1))v(2) = ∇(S ⊗ 1)∆(v) = −v + v = 0 = ηε(v) for all v ∈ V , hence

S(V ) is a Hopf algebra by the preceding proposition.

Example 2.1.5. (Group Algebras) For each algebra A we can form the group
of units U(A) := {a ∈ A|∃a−1 ∈ A} with the multiplication of A as composition of
the group. Then U is a covariant functor U : K-Alg −→ Gr . This functor leads to the
following universal problem.

Let G be a group. An algebra KG together with a group homomorphism ι : G
−→ U(KG) is called a (the) group algebra of G, if for every algebra A and for every
group homomorphism f : G −→ U(A) there exists a unique homomorphism of algebras



34 2. HOPF ALGEBRAS, ALGEBRAIC, FORMAL, AND QUANTUM GROUPS

g : KG −→ A such that the following diagram commutes

G U(KG)-ι

f
@

@
@

@@R
U(A).

?

g

The group algebra KG is (if it exists) unique up to isomorphism. It is generated
as an algebra by the image of G. The map ι : G −→ U(KG) ⊆ KG is injective and
the image of G in KG is a basis.

The group algebra can be constructed as the free vector space KG with basis G
and the algebra structure of KG is given by KG⊗KG 3 g ⊗ h 7→ gh ∈ KG and the
unit η : K 3 α 7→ αe ∈ KG.

The group algebra KG is a Hopf algebra. The comultiplication is given by the
diagram

G KG-ι

f

@
@

@
@@R

KG⊗KG
?

∆

with f(g) := g ⊗ g which defines a group homomorphism f : G −→ U(KG ⊗ KG).
The counit is given by

G KG-ι

f

@
@

@
@@R

K
?

ε

where f(g) = 1 for all g ∈ G. One shows easily by using the universal property,
that ∆ is coassociative and has counit ε. Define an algebra homomorphism S : KG
−→ (KG)op by

G KG-ι

f

@
@

@
@@R
(KG)op

?

S

with f(g) := g−1 which is a group homomorphism f : G −→ U((KG)op). Then one
shows with Proposition 1.3 that KG is a Hopf algebra.

The example KG of a Hopf algebra gives rise to the definition of particular el-
ements in arbitrary Hopf algebras, that share certain properties with elements of a
group. We will use and study these elements later on in in chapter 4.
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Definition 2.1.6. Let H be a Hopf algebra. An element g ∈ H, g 6= 0 is called a
grouplike element if

∆(g) = g ⊗ g.

Observe that ε(g) = 1 for each grouplike element g in a Hopf algebra H. In fact
we have g = ∇(ε⊗ 1)∆(g) = ε(g)g 6= 0 hence ε(g) = 1. If the base ring is not a field
then one adds this property to the definition of a grouplike element.

Problem 2.1.9. (1) Let K be a field. Show that an element x ∈ KG satisfies
∆(x) = x⊗ x and ε(x) = 1 if and only if x = g ∈ G.

(2) Show that the grouplike elements of a Hopf algebra form a group under
multiplication of the Hopf algebra.

Example 2.1.7. (Universal Enveloping Algebras) A Lie algebra consists of
a vector space g together with a (linear) multiplication g ⊗ g 3 x ⊗ y 7→ [x, y] ∈ g
such that the following laws hold:

[x, x] = 0,
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

A homomorphism of Lie algebras f : g −→ h is a linear map f such that f([x, y]) =
[f(x), f(y)]. Thus Lie algebras form a category K-Lie .

An important example is the Lie algebra associated with an associative algebra
(with unit). If A is an algebra then the vector space A with the Lie multiplication

[x, y] := xy − yx

is a Lie algebra denoted by AL. This construction of a Lie algebra defines a covariant
functor -L : K-Alg −→ K-Lie . This functor leads to the following universal problem.

Let g be a Lie algebra. An algebra U(g) together with a Lie algebra homomor-
phism ι : g −→ U(g)L is called a (the) universal enveloping algebra of g, if for every
algebra A and for every Lie algebra homomorphism f : g −→ AL there exists a unique
homomorphism of algebras g : U(g) −→ A such that the following diagram commutes

g U(g)L-ι

f
@

@
@

@@R

AL.
?

g

The universal enveloping algebra U(g) is (if it exists) unique up to isomorphism.
It is generated as an algebra by the image of g.

The universal enveloping algebra can be constructed as U(g) = T (g)/(x ⊗ y −
y ⊗ x − [x, y]) where T (g) = K ⊕ g ⊕ g ⊗ g . . . is the tensor algebra. The map ι : g
−→ U(g)L is injective.
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The universal enveloping algebra U(g) is a Hopf algebra. The comultiplication is
given by the diagram

g U(g)-ι

f

@
@

@
@@R

U(g)⊗ U(g)
?

∆

with f(x) := x ⊗ 1 + 1 ⊗ x which defines a Lie algebra homomorphism f : g −→
(U(g)⊗ U(g))L. The counit is given by

g U(g)-ι

f

@
@

@
@@R

K
?

ε

with f(x) = 0 for all x ∈ g. One shows easily by using the universal property, that
∆ is coassociative and has counit ε. Define an algebra homomorphism S : U(g)
−→ (U(g))op by

g U(g)-ι

f

@
@

@
@@R
(U(g))op

?

S

with f(x) := −x which is a Lie algebra homomorphism f : g −→ (U(g)op)L. Then one
shows with Proposition 1.3 that U(g) is a Hopf algebra.

(Observe, that the meaning of U in this example and the previous example (group
of units, universal enveloping algebra) is totally different, in the first case U can be
applied to an algebra and gives a group, in the second case U can be applied to a Lie
algebra and gives an algebra.)

The preceding example of a Hopf algebra gives rise to the definition of particular
elements in arbitrary Hopf algebras, that share certain properties with elements of a
Lie algebra. We will use and study these elements later on in chapter 4.

Definition 2.1.8. Let H be a Hopf algebra. An element x ∈ H is called a
primitive element if

∆(x) = x⊗ 1 + 1⊗ x.

Let g ∈ H be a grouplike element. An element x ∈ H is called a skew primitive or
g-primitive element if

∆(x) = x⊗ 1 + g ⊗ x.

Problem 2.1.10. Show that the set of primitive elements P (H) = {x ∈ H|∆(x) =
x⊗ 1 + 1⊗ x} of a Hopf algebra H is a Lie subalgebra of HL.
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Proposition 2.1.9. Let H be a Hopf algebra with antipode S. The following are
equivalent:

(1) S2 =id.
(2)

∑
S(a(2))a(1) = ηε(a) for all a ∈ H.

(3)
∑
a(2)S(a(1)) = ηε(a) for all a ∈ H.

Proof. Let S2 =id. Then∑
S(a(2))a(1) = S2(

∑
S(a(2))a(1)) = S(

∑
S(a(1))S

2(a(2)))
= S(

∑
S(a(1))a(2)) = S(ηε(a)) = ηε(a)

by using Problem (21).
Conversely assume that (2) holds. Then

S ∗ S2(a) =
∑
S(a(1)S

2(a(2)) = S(
∑
S(a(2))a(1)

= S(ηε(a)) = ηε(a).

Thus S2 and id are inverses of S in the convolution algebra Hom(H,H), hence S2 = id.
Analogously one shows that (1) and (3) are equivalent. �

Corollary 2.1.10. If H is a commutative Hopf algebra or a cocommutative Hopf
algebra with antipode S, then S2 =id.

Remark 2.1.11. Kaplansky: Ten conjectures on Hopf algebras
In a set of lecture notes on bialgebras based on a course given at Chicago university

in 1973, made public in 1975, Kaplansky formulated a set of conjectures on Hopf
algebras that have been the aim of intensive research.

(1) If C is a Hopf subalgebra of the Hopf algebra B then B is a free left C-module.
(Yes, if H is finite dimensional [Nichols-Zoeller]; No for infinite dimen-

sional Hopf algebras [Oberst-Schneider]; B : C is not necessarily faithfully
flat [Schauenburg])

(2) Call a coalgebra C admissible if it admits an algebra structure making it a
Hopf algebra. The conjecture states that C is admissible if and only if every
finite subset of C lies in a finite-dimensional admissible subcoalgebra.

(Remarks.
(a) Both implications seem hard.
(b) There is a corresponding conjecture where “Hopf algebra” is replaced

by “bialgebra”.
(c) There is a dual conjecture for locally finite algebras.)

(No results known.)
(3) A Hopf algebra of characteristic 0 has no non-zero central nilpotent elements.

(First counter example given by [Schmidt-Samoa]. IfH is unimodular and
not semisimple, e.g. a Drinfel’d double of a not semisimple finite dimensional
Hopf algebra, then the integral Λ satisfies Λ 6= 0, Λ2 = ε(Λ)Λ = 0 since D(H)
is not semisimple, and aΛ = ε(a)Λ = Λε(a) = Λa since D(H) is unimodular
[Sommerhäuser].)
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(4) (Nichols). Let x be an element in a Hopf algebra H with antipode S. Assume
that for any a in H we have∑

bixS(ci) = ε(a)x

where ∆a =
∑
bi ⊗ ci. Conjecture: x is in the center of H.

(ax =
∑
a(1)xε(a(2)) =

∑
a(1)xS(a(2))a(3)) =

∑
ε(a(1))xa(2) = xa.)

In the remaining six conjectures H is a finite-dimensional Hopf algebra
over an algebraically closed field.

(5) If H is semisimple on either side (i.e. either H or the dual H∗ is semisimple
as an algebra) the square of the antipode is the identity.

(Yes if char(K) = 0 [Larson-Radford], yes if char(K) is large [Sommer-
häuser])

(6) The size of the matrices occurring in any full matrix constituent of H divides
the dimension of H.

(Yes is Hopf algebra is defined over Z [Larson]; in general not known;
work by [Montgomery-Witherspoon], [Zhu], [Gelaki])

(7) If H is semisimple on both sides the characteristic does not divide the di-
mension.

(Larson-Radford)
(8) If the dimension of H is prime then H is commutative and cocommutative.

(Yes in characteristic 0 [Zhu: 1994])
Remark. Kac, Larson, and Sweedler have partial results on 5 – 8.
(Was also proved by [Kac])
In the two final conjectures assume that the characteristic does not divide

the dimension of H.
(9) The dimension of the radical is the same on both sides.

(Counterexample by [Nichols]; counterexample in Frobenius-Lusztig ker-
nel of Uq(sl(2)) [Schneider])

(10) There are only a finite number (up to isomorphism) of Hopf algebras of a
given dimension.

(Yes for semisimple, cosemisimple Hopf algebras: Stefan 1997)
(Counterexamples: [Andruskiewitsch, Schneider], [Beattie, others] 1997)

2. Monoids and Groups in a Category

Before we use Hopf algebras to describe quantum groups and some of the better
known groups, such as affine algebraic groups and formal groups, we introduce the
concept of a general group (and of a monoid) in an arbitrary category. Usually this
concept is defined with respect to a categorical product in the given category. But
in some categories there are in general no products. Still, one can define the concept
of a group in a very simple fashion. We will start with that definition and then show
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that it coincides with the usual notion of a group in a category in case that category
has finite products.

Definition 2.2.1. Let C be an arbitrary category. Let G ∈ C be an object. We
use the notation G(X) := MorC(X,G) for all X ∈ C, G(f) := MorC(f,G) for all
morphisms f : X −→ Y in C, and f(X) := MorC(X, f) for all morphisms f : G −→ G′.

G together with a natural transformation m : G(-) × G(-) −→ G(-) is called a
group (monoid) in the category C, if the sets G(X) together with the multiplication
m(X) : G(X)×G(X) −→ G(X) are groups (monoids) for all X ∈ C.

Let (G,m) and (G′,m′) be groups in C. A morphism f : G −→ G′ in C is called a
homomorphism of groups in C, if the diagrams

G(X)×G(X) G(X)-m(X)

G′(X)×G′(X) G′(X)-m′(X)?

f(X)×f(X)

?

f(X)

commute for all X ∈ C.
Let (G,m) and (G′,m′) be monoids in C. A morphism f : G −→ G′ in C is called

a homomorphism of monoids in C, if the diagrams

G(X)×G(X) G(X)-m(X)

G′(X)×G′(X) G′(X)-m′(X)?

f(X)×f(X)

?

f(X)

and
{∗}

u

�
�

�
���

u′

A
A
A
AAU

G(X) G′(X)-f(X)

commute for all X ∈ C.

Problem 2.2.11. (1) Let the set Z together with the multiplication m :
Z × Z −→ Z be a monoid. Show that the unit element e ∈ Z is uniquely
determined.

Let (Z,m) be a group. Show that also the inverse i : Z −→ Z is uniquely
determined.

Show that unit element and inverses of groups are preserved by maps
that are compatible with the multiplication.

(2) Find an example of monoids Y and Z and a map f : Y −→ Z with f(y1y2) =
f(y1)f(y2) for all y1, y2 ∈ Y , but f(eY ) 6= eZ .
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(3) Let (G,m) be a group in C and iX : G(X) −→ G(X) be the inverse for all
X ∈ C. Show that i is a natural transformation.

Show that the Yoneda Lemma provides a morphism S : G −→ G such
that iX = MorC(X,S) = S(X) for all X ∈ C.

Formulate and prove properties of S of the type S ∗ id = . . ..

Proposition 2.2.2. Let C be a category with finite (categorical) products. An
object G in C carries the structure m : G(-) × G(-) −→ G(-) of a group in C if and
only if there are morphisms m : G×G −→ G, u : E −→ G, and S : G −→ G such that
the diagrams

G×G×G G×G-m×1

G×G G-m
?

1×m

?

m

E ×G ∼= G ∼= G× E G×G-1×u

G×G G-m
?

u×1

?

m1

Q
Q

Q
Q

Q
QQs

G E- G-u

G×G G×G-1×S
S×1

?

∆

6

m

commute where ∆ is the morphism defined in [Advanced Algebra] 4.2. The multipli-
cations are related by mX = MorC(X,m) = m(X).

An analogous statement holds for monoids.

Proof. The Yoneda Lemma defines a bijection between the set of morphisms
f : X −→ Y and the set of natural transformations f(-) : X(-) −→ Y (-) by f(Z) =
MorC(Z, f). In particular we have mX = MorC(X,m) = m(X). The diagram

G(-)×G(-)×G(-) G(-)×G(-)-m-×1

G(-)×G(-) G(-)-m-?

1×m-

?

m-

commutes if and only if MorC(-,m(m× 1)) = MorC(-,m)(MorC(-,m)× 1) = m-(m-×
1) = m-(1 ×m-) = MorC(-,m)(1 × MorC(-,m)) = MorC(-,m(1 ×m)) if and only if
m(m× 1) = m(1×m) if and only if the diagram

G×G×G G×G-m×1

G×G G-m
?

1×m

?

m
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commutes. In a similar way one shows the equivalence of the other diagram(s). �

Problem 2.2.12. Let C be a category with finite products. Show that a morphism
f : G −→ G′ in C is a homomorphism of groups if and only if

G×G G-m

G′ ×G′ G′-m′
?

f×f

?

f

commutes.

Definition 2.2.3. A cogroup (comonoid) G in C is a group (monoid) in Cop,
i.e. an object G ∈ Ob C = Ob Cop together with a natural transformation m(X) :
G(X) × G(X) −→ G(X) where G(X) = MorCop(X,G) = MorC(G,X), such that
(G(X),m(X)) is a group (monoid) for each X ∈ C.

Remark 2.2.4. Let C be a category with finite (categorical) coproducts. An
object G in C carries the structure m : G(-)× G(-) −→ G(-) of a cogroup in C if and
only if there are morphisms ∆ : G −→ G q G, ε : G −→ I, and S : G −→ G such that
the diagrams

GqG GqGqG-∆q1

G GqG-∆

?

1q∆

?

∆

GqG I qG ∼= G ∼= Gq I-εq1

G GqG-∆

?

1qε

?

∆ 1

Q
Q

Q
Q

Q
QQs

G I- G-ε

GqG GqG-1qS
Sq1

?

∆

6

∇

commute where ∇ is dual to the morphism ∆ defined in [Advanced Algebra] 4.2. The
multiplications are related by ∆X = MorC(∆, X) = ∆(X).

Let C be a category with finite coproducts and let G and G′ be cogroups in C.
Then a homomorphism of groups f : G′ −→ G is a morphism f : G −→ G′ in C such
that the diagram

G G×G-∆

G′ G′ ×G′-∆′
?

f×f

?

f

commutes. An analogous result holds for comonoids.
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Remark 2.2.5. Obviously similar observations and statements can be made for
other algebraic structures in a category C. So one can introduce vector spaces and
covector spaces, monoids and comonoids, rings and corings in a category C. The
structures can be described by morphisms in C if C is a category with finite (co-)
products.

Problem 2.2.13. Determine the structure of a covector space on a vector space
V from the fact that Hom(V,W ) is a vector space for all vector spaces W .

Proposition 2.2.6. Let G ∈ C be a group with multiplication a ∗ b, unit e, and
inverse a−1 in G(X). Then the morphisms m : G×G −→ G, u : E −→ G, and S : G
−→ G are given by

m = p1 ∗ p2, u = eE, S = id−1
G .

Proof. By the Yoneda Lemma [Advanced Algebra] 5.7 these morphisms can be
constructed from the natural transformation as follows. Under MorC(G×G,G×G) =

G × G(G × G) ∼= G(G × G) × G(G × G)
∗−→ G(G × G) = MorC(G × G,G) the

identity idG×G = (p1, p2) is mapped to m = p1 ∗ p2. Under MorC(E,E) = E(E)
−→ G(E) = MorC(E,G) the identity of E is mapped to the neutral element u = eE.
Under MorC(G,G) = G(G) −→ G(G) = MorC(G,G) the identity is mapped to its
∗-inverse S = id−1

G . �

Corollary 2.2.7. Let G ∈ C be a cogroup with multiplication a ∗ b, unit e, and
inverse a−1 in G(X). Then the morphisms ∆ : G −→ G q G, ε : G −→ I, and S : G
−→ G are given by

∆ = ι1 ∗ ι2, ε = eI , S = id−1
G .

3. Affine Algebraic Groups

We apply the preceding considerations to the categories K-cAlg and K-cCoalg .
Consider K-cAlg , the category of commutative K-algebras. Let A,B ∈ K-cAlg .

Then A ⊗ B is again a commutative K-algebra with componentwise multiplication.
In fact this holds also for non-commutative K-algebras ([Advanced Algebra] 2.3), but
in K-cAlg we have

Proposition 2.3.1. The tensor product in K-cAlg is the (categorical) coproduct.

Proof. Let f ∈ K-cAlg (A,Z), g ∈ K-cAlg (B,Z). The map [f, g] : A⊗ B −→ Z
defined by [f, g](a ⊗ b) := f(a)g(b) is the unique algebra homomorphism such that
[f, g](a⊗ 1) = f(a) and [f, g](1⊗ b) = g(b) or such that the diagram

A A⊗B-ιA B�ιB

f
@

@
@@R

g
�

�
��	

Z
?

[f,g]

commutes, where ιA(a) = a⊗ 1 and ιB(b) = 1⊗ b are algebra homomorphisms. �
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So the category K-cAlg has finite coproducts and also an initial object K.
A more general property of the tensor product of arbitrary algebras was already

considered in 1.2.13.
Observe that the following diagram commutes

A A⊗ A-ι1 A�ι2

1A

@
@

@@R

1A

�
�

��	
A
?

∇

where ∇ is the multiplication of the algebra and by the diagram the codiagonal of
the coproduct.

Definition 2.3.2. An affine algebraic group is a group in the category of com-
mutative geometric spaces.

By the duality between the categories of commutative geometric spaces and com-
mutative algebras, an affine algebraic group is represented by a cogroup in the cate-
gory of K-cAlg of commutative algebras.

For an arbitrary affine algebraic group H we get by Corollary 2.2.7

∆ = ι1 ∗ ι2 ∈ K-cAlg (H,H ⊗H),

ε = e ∈ K-cAlg (H,K), and S = (id)−1 ∈ K-cAlg (H,H).

These maps and Corollary 2.2.7 lead to

Proposition 2.3.3. Let H ∈ K-cAlg . H is a representing object for a functor
K-cAlg −→ Gr if and only if H is a Hopf algebra.

Proof. Both statements are equivalent to the existence of morphisms in K-cAlg

∆ : H −→ H ⊗H ε : H −→ K S : H −→ H

such that the following diagrams commute

H H ⊗H-∆

?

∆(coassociativity)

?

∆⊗1

H ⊗H H ⊗H ⊗H-1⊗∆

H H ⊗H-∆

H ⊗H K⊗H ∼= H ∼= H ⊗K-ε⊗1

(counit)

?

∆

?

1⊗ε1

PPPPPPPPPPq

(coinverse)

H K-ε
H-η

?

∆

H ⊗H H ⊗H-S⊗id

id⊗S

6
∇
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�

This Proposition says two things. First of all each commutative Hopf algebra H
defines a functor K-cAlg (H, -) : K-cAlg −→ Set that factors through the category
of groups or simply a functor K-cAlg (H, -) : K-cAlg −→ Gr . Secondly each repre-
sentable functor K-cAlg (H, -) : K-cAlg −→ Set that factors through the category of
groups is represented by a commutative Hopf algebra.

Corollary 2.3.4. An algebra H ∈ K-cAlg represents an affine algebraic group if
and only if H is a commutative Hopf algebra.

The category of commutative Hopf algebras is dual to the category of affine alge-
braic groups.

In the following lemmas we consider functors represented by commutative alge-
bras. They define functors on the category K-cAlg as well as more generally on
K-Alg . We first study the functors and the representing algebras. Then we use them
to construct commutative Hopf algebras.

Lemma 2.3.5. The functor Ga : K-Alg −→ Ab defined by Ga(A) := A+, the
underlying additive group of the algebra A, is a representable functor represented by
the algebra K[x] the polynomial ring in one variable x.

Proof. Ga is an underlying functor that forgets the multiplicative structure of
the algebra and only preserves the additive group of the algebra. We have to determine
natural isomorphisms (natural in A) Ga(A) ∼= K-Alg (K[x], A). Each element a ∈ A+

is mapped to the homomorphism of algebras a∗ : K[x] 3 p(x) 7→ p(a) ∈ A. This is a
homomorphism of algebras since a∗(p(x) + q(x)) = p(a) + q(a) = a∗(p(x)) + a∗(q(x))
and a∗(p(x)q(x)) = p(a)q(a) = a∗(p(x))a∗(q(x)). Another reason to see this is that
K[x] is the free (commutative) K-algebra over {x} i.e. since each map {x} −→ A
can be uniquely extended to a homomorphism of algebras K[x] −→ A. The map
A 3 a 7→ a∗ ∈ K-Alg (K[x], A) is bijective with the inverse map K-Alg (K[x], A) 3
f 7→ f(x) ∈ A. Finally this map is natural in A since

B K-Alg (K[x], B)-
-∗

A K-Alg (K[x], A)--∗

?

g

?

K-Alg(K[x],g)

commutes for all g ∈ K-Alg (A,B). �

Remark 2.3.6. Since A+ has the structure of an additive group the sets of ho-
momorphisms of algebras K-Alg (K[x], A) are also additive groups.

Lemma 2.3.7. The functor Gm = U : K-Alg −→ Gr defined by Gm(A) := U(A),
the underlying multiplicative group of units of the algebra A, is a representable functor
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represented by the algebra K[x, x−1] = K[x, y]/(xy−1) the ring of Laurent polynomials
in one variable x.

Proof. We have to determine natural isomorphisms (natural in A) Gm(A) ∼=
K-Alg (K[x, x−1], A). Each element a ∈ Gm(A) is mapped to the homomorphism of
algebras a∗ := (K[x, x−1] 3 x 7→ a ∈ A). This defines a unique homomorphism of
algebras since each homomorphism of algebras f from K[x, x−1] = K[x, y]/(xy − 1)
to A is completely determined by the images of x and of y but in addition the images
have to satisfy f(x)f(y) = 1, i.e. f(x) must be invertible and f(y) must be the inverse
to f(x). This mapping is bijective. Furthermore it is natural in A since

B K-Alg (K[x, x−1], B)-
-∗

A K-Alg (K[x, x−1], A)--∗

?

g

?

K-Alg(K[x,x−1],g)

for all g ∈ K-Alg (A,B) commute. �

Remark 2.3.8. Since U(A) has the structure of a (multiplicative) group the sets
K-Alg (K[x, x−1], A) are also groups.

Lemma 2.3.9. The functor Mn : K-Alg −→ K-Alg with Mn(A) the algebra of
n× n-matrices with entries in A is representable by the algebra K〈x11, x12, . . . , xnn〉,
the non commutative polynomialring in the variables xij.

Proof. The polynomial ring K〈xij〉 is free over the set {xij} in the category of
(non commutative) algebras, i.e. for each algebra and for each map f : {xij} −→ A
there exists a unique homomorphism of algebras g : K〈x11, x12, . . . , xnn〉 −→ A such
that the diagram

{xij} K〈xij〉-ι

f

@
@

@
@@R

A
?

g

commutes. So each matrix in Mn(A) defines a unique a homomorphism of algebras
K〈x11, x12, . . . , xnn〉 −→ A and conversely. �

Example 2.3.10. 1. The affine algebraic group called additive group

Ga : K-cAlg −→ Ab

with Ga(A) := A+ from Lemma 2.3.5 is represented by the Hopf algebra K[x]. We
determine comultiplication, counit, and antipode.

By Corollary 2.2.7 the comultiplication is ∆ = ι1 ∗ ι2 ∈ K-cAlg (K[x],K[x] ⊗
K[x]) ∼= Ga(K[x]⊗K[x]). Hence

∆(x) = ι1(x) + ι2(x) = x⊗ 1 + 1⊗ x.
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The counit is ε = eK = 0 ∈ K-cAlg (K[x],K) ∼= Ga(K) hence

ε(x) = 0.

The antipode is S = id−1
K[x] ∈ K-cAlg (K[x],K[x]) ∼= Ga(K[x]) hence

S(x) = −x.
2. The affine algebraic group called multiplicative group

Gm : K-cAlg −→ Ab

with Gm(A) := A∗ = U(A) from Lemma 2.3.7 is represented by the Hopf algebra
K[x, x−1] = K[x, y]/(xy − 1). We determine comultiplication, counit, and antipode.

By Corollary 2.2.7 the comultiplication is

∆ = ι1 ∗ ι2 ∈ K-cAlg (K[x, x−1],K[x, x−1]⊗K[x, x−1]) ∼= Gm(K[x, x−1]⊗K[x, x−1]).

Hence

∆(x) = ι1(x) · ι2(x) = x⊗ x.

The counit is ε = eK = 1 ∈ K-cAlg (K[x, x−1],K) ∼= Gm(K) hence

ε(x) = 1.

The antipode is S = id−1
K[x,x−1] ∈ K-cAlg (K[x, x−1],K[x, x−1]) ∼= Ga(K[x, x−1])

hence

S(x) = x−1.

3. The affine algebraic group called additive matrix group

M+
n : K-cAlg −→ Ab ,

with M+
n (A) the additive group of n×n-matrices with coefficients in A is represented

by the commutative algebra M+
n = K[xij|1 ≤ i, j ≤ n] (Lemma 2.3.9). This algebra

must be a Hopf algebra.
The comultiplication is ∆ = ι1 ∗ ι2 ∈ K-cAlg (M+

n ,M
+
n ⊗M+

n ) ∼= M+
n (M+

n ⊗M+
n ).

Hence

∆(xij) = ι1(xij) + ι2(xij) = xij ⊗ 1 + 1⊗ xij.

The counit is ε = eK = (0) ∈ K-cAlg (M+
n ,K) ∼= M+

n (K) hence

ε(xij) = 0.

The antipode is S = id−1

M+
n
∈ K-cAlg (M+

n ,M
+
n ) ∼= M+

n (M+
n ) hence

S(xij) = −xij.
4. The matrix algebra Mn(A) also has a noncommutative multiplication, the ma-

trix multiplication, defining a monoid structure M×
n (A). Thus K[xij] carries another

coalgebra structure which defines a bialgebra M×
n = K[xij]. Obviously there is no

antipode.
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The comultiplication is ∆ = ι1 ∗ ι2 ∈ K-cAlg (M×
n ,M

×
n ⊗M×

n ) ∼= M×
n (M×

n ⊗M×
n ).

Hence ∆((xij)) = ι1((xij)) · ι2((xij)) = (xij)⊗ (xij) or

∆(xik) =
∑
j

xij ⊗ xjk.

The counit is ε = eK = E ∈ K-cAlg (M×
n ,K) ∼= M×

n (K) hence

ε(xij) = δij.

5. Let K be a field of characteristic p. The algebra H = K[x]/(xp) carries the
structure of a Hopf algebra with ∆(x) = x ⊗ 1 + 1 ⊗ x, ε(x) = 0, and S(x) = −x.
To show that ∆ is well defined we have to show ∆(x)p = 0. But this is obvious by
the rules for computing p-th powers in characteristic p. We have (x⊗ 1 + 1⊗ x)p =
xp ⊗ 1 + 1⊗ xp = 0.

Thus the algebra H represents an affine algebraic group:

αp(A) := K-cAlg (H,A) ∼= {a ∈ A|ap = 0}.
The group multiplication is the addition of p-nilpotent elements. So we have the
group of p-nilpotent elements.

6. The algebra H = K[x]/(xn − 1) is a Hopf algebra with the comultiplication
∆(x) = x ⊗ x, the counit ε(x) = 1, and the antipode S(x) = xn−1. These maps are
well defined since we have for example ∆(x)n = (x⊗ x)n = xn⊗ xn = 1⊗ 1. Observe
that this Hopf algebra is isomorphic to the group algebra KCn of the cyclic group Cn
of order n.

Thus the algebra H represents an affine algebraic group:

µn(A) := K-cAlg (H,A) ∼= {a ∈ A|an = 1},
that is the group of n-th roots of unity. The group multiplication is the ordinary
multiplication of roots of unity.

7. The linear groups or matrix groups GL(n)(A), SL(n)(A) and other such groups
are further examples of affine algebraic groups. We will discuss them in the section
on quantum groups.

Problem 2.3.14. (1) The construction of the general linear group

GL(n)(A) = {(aij) ∈ Mn(A)|(aij) invertible}
defines an affine algebraic group. Describe the representing Hopf algebra.

(2) The special linear group SL(n)(A) is an affine algebraic group. What is the
representing Hopf algebra?

(3) The real unit circle S1(R) carry the structure of a group by the addition of
angles. Is it possible to make S1 with the affine algebra K[c, s]/(s2 + c2 − 1)
into an affine algebraic group? (Hint: How can you add two points (x1, y1)
and (x2, y2) on the unit circle, such that you get the addition of the associated
angles?)
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(4) Find a group structure on the torus T .

4. Formal Groups

Consider now K-cCoalg the category of cocommutative K-coalgebras. Let C,D ∈
K-cCoalg . Then C⊗D is again a cocommutative K-coalgebra by [Advanced Algebra]
Problem 2.7.4. In fact this holds also for non-commutative K-algebras, but in K-cCoalg
we have

Proposition 2.4.1. The tensor product in K-cCoalg is the (categorical) product.

Proof. Let f ∈ K-cCoalg (Z,C), g ∈ K-cCoalg (Z,D). The map (f, g) : Z −→
C ⊗ D defined by (f, g)(z) :=

∑
f(z(1)) ⊗ g(z(2)) is the unique homomorphism of

coalgebras such that (1 ⊗ εD)(f, g)(z) = f(z) and (εC ⊗ 1)(f, g)(z) = g(z) or such
that the diagram

C C ⊗D�pC
D-pD

f
�

�
��	

g
@

@
@@R

Z

?(f,g)

commutes, where pC(c⊗ d) = (1⊗ ε)(c⊗ d) = cε(d) and pD(c⊗ d) = (ε⊗ 1)(c⊗ d) =
ε(c)d are homomorphisms of coalgebras. �

So the category K-cCoalg has finite products and also a final object K.

Definition 2.4.2. A formal group is a group in the category of K-cCoalg of
cocommutative coalgebras.

A formal group G defines a contravariant representable functor from K-cCoalg to
Gr , the category of groups.

Proposition 2.4.3. Let H ∈ K-cCoalg . H a represents a formal group if and
only if there are given morphisms in K-cCoalg

∇ : H ⊗H −→ H, u : K −→ H, S : H −→ H

such that the following diagrams commute

H ⊗H H-∇
?

∇(associativity)

?

∇⊗1

H ⊗H ⊗H H ⊗H-1⊗∇

H ⊗H H-∇

K⊗H ∼= H ∼= H ⊗K H ⊗H-u⊗1

(unit)

?

∇
?

1⊗u 1

PPPPPPPPPPq
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(inverse)

H K-ε
H-η

?

∆

H ⊗H H ⊗H-S⊗id

id⊗S

6
∇

Proof. For an arbitrary formal group H we get ∇ = p1 ∗ p2 ∈ K-cCoalg (H ⊗
H,H), u = e ∈ K-cCoalg (K, H), and S = (id)−1 ∈ K-cCoalg (H,H). These maps,
the Yoneda Lemma and Remark 2.2.6 lead to the proof of the proposition. �

Remark 2.4.4. In particular the representing object (H,∇, u,∆, ε, S) of a formal
group G is a cocommutative Hopf algebra and every such Hopf algebra represents a
formal group. Hence the category of formal groups is equivalent to the category of
cocommutative Hopf algebras.

Corollary 2.4.5. A coalgebra H ∈ K-cCoalg represents a formal group if and
only if H is a cocommutative Hopf algebra.

The category of cocommutative Hopf algebras is equivalent to the category of formal
groups.

Corollary 2.4.6. The following categories are equivalent:

(1) The category of commutative, cocommutative Hopf algebras.
(2) The category of commutative formal groups.
(3) The dual of the category of commutative affine algebraic groups.

Example 2.4.7. (1) Group algebras KG are formal groups.
(2) Universal enveloping algebras U(g) of Lie algebras g are formal groups.
(3) The tensor algebra T (V ) and the symmetric algebra S(V ) are formal groups.
(4) Let C be a cocommutative coalgebra and G be a group. Then the group

KG(C) = K-cCoalg (C,KG) is isomorphic to the set of families (h∗g|g ∈ G)
of decompositions of the unit of C∗ into a sum of orthogonal idempotents
h∗g ∈ C∗ that are locally finite.

To see this embed K-cCoalg (C,KG) ⊆ Hom(C,KG) and embedthe set
Hom(C,KG) into the set (C∗)G of G-families of elements in the algebra C∗ by
h 7→ (h∗g) with h(c) =

∑
g∈G h

∗
g(c)g. The linear map h is a homomorphism of

coalgebras iff (h⊗h)∆ = ∆h and εh = ε iff
∑
h(c(1))⊗h(c(2)) =

∑
h(c)(1)⊗

h(c)(2) and ε(h(c)) = ε(c) for all c ∈ C iff
∑
h∗g(c(1))g⊗h∗l (c(2))l =

∑
h∗g(c)g⊗

g and
∑
h∗g(c) = ε(c) iff

∑
h∗g(c(1))h

∗
l (c(2)) = δglh

∗
g(c) and

∑
h∗g = ε iff

h∗g ∗ h∗l = δglh
∗
g and

∑
h∗g = 1C∗ . Furthermore the families must be locally

finite, i.e. for each c ∈ C only finitely many of them give non-zero values.
(5) Let C be a cocommutative coalgebra and K[x] be the Hopf algebra with

∆(x) = x ⊗ 1 + 1 ⊗ x (the symmetric algebra of the one dimensional vec-
tor space Kx). We embed as before K-cCoalg (C,K[x]) ⊆ Hom(C,K[x]) =
(C∗){N0}, the set of locally finite N0-families in C∗ by h(c) =

∑∞
i=0 h

∗
i (c)x

i.
The map h is a homomorphism of coalgebras iff ∆(h(c)) =

∑
h∗i (c)(x⊗ 1 +
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1⊗ x)i =
∑
h∗i (c)

(
i
l

)
xl ⊗ xi−l = (h⊗ h)∆(c) =

∑
h∗i (c(1))h

∗
j(c(2))x

i ⊗ xj and

ε(
∑
h∗i (c)x

i) = ε(c) iff h∗i ∗ h∗j =
(
i+j
i

)
h∗i+j and h∗0 = ε = 1C∗ .

Now let K be a field of characteristic zero. Let pi := h∗i /i!. Then the
conditions simplify to pipj = pi+j and p0 = 1. Hence the series for h is
completely determined by the term p := p1 since pn = pn1 . Since the series
must be locally finite we get that for each c ∈ C there must be an n ∈ N0

such that pm(c) = 0 for all m ≥ n. Hence the element p is topologically
nilpotent and

K-cCoalg (C,K[x]) ∼= radt(C
∗)

the radial of topologically nilpotent elements of C∗.
It is easy to see that radt(C

∗) is a group under addition and that this
group structure coincides with the one on K-cCoalg (C,K[x]).

Remark 2.4.8. LetH be a finite dimensional Hopf algebra. Then by [Advanced Algebra]
2.23 and 2.25 we get that H∗ is an algebra and a coalgebra. The commutative dia-
grams defining the bialgebra property and the antipode can be transferred easily, so
H∗ is again a Hopf algebra. Hence the functor -∗ : vec −→ vec from finite dimensional
vector spaces to itself induces a duality -∗ : K-hopf −→ K-hopf from the category of
finite dimensional Hopf algebras to itself.

An affine algebraic group is called finite if the representing Hopf algebra is finite
dimensional. A formal group is called finite if the representing Hopf algebra is finite
dimensional.

Thus the category of finite affine algebraic groups is equivalent to the category of
finite formal groups.

The category of finite commutative affine algebraic groups is self dual. The cat-
egory of finite commutative affine algebraic groups is equivalent (and dual) to the
category of finite commutative formal groups.

5. Quantum Groups

Definition 2.5.1. (Drinfel’d) A quantum group is a noncommutative noncocom-
mutative Hopf algebra.

Remark 2.5.2. We shall consider all Hopf algebras as quantum groups. Ob-
serve, however, that the commutative Hopf algebras may be considered as affine
algebraic groups and that the cocommutative Hopf algebras may be considered as
formal groups. Their property as a quantum space or as a quantum monoid will play
some role. But often the (possibly nonexisting) dual Hopf algebra will have the geo-
metrical meaning. The following examples SLq(2) and GLq(2) will have a geometrical
meaning.

Example 2.5.3. The smallest proper quantum group, i.e. the smallest noncom-
mutative noncocommutative Hopf algebra, is the 4-dimensional algebra

H4 := K〈g, x〉/(g2 − 1, x2, xg + gx)
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which was first described by M. Sweedler. The coalgebra structure is given by

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x,
ε(g) = 1, ε(x) = 0,

S(g) = g−1(= g), S(x) = −gx.

Since it is finite dimensional its linear dual H∗
4 is also a noncommutative noncocom-

mutative Hopf algebra. It is isomorphic as a Hopf algebra to H4. In fact H4 is up to
isomorphism the only noncommutative noncocommutative Hopf algebra of dimension
4.

Example 2.5.4. The affine algebraic group SL(n) : K-cAlg −→ Gr defined by
SL(n)(A), the group of n × n-matrices with coefficients in the commutative algebra
A and with determinant 1, is represented by the algebra O(SL(n)) = SL(n) =
K[xij]/(det(xij)− 1) i.e.

SL(n)(A) ∼= K-cAlg (K[xij]/(det(xij)− 1), A).

Since SL(n)(A) has a group structure by the multiplication of matrices, the represent-
ing commutative algebra has a Hopf algebra structure with the diagonal ∆ = ι1 ∗ ι2
hence

∆(xik) =
∑

xij ⊗ xjk,

the counit ε(xij) = δij and the antipode S(xij) = adj(X)ij where adj(X) is the adjoint
matrix of X = (xij). We leave the verification of these facts to the reader.

We consider SL(n) ⊆Mn = An2
as a subspace of the n2-dimensional affine space.

Example 2.5.5. Let Mq(2) = K
〈(

a b
c d

)〉
/I as in 1.3.6 with I the ideal gen-

erated by

ab− q−1ba, ac− q−1ca, bd− q−1db, cd− q−1dc, (ad− q−1bc)− (da− qcb), bc− cb.

We first define the quantum determinant detq = ad− q−1bc = da− qcb in Mq(2).
It is a central element. To show this, it suffices to show that detq commutes with the
generators a, b, c, d:

(ad− q−1bc)a = a(da− qbc), (ad− q−1bc)b = b(ad− q−1bc),
(ad− q−1bc)c = c(ad− q−1bc), (da− qbc)d = d(ad− q−1bc).

We can form the quantum determinant of an arbitrary quantum matrix in A by

detq

(
a′ b′

c′ d′

)
:= a′d′ − q−1b′c′ = d′a′ − qc′b′ = ϕ(detq)

if ϕ : Mq(2) −→ A is the algebra homomorphism associated with the quantum matrix(
a′ b′

c′ d′

)
.
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Given two commuting quantum 2×2-matrices

(
a′ b′

c′ d′

)
,

(
a′′ b′′

c′′ d′′

)
. The quantum

determinant preserves the product, since

(3)

detq(

(
a′ b′

c′ d′

) (
a′′ b′′

c′′ d′′

)
) = detq

(
a′a′′ + b′c′′ a′b′′ + b′d′′

c′a′′ + d′c′′ c′b′′ + d′d′′

)
= (a′a′′ + b′c′′)(c′b′′ + d′d′′)− q−1(a′b′′ + b′d′′)(c′a′′ + d′c′′)
= a′c′a′′b′′ + b′c′c′′b′′ + a′d′a′′d′′ + b′d′c′′d′′

−q−1(a′c′b′′a′′ + b′c′d′′a′′ + a′d′b′′c′′ + b′d′d′′c′′)
= b′c′c′′b′′ + a′d′a′′d′′ − q−1b′c′d′′a′′ − q−1a′d′b′′c′′

= b′c′c′′b′′ + a′d′a′′d′′ − q−1b′c′d′′a′′ − q−1a′d′b′′c′′

−q−1b′c′(a′′d′′ − d′′a′′ − q−1b′′c′′ + qc′′b′′)
= a′d′a′′d′′ − q−1a′d′b′′c′′ − q−1b′c′(a′′d′′ − q−1b′′c′′)
= (a′d′ − q−1b′c′)(a′′d′′ − q−1b′′c′′)

= detq

(
a′ b′

c′ d′

)
detq

(
a′′ b′′

c′′ d′′

)
.

In particular we have ∆(detq) = detq⊗ detq and ε(detq) = 1. The quantum determi-
nant is a grouplike element (see 2.1.6).

Now we define an algebra

SLq(2) := Mq(2)/(detq − 1).

The algebra SLq(2) represents the functor

SLq(2)(A) = {
(
a′ b′

c′ d′

)
∈Mq(2)(A)|detq

(
a′ b′

c′ d′

)
= 1}.

There is a surjective homomorphism of algebras Mq(2) −→ SLq(2) and SLq(2) is a
subfunctor of Mq(2).

Let X, Y be commuting quantum matrices satisfying detq(X) = 1 = detq(Y ).
Since detq(X) detq(Y ) = detq(XY ) for commuting quantum matrices we get
detq(XY ) = 1, hence SLq(2) is a quantum submonoid of Mq(2) and SLq(2) is a
bialgebra with diagonal

∆

(
a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
,

and

ε

(
a b
c d

)
=

(
1 0
0 1

)
.

To show that SLq(2) has an antipode we first define a homomorphism of algebras
T : Mq(2) −→Mq(2)op by

T

(
a b
c d

)
:=

(
d −qb

−q−1c a

)
.



5. QUANTUM GROUPS 53

We check that T : K
〈(

a b
c d

)〉
−→Mq(2)

op vanishes on the ideal I.

T (ab− q−1ba) = T (b)T (a)− q−1T (a)T (b) = −qbd+ q−1qdb = 0.

We leave the check of the other defining relations to the reader. Furthermore T
restricts to a homomorphism of algebras S : SLq(2) −→ SLq(2)

op since T (detq) =
T (ad − q−1bc) = T (d)T (a) − q−1T (c)T (b) = ad − q−1(−q−1c)(−qb) = detq hence
T (detq−1) = detq−1 = 0 in SLq(2).

One verifies easily that S satisfies
∑
S(x(1))x(2) = ε(x) for all given generators

of SLq(2), hence S is a left antipode by 2.1.3. Symmetrically S is a right antipode.
Thus the bialgebra SLq(2) is a Hopf algebra or a quantum group.

Example 2.5.6. The affine algebraic group GL(n) : K-cAlg −→ Gr defined by
GL(n)(A), the group of invertible n×n-matrices with coefficients in the commutative
algebra A, is represented by the algebraO(GL(n)) = GL(n) = K[xij, t]/(det(xij)t−1)
i.e.

GL(n)(A) ∼= K-cAlg (K[xij, t]/(det(xij)t− 1), A)).

Since GL(n)(A) has a group structure by the multiplication of matrices, the represent-
ing commutative algebra has a Hopf algebra structure with the diagonal ∆ = ι1 ∗ ι2
hence

∆(xik) =
∑

xij ⊗ xjk,

the counit ε(xij) = δij and the antipode S(xij) = t · adj(X)ij where adj(X) is the
adjoint matrix of X = (xij). We leave the verification of these facts from linear
algebra to the reader. The diagonal applied to t gives

∆(t) = t⊗ t.

Hence t(= det(X)−1) is a grouplike element inGL(n). This reflects the rule det(AB) =
det(A) det(B) hence det(AB)−1 = det(A)−1 det(B)−1.

Example 2.5.7. Let Mq(2) be as in the example 2.5.5. We define

GLq(2) := Mq(2)[t]/J

with J generated by the elements t · (ad− q−1bc)− 1. The algebra GLq(2) represents
the functor

GLq(2)(A) = {
(
a′ b′

c′ d′

)
∈Mq(2)(A)|detq

(
a′ b′

c′ d′

)
invertible in A}.

In fact there is a canonical homomorphism of algebras Mq(2) −→ GLq(2). A ho-
momorphism of algebras ϕ : Mq(2) −→ A has a unique continuation to GLq(2) iff
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detq(ϕ

(
a b
c d

)
) is invertible:

Mq(2) Mq(2)[t]- Gq(2)-

A

@
@

@
@@R ?

�
�

�
��	

with t 7→ detq

(
a′ b′

c′ d′

)−1

. Thus GLq(2)(A) is a subset of Mq(2)(A). Observe that

Mq(2) −→ GLq(2) is not surjective.
Since the quantum determinant preserves products and the product of invertible

elements is again invertible we get GLq(2) is a quantum submonoid of Mq(2), hence

∆ : GLq(2) −→ GLq(2)⊗GLq(2) with ∆

(
a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
and ∆(t) = t⊗t.

We construct the antipode for GLq(2). We define T : Mq(2)[t] −→Mq(2)[t]
op by

T

(
a b
c d

)
:= t

(
d −qb

−q−1c a

)
and T (t) := detq

(
a b
c d

)
= ad− q−1bc.

As in 2.5.5 T defines a homomorphism of algebras. We obtain an induced homo-
morphism of algebras S : GLq(2) −→ GLq(2)

op or a GLq(2)
op-point in GLq(2) since

S(t(ad− q−1bc)− 1) = (S(d)S(a)− q−1S(c)S(b))S(t)− S(1) = (t2ad− q−1t2cb)(ad−
q−1bc)− 1 = t2(ad− q−1bc)2 − 1 = 0.

Since S satisfies
∑
S(x(1))x(2) = ε(x) for all given generators, S is a left antipode

by 2.1.3. Symmetrically S is a right antipode. Thus the bialgebra GLq(2) is a Hopf
algebra or a quantum group.

Example 2.5.8. Let sl(2) be the 3-dimensional vector space generated by the
matrices

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

Then sl(2) is a subspace of the algebra M(2) of 2×2-matrices over K. We easily verify
[X,Y ] = XY −Y X = H, [H,X] = HX−XH = 2X, and [H, Y ] = HY −Y H = −2Y ,
so that sl(2) becomes a Lie subalgebra of M(2)L, which is the Lie algebra of matrices
of trace zero. The universal enveloping algebra U(sl(2)) is a Hopf algebra generated
as an algebra by the elements X,Y,H with the relations

[X, Y ] = H, [H,X] = 2X, [H, Y ] = −2Y.

As a consequence of the Poincaré-Birkhoff-Witt Theorem (that we don’t prove)
the Hopf algebra U(sl(2)) has the basis {X iY jHk|i, j, k ∈ N}. Furthermore one can
prove that all finite dimensional U(sl(2))-modules are semisimple.
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Example 2.5.9. We define the so-called q-deformed version Uq(sl(2)) of U(sl(2))
for any q ∈ K, q 6= 1,−1 and q invertible. Let Uq(sl(2)) be the algebra generated by
the elements E,F,K,K ′ with the relations

KK ′ = K ′K = 1,
KEK ′ = q2E, KFK ′ = q−2F,

EF − FE =
K −K ′

q − q−1
.

Since K ′ is the inverse of K in Uq(sl(2)) we write K−1 = K ′. The representation
theory of this algebra is fundamentally different depending on whether q is a root of
unity or not.

We show that Uq(sl(2)) is a Hopf algebra or quantum group. We define

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1,
∆(K) = K ⊗K,

ε(E) = ε(F ) = 0, ε(K) = 1,
S(E) = −EK−1, S(F ) = −KF, S(K) = K−1.

.
First we show that ∆ can be expanded in a unique way to an algebra homomor-

phism ∆ : Uq(sl(2)) −→ Uq(sl(2)) ⊗ Uq(sl(2)). Write Uq(sl(2)) as the residue class
algebra K〈E,F,K,K−1〉/I where I is generated by

KK−1 − 1, K−1K − 1,
KEK−1 − q2E, KFK−1 − q−2F,

EF − FE − K −K−1

q − q−1
.

Since K−1 must be mapped to the inverse of ∆(K) we must have ∆(K−1) = K−1 ⊗
K−1. Now ∆ can be expanded in a unique way to the free algebra ∆ : K〈E,F,K,K−1〉
−→ Uq(sl(2)) ⊗ Uq(sl(2)). We have ∆(KK−1) = ∆(K)∆(K−1) = 1 and similarly
∆(K−1K) = 1. Furthermore we have ∆(KEK−1) = ∆(K)∆(E)∆(K−1) = (K ⊗K)
(1⊗E+E⊗K)(K−1⊗K−1) = KK−1⊗KEK−1 +KEK−1⊗K2K−1 = q2(1⊗E+
E ⊗K) = q2∆(E) = ∆(q2E) and similarly ∆(KFK−1) = ∆(q−2F ). Finally we have

∆(EF − FE) = (1⊗ E + E ⊗K)(K ′ ⊗ F + F ⊗ 1)
−(K ′ ⊗ F + F ⊗ 1)(1⊗ E + E ⊗K)

= K ′ ⊗ EF + F ⊗ E + EK ′ ⊗KF + EF ⊗K
−K ′ ⊗ FE −K ′E ⊗ FK − F ⊗ E − FE ⊗K

= K ′ ⊗ (EF − FE) + (EF − FE)⊗K

=
K ′ ⊗ (K −K ′) + (K −K ′)⊗K

q − q−1

= ∆

(
K −K ′

q − q−1

)
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hence ∆ vanishes on I and can be factorized through a unique algebra homomorphism

∆ : Uq(sl(2)) −→ Uq(sl(2))⊗ Uq(sl(2)).

In a similar way, actually much simpler, one gets an algebra homomorphism

ε : Uq(sl(2)) −→ K.

To check that ∆ is coassociative it suffices to check this for the generators of the
algebra. We have (∆ ⊗ 1)∆(E) = (∆ ⊗ 1)(1 ⊗ E + E ⊗K) = 1 ⊗ 1 ⊗ E + 1 ⊗ E ⊗
K + E ⊗ K ⊗ K = (1 ⊗ ∆)(1 ⊗ E + E ⊗ K) = (1 ⊗ ∆)∆(E). Similarly we get
(∆⊗ 1)∆(F ) = (1⊗∆)∆(F ). For K the claim is obvious. The counit axiom is easily
checked on the generators.

Now we show that S is an antipode for Uq(sl(2)). First define S : K〈E,F,K,K−1〉
−→ Uq(sl(2))

op by the definition of S on the generators. We have

S(KK−1) = 1 = S(K−1K),
S(KEK−1) = −KEK−1K−1 = −q2EK−1 = S(q2E),
S(KFK−1) = −KKFK−1 = −q−2KF = S(q−2F ),

S(EF − FE) = KFEK−1 − EK−1KF = KFK−1KEK − EF

=
K−1 −K

q − q−1
= S

(
K −K−1

q − q−1

)
.

So S defines a homomorphism of algebras S : Uq(sl(2)) −→ Uq(sl(2)). Since S satisfies∑
S(x(1))x(2) = ε(x) for all given generators, S is a left antipode by 2.1.3. Symmet-

rically S is a right antipode. Thus the bialgebra Uq(sl(2)) is a Hopf algebra or a
quantum group.

This quantum group is of central interest in theoretical physics. Its representation
theory is well understood. If q is not a root of unity then the finite dimensional
Uq(sl(2))-modules are semisimple. Many more properties can be found in [Kassel:
Quantum Groups].

6. Quantum Automorphism Groups

Lemma 2.6.1. The category K-Alg of K-algebras has arbitrary coproducts.

Proof. This is a well known fact from universal algebra. In fact all equationally
defined algebraic categories are complete and cocomplete. We indicate the construc-
tion of the coproduct of a family (Ai|i ∈ I) of K-algebras.

Define
∐

i∈I Ai := T (⊕i∈IAi)/L where T denotes the tensor algebra and where L
is the two sided ideal in T (⊕i∈IAi) generated by the set

J := {ιjk(xkyk)− ι(jk(xk))ι(jk(yk)), 1T (
⊕
Ai) − ιjk(1Ak

)|xk, yk ∈ Ak, k ∈ I}.
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Then one checks easily for a family of algebra homomorphisms (fk : Ak −→ B|k ∈ I)
that the following diagram gives the required universal property

Ak ⊕ Ai-jk T (⊕Ai)-ι T (⊕Ai)/L-ν

B

fk

PPPPPPPPPPPPPPPPPPq

f

HH
HHHH

HHH
HHHj

f ′

@
@

@
@

@
@R ?

f̄

�

Corollary 2.6.2. The category of bialgebras has finite coproducts.

Proof. The coproduct
∐
Bi of bialgebras (Bi|i ∈ I) in K-Alg is an algebra. For

the diagonal and the counit we obtain the following commutative diagrams

Bk ⊗Bk

∐
Bi ⊗

∐
Bi

-
jk⊗jk

Bk

∐
Bi

-jk

?

∆k

?

∃1∆

Bk

∐
Bi

-jk

εk

@
@

@
@@R

K
?

∃1ε

since in both cases
∐
Bi is a coproduct in K-Alg . Then it is easy to show that

these homomorphisms define a bialgebra structure on
∐
Bi and that

∐
Bi satisfies

the universal property for bialgebras. �

Theorem 2.6.3. Let B be a bialgebra. Then there exists a Hopf algebra H(B) and
a homomorphism of bialgebras ι : B −→ H(B) such that for every Hopf algebra H and
for every homomorphism of bialgebras f : B −→ H there is a unique homomorphism
of Hopf algebras g : H(B) −→ H such that the diagram

B H(B)-ι

f
@

@
@

@@R
H
?

g

commutes.



58 2. HOPF ALGEBRAS, ALGEBRAIC, FORMAL, AND QUANTUM GROUPS

Proof. Define a sequence of bialgebras (Bi|i ∈ N) by

B0 := B,
Bi+1 := Bopcop

i , i ∈ N.

Let B′ be the coproduct of the family (Bi|i ∈ N) with injections ιi : Bi −→ B′. Because
B′ is a coproduct of bialgebras there is a unique homomorphism of bialgebras S ′ : B′

−→ B′opcop such that the diagrams

Bopcop
i+1 B′opcop-

ιi+1

Bi B′-ιi

?

id

?

S′

commute.
Now let I be the two sided ideal in B′ generated by

{(S ′ ∗ 1− uε)(xi), (1 ∗ S ′ − uε)(xi)|xi ∈ ιi(Bi), i ∈ N}.

I is a coideal, i.e. εB′(I) = 0 and ∆B′(I) ⊆ I ⊗B′ +B′ ⊗ I.
Since εB′ and ∆B′ are homomorphisms of algebras it suffices to check this for

the generating elements of I. Let x ∈ Bi be given. Then we have ε((1 ∗ S ′)ιi(x)) =
ε(∇(1⊗S ′)∆ιi(x)) = ∇K(ε⊗εS ′)(ιi⊗ιi)∆i(x) = (ειi⊗ειi)∆i(x) = εi(x) = ε(uειi(x)).
Symmetrically we have ε((S ′ ∗ 1)ιi(x)) = ε(uειi(x)). Furthermore we have

∆((1 ∗ S ′)ιi(x))
= ∆∇(1⊗ S ′)∆ιi(x)
= (∇⊗∇)(1⊗ τ ⊗ 1)(∆⊗∆)(1⊗ S ′)(ιi ⊗ ιi)∆i(x)
= (∇⊗∇)(1⊗ τ ⊗ 1)(∆⊗ τ(S ′ ⊗ S ′)∆)(ιi ⊗ ιi)∆i(x)
=

∑
(∇⊗∇)(1⊗ τ ⊗ 1)(ιi(x(1))⊗ ιi(x(2))⊗ S ′ιi(x(4))⊗ S ′ιi(x(3)))

=
∑
ιi(x(1))S

′ιi(x(4))⊗ ιi(x(2))S
′ιi(x(3))

=
∑
ιi(x(1))S

′ιi(x(3))⊗ (1 ∗ S ′)ιi(x(2)).

Hence we have

∆((1 ∗ S ′−uε)ιi(x))
=

∑
ιi(x(1))S

′ιi(x(3))⊗ (1 ∗ S ′)ιi(x(2))−∆uειi(x)
=

∑
ιi(x(1))S

′ιi(x(3))⊗ ((1 ∗ S ′)− uε)ιi(x(2))
+

∑
ιi(x(1))S

′ιi(x(3))⊗ uειi(x(2))−∆uειi(x)
=

∑
ιi(x(1))S

′ιi(x(3))⊗ (1 ∗ S ′ − uε)ιi(x(2))
+

∑
ιi(x(1))S

′ιi(x(2))⊗ 1B′ − uειi(x)⊗ 1B′
=

∑
ιi(x(1))S

′ιi(x(3))⊗ (1 ∗ S ′ − uε)ιi(x(2))
+(1 ∗ S ′ − uε)ιi(x)⊗ 1B′

∈ B′ ⊗ I + I ⊗B′.

Thus I is a coideal and a biideal of B′.
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Now let H(B) := B′/I and let ν : B′ −→ H(B) be the residue class homomor-
phism. We show that H(B) is a bialgebra and ν is a homomorphism of bialgebras.
H(B) is an algebra and ν is a homomorphism of algebras since I is a two sided ideal.
Since I ⊆ Ker(ε) there is a unique factorization

B′ B′/I-ν

ε′
@

@
@

@@R
K
?

ε

where ε : B′/I −→ K is a homomorphism of algebras. Since ∆(I) ⊆ B′⊗ I + I ⊗B′ ⊆
Ker(ν ⊗ ν : B′ ⊗ B′ −→ B′/I ⊗ B′/I) and thus I ⊆ Ker(∆(ν ⊗ ν)) we have a unique
factorization

B′ ⊗B′ B′/I ⊗B′/I-
ν⊗ν

B′ B′/I-ν

?

∆B′

?

∆

by an algebra homomorphism ∆ : B′/I −→ B′/I ⊗B′/I. Now it is easy to verify that
B′/I becomes a bialgebra and ν a bialgebra homomorphism.

We show that the map νS ′ : B′ −→ B′/I can be factorized through B′/I in the
commutative diagram

B′ B′/I-ν

νS ′
@

@
@

@@R
B′/I

?

S

This holds if I ⊆ Ker(νS ′). Since Ker(ν) = I it suffices to show S ′(I) ⊆ I. We have

S ′((S ′ ∗ 1)ιi(x)) =
= ∇τ(S ′2ιi ⊗ S ′ιi)∆i(x)
= ∇τ(S ′ ⊗ 1)(ιi+1 ⊗ ιi+1)∆i(x)
= ∇(1⊗ S ′)(ιi+1 ⊗ ιi+1)τ∆i(x)
= ∇(1⊗ S ′)(ιi+1 ⊗ ιi+1)∆i+1(x)
= (1 ∗ S ′)ιi+1(x)

and

S ′(uειi(x)) = S ′(1)εi(x) = S ′(1)εi+1(x) = S ′(uειi+1(x))

hence we get

S ′((S ′ ∗ 1− uε)ιi(x)) = (1 ∗ S ′ − uε)ιi+1(x) ∈ I.
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This shows S ′(I) ⊆ I. So there is a unique homomorphism of bialgebras S : H(B)
−→ H(B)opcop such that the diagram

B′opcop H(B)opcop-
ν

B′ H(B)-ν

?

S′

?

S

commutes.
Now we show that H(B) is a Hopf algebra with antipode S. By Proposition 2.1.3

it suffices to test on generators of H(B) hence on images νιi(x) of elements x ∈ Bi.
We have

(1 ∗ S)νιi(x) = ∇(ν ⊗ Sν)∆ιi(x) = ∇(ν ⊗ ν)(1⊗ S ′)∆ιi(x) =
= ν(1 ∗ S ′)ιi(x) = νuειi(x) = uενιi(x).

By Proposition 2.1.3 S is an antipode for H(B).
We prove now that H(B) together with ι := νι0 : B −→ H(B) is a free Hopf

algebra over B. Let H be a Hopf algebra and let f : B −→ H be a homomorphism of
bialgebras. We will show that there is a unique homomorphism f̄ : H(B) −→ H such
that

B H(B)-ι

f

@
@

@
@@R
H
?

f̄

commutes.
We define a family of homomorphisms of bialgebras fi : Bi −→ H by

f0 := f,
fi+1 := SHfi, i ∈ N.

We have in particular fi = SiHf for all i ∈ N. Thus there is a unique homomorphism
of bialgebras f ′ : B′ =

∐
Bi −→ H such that f ′ιi = fi for all i ∈ N.

We show that f ′(I) = 0. Let x ∈ Bi. Then

f ′((1 ∗ S ′)ιi(x))= f ′(∇(1⊗ S ′)(ιi ⊗ ιi)∆i(x))
=

∑
f ′ιi(x(1))f

′S ′ιi(x(2))
=

∑
f ′ιi(x(1))f

′ιi+1(x(2))
=

∑
fi(x(1))fi+1(x(2))

=
∑
fi(x(1))Sfi(x(2))

= (1 ∗ S)fi(x) = uεfi(x) = uεi(x)
= f ′(uειi(x)).

This together with the symmetric statement gives f ′(I) = 0. Hence there is a unique
factorization through a homomorphism of algebras f̄ : H(B) −→ H such that f ′ = f̄ν.
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The homomorphism f̄ : H(B) −→ H is a homomorphism of bialgebras since the
diagram

B′/I-
ν

-f ′

-
f̄

-
f ′⊗f ′

B′/I ⊗B′/I-ν⊗ν -f̄⊗f̄

H

H ⊗H
?

∆H
?
∆′

B′

B′ ⊗B′
?

∆

commutes with the possible exception of the right hand square ∆f̄ and (f̄⊗f̄)∆′. But
ν is surjective so also the last square commutes. Similarly we get εH f̄ = εH(B). Thus
f̄ is a homomorphism of bialgebras and hence a homomorphism of Hopf algebras. �

Remark 2.6.4. In chapter 1 we have constructed universal bialgebras M(A)
with coaction δ : A −→M(A)⊗ A for certain algebras A (see 1.3.12). This induces a
homomorphism of algebras

δ′ : A −→ H(M(A))⊗ A

such that A is a comodule-algebra over the Hopf algebra H(M(A)). If H is a Hopf
algebra and A is an H-comodule algebra by ∂ : A −→ H ⊗ A then there is a unique
homomorphism of bialgebras f : M(A) −→ H such that

A M(A)⊗ A-δ

∂

@
@

@
@@R
H ⊗ A

?

f⊗1

commutes. Since the f : M(A) −→ H factorizes uniquely through f̄ : H(M(A)) −→ H
we get a commutative diagram

A H(M(A))⊗ A-δ
′

∂

@
@

@
@@R
H ⊗ A

?

f̄⊗1

with a unique homomorphism of Hopf algebras f̄ : H(M(A)) −→ H.
This proof depends only on the existence of a universal algebra M(A) for the

algebra A. Hence we have

Corollary 2.6.5. Let X be a quantum space with universal quantum space (and
quantum monoid) M(X ). Then there is a unique (up to isomorphism) quantum group
H(M(X )) acting universally on X .
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This quantum group H(M(X )) can be considered as the “quantum subgroup of
invertible elements” of M(X ) or the quantum group of “quantum automorphisms”
of X .

7. Duality of Hopf Algebras

In 2.4.8 we have seen that the dual Hopf algebra H∗ of a finite dimensional Hopf
algebra H satisfies certain relations w.r.t. the evaluation map. The multiplication
of H∗ is derived from the comultiplication of H and the comultiplication of H∗ is
derived from the multiplication of H.

This kind of duality is restricted to the finite-dimensional situation. Nevertheless
one wants to have a process that is close to the finite-dimensional situation. This
short section is devoted to several approaches of duality for Hopf algebras.

First we use the relations of the finite-dimensional situation to give a general
definition.

Definition 2.7.1. Let H and L be Hopf algebras. Let

ev : L⊗H 3 a⊗ h 7→ 〈a, h〉 ∈ K
be a bilinear form satisfying

(4) 〈a⊗ b,
∑

h(1) ⊗ h(2)〉 = 〈ab, h〉, 〈1, h〉 = ε(h)

(5) 〈
∑

a(1) ⊗ a(2), h⊗ j〉 = 〈a, hj〉, 〈a, 1〉 = ε(a)

(6) 〈a, S(h)〉 = 〈S(a), h〉
Such a map is called a weak duality of Hopf algebras. The bilinear form is called left
(right) nondegenerate if 〈a,H〉 = 0 implies a = 0 (〈L, h〉 = 0 implies h = 0). A
duality of Hopf algebras is a weak duality that is left and right nondegenerate.

Remark 2.7.2. IfH is a finite dimensional Hopf algebra then the usual evaluation
ev : H∗ ⊗H −→ K defines a duality of Hopf algebras.

Remark 2.7.3. Assume that ev : L ⊗ H −→ K defines a weak duality. By
[Advanced Algebra] 1.22 we have isomorphisms Hom(L⊗H,K) ∼= Hom(L,Hom(H,K))
and Hom(L⊗H,K) ∼= Hom(H,Hom(L,K)). Denote the homomorphisms associated
with ev : L ⊗ K −→ K by ϕ : L −→ Hom(H,K) resp. ψ : H −→ Hom(L,K). They
satisfy ϕ(a)(h) = ev(a⊗ h) = ψ(h)(a).

ev : L ⊗ K −→ K is left nondegenerate iff ϕ : L −→ Hom(H,K) is injective.
ev : L⊗K −→ K is right nondegenerate iff ψ : H −→ Hom(L,K) is injective.

Lemma 2.7.4. 1. The bilinear form ev : L⊗H −→ K satisfies (2.4) if and only
if ϕ : L −→ Hom(H,K) is a homomorphism of algebras.

2. The bilinear form ev : L ⊗ H −→ K satisfies (2.5) if and only if ψ : H
−→ Hom(L,K) is a homomorphism of algebras.
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Proof. ev : L⊗H −→ K satisfies the right equation of (4) iff ϕ(ab)(h) = 〈ab, h〉 =
〈a⊗ b,

∑
h(1)⊗h(2)〉 =

∑
〈a, h(1)〉〈b, h(2)〉 =

∑
ϕ(a)(h(1))ϕ(b)(h(2)) = (ϕ(a) ∗ϕ(b))(h)

by the definition of the algebra structure on Hom(H,K).
ev : L⊗H −→ K satisfies the left equation of (4) iff ϕ(1)(h) = 〈1, h〉 = ε(h).
The second part of the Lemma follows by symmetry. �

Example 2.7.5. There is a weak duality between the quantum groups SLq(2)
and Uq(sl(2)). (Kassel: Chapter VII.4).

Proposition 2.7.6. Let ev : L⊗H −→ K be a weak duality of Hopf algebras. Let
I := Ker(ϕ : L −→ Hom(H,K)) and J := Ker(ψ : H −→ Hom(L,K)). Let L := L/I
and H := H/J . Then L and H are Hopf algebras and the induced bilinear form
ev : L⊗H −→ K is a duality.

Proof. First observe that I and J are two sided ideals hence L and H are
algebras. Then ev : L ⊗H −→ K can be factored through ev : L ⊗H −→ K and the
equations (4) and (5) are still satisfied for the residue classes.

The ideals I and J are biideals. In fact, let x ∈ I then 〈∆(x), a⊗ b〉 = 〈x, ab〉 = 0
hence ∆(x) ∈ Ker(ϕ ⊗ ϕ : L ⊗ L −→ Hom(H ⊗ H,K) = I ⊗ L + L ⊗ I (the last
equality is an easy exercise in linear algebra) and ε(x) = 〈x, 1〉 = 0. Hence as in the
proof of Theorem 2.6.3 we get that L = L/I and H = H/J are bialgebras. Since
〈S(x), a〉 = 〈x, S(a)〉 = 0 we have an induced homomorphism S : L −→ L. The
identities satisfied in L hold also for the residue classes in L so that L and similarly
H become Hopf algebras. Finally we have by definition of I that 〈x, a〉 = 〈x, a〉 = 0
for all a ∈ H iff a ∈ I or a = 0. Thus the bilinear form ev : L ⊗ H −→ K defines a
duality. �

Problem 2.7.15. (in Linear Algebra)

(1) For U ⊆ V define U⊥ := {f ∈ V ∗|f(U) = 0}. For Z ⊆ V ∗ define Z⊥ := {v ∈
V |Z(v) = 0}. Show that the following hold:
(a) U ⊆ V =⇒ U = U⊥⊥;
(b) Z ⊆ V ∗ and dimZ <∞ =⇒ Z = Z⊥⊥;
(c) {U ⊆ V | dimV/U < ∞} ∼= {Z ⊆ V ∗| dimZ < ∞} under the maps

U 7→ U⊥ and Z 7→ Z⊥.
(2) Let V = ⊕∞

i=1Kxi be an infinite-dimensional vector space. Find an element
g ∈ (V ⊗ V )∗ that is not in V ∗ ⊗ V ∗ (⊆ (V ⊗ V )∗).

Definition 2.7.7. Let A be an algebra. We define Ao := {f ∈ A∗|∃ ideal AIA ⊆
A : dim(A/I) <∞ and f(I) = 0}.

Lemma 2.7.8. Let A be an algebra and f ∈ A∗. The following are equivalent:

(1) f ∈ Ao;
(2) there exists IA ⊆ A such that dimA/I <∞ and f(I) = 0;
(3) A · f ⊆ A HomK(.AA, .K) is finite dimensional;
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(4) A · f · A is finite dimensional;
(5) ∇∗(f) ∈ A∗ ⊗ A∗.

Proof. 1. =⇒ 2. and 4. =⇒ 3. are trivial.
2. =⇒ 3. Let IA ⊆ A with f(I) = 0 and dimA/I <∞. Write A∗ ⊗ A −→ K as

〈g, a〉. Then 〈af, i〉 = 〈f, ia〉 = 0 hence Af ⊂ I⊥ and dimAf <∞.
3. =⇒ 2. Let dimAf <∞. Then IA := (Af)⊥ is an ideal of finite codimension

in A and f(I) = 0 holds.
2. =⇒ 1. Let IA ⊂ A with dimA/IA < ∞ and f(I) = 0 be given. Then

right multiplication induces ϕ : A −→ HomK(A/I., A/I.) and dim EndK(A/I) < ∞.
Thus J = Ker(ϕ) ⊆ A is a two sided ideal of finite codimension and J ⊂ I (since
ϕ(j)(1̄) = 0 = 1̄ · j = j̄ implies j ∈ I). Furthermore we have f(J) ⊆ f(I) = 0.

1. =⇒ 4. 〈afb, i〉 = 〈f, bia〉 = 0 implies A · f · A ⊆ AI
⊥
A hence dimAfA <∞.

3. =⇒ 5. We observe that ∇∗(f) = f∇ ∈ (A ⊗ A)∗. We want to show that
∇∗(f) ∈ A∗ ⊗ A∗. Let g1, . . . , gn be a basis of Af . Then there exist h1, . . . , hn ∈ A∗

such that bf =
∑
hi(b)gi. Let a, b ∈ A. Then 〈∇∗(f), a ⊗ b〉 = 〈f, ab〉 = 〈bf, a〉 =∑

hi(b)gi(a) = 〈
∑
gi ⊗ hi, a⊗ b〉 so that ∇∗(f) =

∑
gi ⊗ hi ∈ A∗ ⊗ A∗.

5. =⇒ 3. Let ∇∗(f) =
∑
gi ⊗ hi ∈ A∗ ⊗ A∗. Then bf =

∑
hi(b)gi for all b ∈ A

as before. Thus Af is generated by the g1, . . . , gn. �

Proposition 2.7.9. Let (A,m, u) be an algebra. Then we have m∗(Ao) ⊆ Ao⊗Ao.
Furthermore (Ao,∆, ε) is a coalgebra with ∆ = m∗ and ε = u∗.

Proof. Let f ∈ Ao and let g1, . . . , gn be a basis for Af . Then we have m∗(f) =∑
gi⊗hi for suitable hi ∈ A∗ as in the proof of the previous proposition. Since gi ∈ Af

we get Agi ⊆ Af and dim(Agi) <∞ and hence gi ∈ Ao. Choose a1, . . . , an ∈ A such
that gi(aj) = δij. Then (faj)(a) = f(aja) = 〈m∗(f), aj ⊗ a〉 =

∑
gi(aj)hi(a) = hj(a)

implies faj = hj ∈ fA. Observe that dim(fA) < ∞ hence dim(hjA) < ∞, so that
hj ∈ Ao. This proves m∗(f) ∈ Ao ⊗ Ao.

One checks easily that counit law and coassociativity hold. �

Theorem 2.7.10. (The Sweedler dual:) Let (B,m, u,∆, ε) be a bialgebra.
Then (Bo,∆∗, ε∗,m∗, u∗) again is a bialgebra. If B = H is a Hopf algebra with
antipode S, then S∗ is an antipode for Bo = Ho.

Proof. We know that (B∗,∆∗, ε∗) is an algebra and that (Bo,m∗, u∗) is a coal-
gebra. We show now that Bo ⊆ B∗ is a subalgebra. Let f, g ∈ Bo with dim(Bf) <
∞ and dim(Bg) < ∞. Let a ∈ B. Then we have (a(fg))(b) = (fg)(ba) =∑
f(b(1)a(1))g(b(2)a(2)) =

∑
(a(1)f)(b(1))(a(2)g)(b(2)) =

∑
((a(1)f)(a(2)g))(b) hence

a(fg) =
∑

(a(1)f)(a(2)g) ∈ (Bf)(Bg). Since dim(Bf)(Bg) < ∞ we have
dim(B(fg)) < ∞ so that fg ∈ Bo. Furthermore we have ε ∈ Bo, since Ker(ε)
has codimension 1. Thus Bo ⊆ B∗ is a subalgebra. It is now easy to see that Bo is a
bialgebra.

Now let S be the antipode of H. We show S∗(Ho) ⊆ Ho. Let a ∈ H, f ∈ Ho.
Then 〈aS∗(f), b〉 = 〈S∗(f), ba〉 = 〈f, S(ba)〉 = 〈f, S(a)S(b)〉 = 〈fS(a), S(b)〉 =
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〈S∗(fS(a)), b〉. This implies aS∗(f) = S∗(fS(a)) and HS∗(f) = S∗(fS(H)) ⊆
S∗(fH). Since f ∈ Ho we get dim(fH) < ∞ so that dim(S∗(fH)) < ∞ and
dim(HS∗(f)) <∞. This shows S∗(f) ∈ Ho. The rest of the proof is now trivial. �

Definition 2.7.11. Let G = K-cAlg (H, -) be an affine group and R ∈ K-cAlg .
We define G⊗KR := G|

R-cAlg to be the restriction to commutative R-algebras. The

functor G⊗K R is represented by H ⊗R ∈ R-cAlg :

G|
R-cAlg (A) = K-cAlg (H,A) ∼= R-cAlg (H ⊗R,A).

Theorem 2.7.12. (The Cartier dual:) Let H be a finite dimensional commu-
tative cocommutative Hopf algebra. Let G = K-cAlg (H, -) be the associated affine
group and let D(G) := K-cAlg (H∗, -) be the dual group. Then we have

D(G) = Gr(G,Gm)

where Gr(G,Gm)(R) = Gr(G ⊗K R,Gm ⊗K R) is the set of group (-functor) homo-
morphisms and Gm is the multiplicative group.

Proof. We have Gr(G,Gm)(R) = Gr(G⊗KR,GM⊗KR) ∼= R-Hopf-Alg(K[t, t−1]⊗
R,H⊗R) ∼= R-Hopf-Alg(R[t, t−1], H⊗R) ∼= {x ∈ U(H⊗R)|∆(x) = x⊗x, ε(x) = 1},
since ∆(x) = x⊗ x and ε(x) = 1 imply xS(x) = ε(x) = 1.

Consider x ∈ HomR((H ⊗ R)∗, R) = HomR(H∗ ⊗ R,R). Then ∆(x) = x ⊗ x iff
x(v∗w∗) = 〈x, v∗w∗〉 = 〈∆(x), v∗ ⊗ w∗〉 = x(v∗)x(w∗) and ε(x) = 1 iff 〈x, ε〉 = 1.
Hence x ∈ R-cAlg ((H ⊗R)∗, R) ∼= K-cAlg (H∗, R) = D(G)(R). �





CHAPTER 3

Representation Theory, Reconstruction and Tannaka Duality

Introduction

One of the most interesting properties of quantum groups is their representation
theory. It has deep applications in theoretical physics. The mathematical side has to
distinguish between the representation theory of quantum groups and the represen-
tation theory of Hopf algebras. In both cases the particular structure allows to form
tensor products of representations such that the category of representations becomes
a monoidal (or tensor) category.

The problem we want to study in this chapter is, how much structure of the
quantum group or Hopf algebra can be found in the category of representations. We
will show that a quantum monoid can be uniquely reconstructed (up to isomorphism)
from its representations. The additional structure given by the antipode is itimitely
connected with a certain duality of representations. We will also generalize this
process of reconstruction.

On the other hand we will show that the process of reconstruction can also be used
to obtain the Tambara construction of the universal quantum monoid of a noncom-
mutative geometrical space (from chapter 1.). Thus we will get another perspective
for this theorem.

At the end of the chapter you should

• understand representations of Hopf algebras and of quantum groups,
• know the definition and first fundamental properties of monoidal or tensor

categories,
• be familiar with the monoidal structure on the category of representations

of Hopf algebras and of quantum groups,
• understand why the category of representations contains the full information

about the quantum group resp. the Hopf algebra (Theorem of Tannaka-
Krein),

• know the process of reconstruction and examples of bialgebras reconstructed
from certain diagrams of finite dimensional vector spaces,

• understand better the Tambara construction of a universal algebra for a finite
dimensional algebra.

67
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1. Representations of Hopf Algebras

Let A be an algebra over a commutative ring K. Let A-Mod be the category of
A-modules. An A-module is also called a representation of A.

Observe that the action A⊗M −→M satisfying the module axioms and an algebra
homomorphism A −→ End(M) are equivalent descriptions of an A-module structure
on the K-module M .

The functor U : A-Mod −→ K-Mod with U(AM) = M and U(f) = f is called the
forgetful functor or the underlying functor.

If B is a bialgebra then a representation of B is also defined to be a B-module. It
will turn out that the property of being a bialgebra leads to the possibility of building
tensor products of representations in a canonical way.

Let C be a coalgebra over a commutative ring K. Let C-Comod be the category
of C-comodules. A C-comodule is also called a corepresentation of C.

The functor U : C-Comod −→ K-Mod with U(CM) = M and U(f) = f is called
the forgetful functor or the underlying functor.

If B is a bialgebra then a corepresentation of B is also defined to be a B-comodule.
It will turn out that the property of being a bialgebra leads to the possibility of
building tensor products of corepresentations in a canonical way.

Usually representations of a ring are considered to be modules over the given
ring. The role of comodules certainly arises in the context of coalgebras. But it is
not quite clear what the good definition of a representation of a quantum group or
its representing Hopf algebra is.

For this purpose consider representations M of an ordinary group G. Assume
for the simplicity of the argument that G is finite. Representations of G are vector
spaces together with a group action G × M −→ M . Equivalently they are vector
spaces together with a group homomorphism G −→ Aut(M) or modules over the
group algebra: K[G]⊗M −→M . In the situation of quantum groups we consider the
representing Hopf algebra H as algebra of functions on the quantum group G.

Then the algebra of functions on G is the Hopf algebra KG, the dual of the group
algebra K[G]. An easy exercise shows that the module structure K[G] ⊗M −→ M
translates to the structure of a comoduleM −→ KG⊗M and conversely. (Observe that
G is finite.) So we should define representations of a quantum group as comodules
over the representing Hopf algebra.

Problem 3.1.16. Let G be a finite group and KG := K[G]∗ the dual of the group
algebra. Show that KG is a Hopf algebra and that each module structure K[G]⊗M
−→M translates to the structure of a comodule M −→ KG⊗M and conversely. Show
that this defines a monoidal equivalence of categories.

Describe the group valued functor K-cAlg (KG,−) in terms of sets and their group
structure.
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Definition 3.1.1. Let G be a quantum group with representing Hopf algebra H.
A representation of G is a comodule over the representing Hopf algebra H.

From this definition we obtain immediately that we may form tensor products of
representations of quantum groups since the representing algebra is a bialgebra.

We come now to the canonical construction of tensor products of (co-)represen-
tations.

Lemma 3.1.2. Let B be a bialgebra. Let M,N ∈ B-Mod be two B-modules.
Then M⊗N is a B-module by the action b(m⊗n) =

∑
b(1)m⊗b(2)n. If f : M −→M ′

and g : N −→ N ′ are homomorphisms of B-modules in B-Mod then f ⊗ g : M ⊗ N
−→M ′ ⊗N ′ is a homomorphism of B-modules.

Proof. We have homomorphisms of K-algebras α : B −→ End(M) and β : B −→
End(N) defining the B-module structure on M and N . Thus we get a homomorphism
of algebras can(α⊗β)∆ : B −→ B⊗B −→ End(M)⊗End(N) −→ End(M ⊗N). Thus
M⊗N is a B-module. The structure is b(m⊗n) = can(α⊗β)(

∑
b(1))⊗b(2))(m⊗n) =

can(
∑
α(b(1))⊗ β(b(2)))(m⊗ n) =

∑
α(b(1))(m)⊗ β(b(2))(n) =

∑
b(1)m⊗ b(2)n.

Furthermore we have 1(m⊗ n) = 1m⊗ 1m = m⊗ n.
If f, g are homomorphisms of B-modules, then we have (f ⊗ g)(b(m ⊗ n)) =

(f ⊗ g)(
∑
b(1)m⊗ b(2)n) =

∑
f(b(1)m)⊗ g(b(2)n) =

∑
b(1)f(m)⊗ b(2)g(n) = b(f(m)⊗

g(n)) = b(f ⊗ g)(m⊗ n). Thus f ⊗ g is a homomorphism of B-modules. �

Corollary 3.1.3. Let B be a bialgebra. Then ⊗ : B-Mod × B-Mod −→ B-Mod
with ⊗(M,N) = M ⊗N and ⊗(f, g) = f ⊗ g is a functor.

Proof. The following are obvious from the ordinary properties of the tensor
product over K. 1M⊗1N = 1M⊗N and (f⊗g)(f ′⊗g′) = ff ′⊗gg′ forM,N, f, f ′, g, g′ ∈
B-Mod . �

Lemma 3.1.4. Let B be a bialgebra. Let M,N ∈ B-Comod be two B-comodules.
Then M⊗N is a B-comodule by the coaction δM⊗N(m⊗n) =

∑
m(1)n(1)⊗m(M)⊗n(N).

If f : M −→M ′ and g : N −→ N ′ are homomorphisms of B-comodules in B-Comod
then f ⊗ g : M ⊗N −→M ′ ⊗N ′ is a homomorphism of B-comodules.

Proof. The coaction on M ⊗N may also be described by (∇B ⊗ 1M ⊗ 1N)(1B ⊗
τ ⊗ 1N)(δM ⊗ δN) : M ⊗N −→ B ⊗M ⊗B ⊗N −→ B ⊗B ⊗M ⊗N −→ B ⊗M ⊗N.
Although a diagrammatic proof of the coassociativity of the coaction and the law of
the counit is quite involved it allows generalization so we give it here.

Consider the next diagram.
Square (1) commutes since M and N are comodules.
Squares (2) and (3) commute since τ : M ⊗N −→ N ⊗M for K-modules M and

N is a natural transformation.
Square (4) represents an interesting property of τ namely

(1⊗ 1⊗ τ)(τB⊗M,B ⊗ 1) = (1⊗ 1⊗ τ)(τ ⊗ 1⊗ 1)(1⊗ τ ⊗ 1) =
(τ ⊗ 1⊗ 1)(1⊗ 1⊗ τ)(1⊗ τ ⊗ 1) = (τ ⊗ 1⊗ 1)(1⊗ τM,B⊗B)
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that uses the fact that (1 ⊗ g)(f ⊗ 1) = (f ⊗ 1)(1 ⊗ g) holds and that τB⊗M,B =
(τ ⊗ 1)(1⊗ τ) and τM,B⊗B = (1⊗ τ)(τ ⊗ 1).

Square (5) and (6) commute by the properties of the tensor product.
Square (7) commutes since B is a bialgebra.

B ⊗M⊗
B ⊗NM ⊗N -δ⊗δ B ⊗B⊗

M ⊗N
-1⊗τ⊗1

B ⊗M ⊗N-∇⊗1⊗1

?

δ⊗δ

?

∆⊗1⊗∆⊗1

?

∆⊗∆⊗1⊗1

?

∆⊗1⊗1

B ⊗M ⊗ B ⊗B ⊗M⊗
B ⊗N B ⊗B ⊗N

-1⊗δ⊗1⊗δ B ⊗B ⊗B⊗
B ⊗M ⊗N

-12⊗τM,B⊗B⊗1

?

1⊗τ⊗1

?

1⊗τB⊗M,B⊗1⊗1

?

1⊗τ⊗1⊗1⊗1

B ⊗B ⊗ B ⊗B ⊗B⊗
M ⊗N M ⊗B ⊗N

-1⊗1⊗δ⊗δ B ⊗B ⊗B⊗
B ⊗M ⊗N

-1⊗1⊗1⊗τ⊗1

?

∇⊗1⊗1

?

∇⊗1⊗1⊗1⊗1

?

∇⊗1⊗1⊗1⊗1

B ⊗B⊗
M ⊗B ⊗NB ⊗M ⊗N -1⊗δ⊗δ B ⊗B⊗

B ⊗M ⊗N
-1⊗1⊗τ⊗1

B ⊗B ⊗M ⊗N-1⊗∇⊗1⊗1

(1) (2)

(3) (4)

(5) (6)

(7)

The law of the counit is
B ⊗M⊗
B ⊗NM ⊗N -δ⊗δ B ⊗B⊗

M ⊗N
-1⊗τ⊗1

B ⊗M ⊗N-∇⊗1⊗1

1

HHH
HHH

HHHj
M ⊗N M ⊗N-1 M ⊗N-1

?

ε⊗1⊗ε⊗1

?

ε⊗ε⊗1⊗1

?

ε⊗1⊗1

where the last square commutes since ε is a homomorphism of algebras.
Now let f and g be homomorphisms of B-comodules. Then the diagram

B ⊗M⊗
B ⊗NM ⊗N -δ⊗δ B ⊗B⊗

M ⊗N
-1⊗τ⊗1

B ⊗M ⊗N-∇⊗1⊗1

?

f⊗g
?

1⊗f⊗1⊗g
?

1⊗1⊗f⊗g
?

1⊗f⊗g

B ⊗M ′⊗
B ⊗N ′M ′ ⊗N ′ -δ⊗δ B ⊗B⊗

M ′ ⊗N ′-1⊗τ⊗1
B ⊗M ′ ⊗N ′-∇⊗1⊗1

commutes. Thus f ⊗ g is a homomorphism of B-comodules. �

Corollary 3.1.5. Let B be a bialgebra. Then ⊗ : B-Comod × B-Comod −→
B-Comod with ⊗(M,N) = M ⊗N and ⊗(f, g) = f ⊗ g is a functor.

Proposition 3.1.6. Let B be a bialgebra. Then the tensor product ⊗ : B-Mod ×
B-Mod −→ B-Mod satisfies the following properties:
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(1) The associativity isomorphism α : (M1⊗M2)⊗M3 −→M1⊗ (M2⊗M3) with
α((m⊗ n)⊗ p) = m⊗ (n⊗ p) is a natural transformation from the functor
⊗ ◦ (⊗× Id) to the functor ⊗ ◦ (Id×⊗) in the variables M1, M2, and M3 in
B-Mod .

(2) The counit isomorphisms λ : K⊗M −→M with λ(κ⊗m) = κm and ρ : M⊗K
−→M with ρ(m⊗κ) = κm are natural transformations in the variable M in
B-Mod from the functor K⊗ - resp. -⊗K to the identity functor Id.

(3) The following diagrams of natural transformations are commutative

((M1 ⊗M2)⊗M3)⊗M4 (M1 ⊗ (M2 ⊗M3))⊗M4
-

α(M1,M2,M3)⊗1

M1 ⊗ ((M2 ⊗M3)⊗M4)-
α(M1,M2⊗M3,M4)

?

α(M1⊗M2,M3,M4)

?

1⊗α(M2,M3,M4)

(M1 ⊗M2)⊗ (M3 ⊗M4) M1 ⊗ (M2 ⊗ (M3 ⊗M4))-α(M1,M2,M3⊗M4)

(M1 ⊗K)⊗M2 M1 ⊗ (K⊗M2)-α(M1,K,M2)

M1 ⊗M2

ρ(M1)⊗1

Q
Q

Q
QQs

1⊗λ(M2)

�
�

�
��+

Proof. The homomorphisms α, λ, and ρ are already defined in the category
K-Mod and satisfy the claimed properties. So we have to show, that these are
homomorphisms in B-Mod and that K is a B-module. K is a B-module by ε⊗ 1K :
B⊗K −→ K. The easy verification uses the coassociativity and the counital property
of B. �

Similarly we get

Proposition 3.1.7. Let B be a bialgebra. Then the tensor product

⊗ : B-Comod ×B-Comod −→ B-Comod

satisfies the following properties:

(1) The associativity isomorphism α : (M1⊗M2)⊗M3 −→M1⊗ (M2⊗M3) with
α((m⊗ n)⊗ p) = m⊗ (n⊗ p) is a natural transformation from the functor
⊗ ◦ (⊗× Id) to the functor ⊗ ◦ (Id×⊗) in the variables M1, M2, and M3 in
B-Comod .

(2) The counit isomorphisms λ : K⊗M −→M with λ(κ⊗m) = κm and ρ : M⊗K
−→M with ρ(m⊗κ) = κm are natural transformations in the variable M in
B-Comod from the functor K⊗ - resp. -⊗K to the identity functor Id.
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(3) The following diagrams of natural transformations are commutative

((M1 ⊗M2)⊗M3)⊗M4 (M1 ⊗ (M2 ⊗M3))⊗M4
-

α(M1,M2,M3)⊗1

M1 ⊗ ((M2 ⊗M3)⊗M4)-
α(M1,M2⊗M3,M4)

?

α(M1⊗M2,M3,M4)

?

1⊗α(M2,M3,M4)

(M1 ⊗M2)⊗ (M3 ⊗M4) M1 ⊗ (M2 ⊗ (M3 ⊗M4))-α(M1,M2,M3⊗M4)

(M1 ⊗K)⊗M2 M1 ⊗ (K⊗M2)-α(M1,K,M2)

M1 ⊗M2

ρ(M1)⊗1

Q
Q

Q
QQs

1⊗λ(M2)

�
�

�
��+

Remark 3.1.8. We now get some simple properties of the underlying functors
U : B-Mod −→ K-Mod resp. U : B-Comod −→ K-Mod that are easily verified.

U(M ⊗N) = U(M)⊗ U(N),
U(f ⊗ g) = f ⊗ g,
U(K) = K,
U(α) = α, U(λ) = λ, U(ρ) = ρ.

Problem 3.1.17. We have seen that in representation theory and in corepresen-
tation theory of quantum groups such as KG, U(g), SLq(2), Uq(sl(2)) the ordinary
tensor product (in K-Mod ) of two (co-)reprensentations is in a canonical way again
a (co-)reprensentation. For two H-modules M and N describe the module structure
on M ⊗N if

(1) H = KG: g(m⊗ n) = . . . for g ∈ G;
(2) H = U(g): g(m⊗ n) = . . . for g ∈ g;
(3) H = Uq(sl(2)):

(a) E(m⊗ n) = . . .,
(b) F (m⊗ n) = . . .,
(c) K(m⊗ n) = . . .

for the elements E,F,K ∈ Uq(sl(2)).
For two KG-modules M and N the structure is g(m ⊗ n) = gm ⊗ gn for g ∈ G.

For U(g)-modules it is g(m ⊗ n) = gm ⊗ n + m ⊗ gn for g ∈ g. For Uq(sl(2))-
modules it is E(m⊗ n) = m⊗En+Em⊗Kn, F (m⊗ n) = K−1m⊗ Fn+ Fm⊗ n,
K(m⊗ n) = Km⊗Kn.

Remark 3.1.9. Let A and B be algebras over a commutative ring K. Let f : A
−→ B be a homomorphism of algebras. Then we have a functor Uf : B-Mod −→
A-Mod with Uf (BM) = AM and Uf (g) = g where am := f(a)m for a ∈ A and
m ∈M . The functor Uf is also called forgetful or underlying functor.

The action of A on a B-module M can also be seen as the homomorphism A −→ B
−→ End(M).
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We denote the underlying functors previously discussed by

UA : A-Mod −→ K-Mod resp. UB : B-Mod −→ K-Mod .

Proposition 3.1.10. Let f : B −→ C be a homomorphism of bialgebras. Then
Uf satisfies the following properties:

Uf (M ⊗N) = Uf (M)⊗ Uf (N),
Uf (g ⊗ h) = g ⊗ h,
Uf (K) = K,
Uf (α) = α, Uf (λ) = λ, Uf (ρ) = ρ,
UBUf (M) = UC(M),
UBUf (g) = UC(g).

Proof. This is clear since the underlying K-modules and the K-linear maps stay
unchanged. The only thing to check is that Uf generates the correct B-module
structure on the tensor product. For Uf (M ⊗ N) = M ⊗ N we have b(m ⊗ n) =
f(b)(m⊗ n) =

∑
f(b)(1)m⊗ f(b)(2)n =

∑
f(b(1))m⊗ f(b(2))n =

∑
b(1)m⊗ b(2)n. �

Remark 3.1.11. Let C and D be coalgebras over a commutative ring K. Let
f : C −→ D be a homomorphism of coalgebras. Then we have a functor Uf : C-Comod
−→ D-Comod with Uf (CM) = DM and Uf (g) = g where δD = (f⊗1)δC : M −→ C⊗M
−→ D ⊗M . Again the functor Uf is called forgetful or underlying functor.

We denote the underlying functors previously discussed by

UC : C-Comod −→ K-Mod resp. UD : D-Comod −→ K-Mod .

Proposition 3.1.12. Let f : B −→ C be a homomorphism of bialgebras. Then
Uf : C-Comod −→ D-Comod satisfies the following properties:

Uf (M ⊗N) = Uf (M)⊗ Uf (N),
Uf (g ⊗ h) = g ⊗ h,
Uf (K) = K,
Uf (α) = α, Uf (λ) = λ, Uf (ρ) = ρ,
UCUf (M) = UB(M),
UCUf (g) = UB(g).

Proof. We leave the proof to the reader. �

Proposition 3.1.13. Let H be a Hopf algebra. Let M and N be be H-modules.
Then Hom(M,N), the set K-linear maps from M to N , becomes an H-module by
(hf)(m) =

∑
h(1)f(S(h(2)m). This structure makes

Hom : H-Mod ×H-Mod −→ H-Mod

a functor contravariant in the first variable and covariant in the second variable.

Proof. The main part to be proved is that the action H ⊗ Hom(M,N) −→
Hom(M,N) satisfies the associativity law. Let f ∈ Hom(M,N), h, k ∈ H, and
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m ∈M . Then ((hk)f)(m) =
∑

(hk)(1)f(S((hk)(2)) =
∑
h(1)k(1)f(S(k(2))S(h(2))m) =∑

h(1)(kf)(S(h(2))m) = (h(kf))(m).
We leave the proof of the other properties, in particular the functorial properties,

to the reader. �

Corollary 3.1.14. Let M be an H-module. Then the dual K-module M∗ =
Hom(M,K) becomes an H-module by (hf)(m) = f(S(h)m).

Proof. The space K is an H-module via ε : H −→ K. Hence we have (hf)(m) =∑
h(1)f(S(h(2)m) =

∑
ε(h(1))f(S(h(2)m) = f(S(h)m). �

2. Monoidal Categories

For our further investigations we need a generalized version of the tensor product
that we are going to introduce in this section. This will give us the possibility to
study more general versions of the notion of algebras and representations.

Definition 3.2.1. A monoidal category (or tensor category) consists of
a category C,
a covariant functor ⊗ : C × C −→ C, called the tensor product,
an object I ∈ C, called the unit,
natural isomorphisms

α(A,B,C) : (A⊗B)⊗ C −→ A⊗ (B ⊗ C),
λ(A) : I ⊗ A −→ A,
ρ(A) : A⊗ I −→ A,

called associativity, left unit and right unit, such that the following diagrams commute:

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D-α(A,B,C)⊗1
A⊗ ((B ⊗ C)⊗D)-α(A,B⊗C,D)

?

α(A⊗B,C,D)

?

1⊗α(B,C,D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))-α(A,B,C⊗D)

(A⊗ I)⊗B A⊗ (I ⊗B)-α(A,I,B)

A⊗B

ρ(A)⊗1

Q
Q

Q
QQs

1⊗λ(B)

�
�

�
��+

These diagrams are called coherence diagrams or constraints.
A monoidal category is called a strict monoidal category, if the morphisms α, λ, ρ

are the identity morphisms.

Remark 3.2.2. We define A1 ⊗ . . .⊗ An := (. . . (A1 ⊗ A2)⊗ . . .)⊗ An.
There is an important theorem of S. MacLane that says that all diagrams whose

morphisms are constructed by using copies of α, λ, ρ, identities, inverses, tensor
products and compositions of such commute. We will only prove this theorem for
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some very special cases (3.2.4). It implies that each monoidal category can be replaced
by (is monoidally equivalent to) a strict monoidal category. That means that we may
omit in diagrams the morphisms α, λ, ρ or replace them by identities. In particular
there is only one automorphism of A1 ⊗ . . . ⊗ An formed by coherence morphisms
namely the identity.

Remark 3.2.3. For each monoidal category C we can construct the monoidal
category Csymm symmetric to C that coincides with C as a category and has tensor
product A�B := B ⊗ A and the coherence morphisms

α(C,B,A)−1 : (A�B) � C −→ A� (B � C),
ρ(A) : I � A −→ A,
λ(A) : A� I −→ A.

Then the coherence diagrams are commutative again, so that Csymm is a monoidal
category.

Lemma 3.2.4. Let C be a monoidal category. Then the following diagrams com-
mute

(I ⊗ A)⊗B I ⊗ (A⊗B)-α

A⊗B

λ(A)⊗1B

@
@

@@R

λ(A⊗B)
�

�
��	

(A⊗B)⊗ I A⊗ (B ⊗ I)-α

A⊗B

ρ(A⊗B)
@

@
@@R

1A⊗ρ(B)
�

�
��	

and we have λ(I) = ρ(I).

Proof. First we observe that the identity functor IdC and the functor I ⊗ - are
isomorphic by the natural isomorphism λ. Thus we have I ⊗ f = I ⊗ g =⇒ f = g.
In the following diagram

((I ⊗ I)⊗ A)⊗B (I ⊗ (I ⊗ A))⊗B-α⊗1
I ⊗ ((I ⊗ A)⊗B)-α

(ρ⊗1)⊗1

Q
Q

Q
QQs

(1⊗λ)⊗1

�
�

�
��+

1⊗(λ⊗1)

�
�

�
��+

(I ⊗ A)⊗B I ⊗ (A⊗B)-α

?

α

?

1⊗α
?

α

?

1

I ⊗ (A⊗B) I ⊗ (A⊗B)-1

(I ⊗ I)⊗ (A⊗B) I ⊗ (I ⊗ (A⊗B))-α

ρ⊗(1⊗1)

�
�

�
��3

1⊗λ
Q

Q
Q

QQs

all subdiagrams commute except for the right hand trapezoid. Since all morphisms are
isomorphisms the right hand trapezoid must commute also. Hence the first diagram
of the Lemma commutes.
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In a similar way one shows the commutativity of the second diagram.
Furthermore the following diagram commutes

I ⊗ (I ⊗ I) (I ⊗ I)⊗ I� α I ⊗ (I ⊗ I)-α

I ⊗ I

1⊗ρ
@

@
@@R

ρ
�

�
��	

I ⊗ I

ρ⊗1
@

@
@@R

1⊗λ
�

�
��	

I

ρ
@

@
@@R

ρ
�

�
��	

Here the left hand triangle commutes by the previous property. The commuta-
tivity of the right hand diagram is given by the axiom. The lower square commutes
since ρ is a natural transformation. In particular ρ(1 ⊗ ρ) = ρ(1 ⊗ λ). Since ρ is an
isomorphism and I ⊗ - ∼= IdC we get ρ = λ. �

Problem 3.2.18. For morphisms f : I −→ M and g : I −→ N in a monoidal
category we define (f ⊗ 1 : N −→ M ⊗ N) := (f ⊗ 1I)ρ(I)

−1 and (1 ⊗ g : M
−→M ⊗N) := (1⊗ g)λ(I)−1. Show that the diagram

N M ⊗N-
f⊗1

I M-f

?

g

?

1⊗g

commutes.

We continue with a series of examples of monoidal categories.

Example 3.2.5. (1) Let R be an arbitrary ring. The category R-Mod -R of R-
R-bimodules with the tensor product M ⊗R N is a monoidal category. In particular
the K-modules form a monoidal category. This is our most important example of a
monoidal category.

(2) Let B be a bialgebra and B-Mod be the category of left B-modules. We
define the structure of a B-module on the tensor product M ⊗N = M ⊗K N by

B ⊗M ⊗N
∆⊗1M⊗1N−→ B ⊗B ⊗M ⊗N

1B⊗τ⊗1N−→ B ⊗M ⊗B ⊗N
ρM⊗ρN−→ M ⊗N

as in the previous section. So B-Mod is a monoidal category by 3.1.6
(3) Let B be a bialgebra and B-Comod be the category of B-comodules. The

tensor product M ⊗N = M ⊗K N carries the structure of a B-comodule by

M ⊗N
δM⊗δN−→ B ⊗M ⊗B ⊗N

1B⊗τ⊗1N−→ B ⊗B ⊗M ⊗N
∇⊗1M⊗1N−→ B ⊗M ⊗N.

as in the previous section. So B-Comod is a monoidal category by 3.1.7
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Definition 3.2.6. Let G be a set. The category of G-families of vector spaces
MG =

∏
g∈G Vec has families of vector spaces (Vg|g ∈ G) as objects and families

of linear maps (fg : Vg −→ Wg|g ∈ G) as morphisms. The composition is (fg|g ∈
G) ◦ (hg|g ∈ G) = (fg ◦ hg|g ∈ G).

Lemma 3.2.7. Let G be a monoid. Then MG is a monoidal category with the
tensor product

(Vg|g ∈ G)⊗ (Wg|g ∈ G) := (
⊕

h,k∈G,hk=g

Vh ⊗Wk|g ∈ G).

Proof. This is an easy exercise. �

Problem 3.2.19. Let G be a monoid. Show that MG is a monoidal category.
Where do unit and associativity laws of G enter the proof?

Definition 3.2.8. Let G be a set. A vector space V together with a family of
subspaces (Vg ⊆ V |g ∈ G) is called G-graded, if V = ⊕g∈GVg holds.

Let (V, (Vg|g ∈ G)) and (W, (Wg|g ∈ G)) be G-graded vector spaces. A linear map
f : V −→ W is called G-graded, if f(Vg) ⊆ Wg for all g ∈ G.

The G-graded vector spaces and G-graded linear maps form the category M[G] of
G-graded vector spaces.

Lemma 3.2.9. Let G be a monoid. Then M[G] is a monoidal category with the
tensor product V ⊗W , where the subspaces (V ⊗W )g are defined by

(V ⊗W )g :=
∑

h,k∈G,hk=g

Vh ⊗Wk.

Proof. This is an easy exercise. �

Problem 3.2.20. Let G be a monoid. Show that M[G] is a monoidal category.

Definition 3.2.10. (1) A chain complex of K-modules

M = (. . .
∂3−→M2

∂2−→M1
∂1−→M0)

consists of a family of K-modules Mi and a family of homomorphisms ∂n : Mn −→
Mn−1 with ∂n−1∂n = 0. This chain complex is indexed by the monoid N0. One may
also consider more general chain complexes indexed by an arbitrary cyclic monoid.
Chain complexes indexed by N0 × N0 are called double complexes. So much more
general chain complexes may be considered. We restrict ourselves to chain complexes
over N0.

Let M and N be chain complexes. A homomorphism of chain complexes f : M
−→ N consists of a family of homomorphisms of K-modules fn : Mn −→ Nn such that
fn∂n+1 = ∂n+1fn+1 for all n ∈ N0.

The chain complexes with these homomorphisms form the category of chain com-
plexes K-Comp .
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If M and N are chain complexes then we form a new chain complex M ⊗ N
with (M ⊗ N)n := ⊕n

i=0Mi ⊗ Nn−i and ∂ : (M ⊗ N)n −→ (M ⊗ N)n−1 given by
∂(mi ⊗ nn−i) := (−1)i∂M(mi) ⊗ nn−i + mi ⊗ ∂(nn−i). This is often called the total
complex associated with the double complex of the tensor product of M and N . Then
it is easily checked that K-Comp is a monoidal category with this tensor product.

(2) A cochain complex has the form

M = (M0
∂0−→M1

∂1−→M2
∂2−→ . . .)

with ∂i+1∂i = 0. The cochain complexes form a monoidal category of cochain com-
plexes K-Cocomp .

Problem 3.2.21. Show that the cochain complexes form a monoidal category
K-Cocomp .

Definition 3.2.11. Let (C,⊗) and (D,⊗) be monoidal categories. A functor

F : C −→ D

together with a natural transformation

ξ(M,N) : F(M)⊗F(N) −→ F(M ⊗N)

and a morphism

ξ0 : ID −→ F(IC)

is called weakly monoidal if the following diagrams commute

(F(M)⊗F(N))⊗F(P ) F(M ⊗N)⊗F(P )-ξ⊗1 F((M ⊗N)⊗ P )-ξ

?

α

?

F(α)

F(M)⊗ (F(N)⊗F(P )) F(M)⊗F(N ⊗ P )-1⊗ξ F(M ⊗ (N ⊗ P ))-ξ

I ⊗F(M) F(I)⊗F(M)-ξ0⊗1 F(I ⊗M)-ξ

F(M)

λ

HHH
HHHHj

F(λ)

���
�����

F(M)⊗ I F(M)⊗F(I)-1⊗ξ0 F(M ⊗ I)-ξ

F(M).

ρ

HH
HHH

HHj

F(ρ)

��
���

���

If, in addition, the morphisms ξ and ξ0 are isomorphisms then the functor is called
a monoidal functor. The functor is called a strict monoidal functor if ξ and ξ0 are the
identity morphisms.
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A natural transformation ζ : F −→ F ′ between weakly monoidal functors is called
a monoidal natural transformation if the diagrams

F ′(M)⊗F ′(N) F ′(M ⊗N)-
ξ′

F(M)⊗F(N) F(M ⊗N)-ξ

?

ζ⊗ζ

?

ζ

F(I)

I

ξ0

�
�

���

F ′(I)

ξ′0
@

@
@@R ?

ζ

commute.
Let C and D be monoidal categories. A monoidal functor F : C −→ D is called

a monoidal equivalence if there exists a monoidal functor G : D −→ C and monoidal
natural isomorphisms ϕ : GF ∼= IdC and ψ : FG ∼= IdD.

Proposition 3.2.12. Let G be a monoid.

(1) The monoidal category MG of G-families of vector spaces is monoidally
equivalent to the monoidal category M[G] of G-graded vector spaces.

(2) The monoidal category M[G] of G-graded vector spaces is monoidally equiv-
alent to the monoidal category of KG-comodules Comod -KG.

Proof. We use the following constructions.
(1) For a G-family (Vg|g ∈ G) we construct a G-graded vector space V̂ := ⊕g∈GVg

(exterior direct sum) with the subspaces V̂g := Im(Vg) in the direct sum. Conversely
if (V, (Vg|g ∈ G)) is a G-graded vector space then (Vg|g ∈ G) is a G-family of vector
spaces. Similar constructions are used for morphisms. It is easy to see that the
categories MG and M[G] are equivalent monoidal categories.

(2) For a G-graded vector space (V, (Vg|g ∈ G)) we construct the KG-comodule V
with the structure map δ : V −→ V ⊗KG, δ(v) := v⊗g for all (homogeneous elements)
v ∈ Vg and for all g ∈ G. Conversely let (V, δ : V −→ V ⊗ KG) be a KG-comodule.
Then one constructs the vector space V with den graded (homogenous) components
Vg := {v ∈ V |δ(v) = v ⊗ g}. It is easy to verify, that this is an equivalence of
categories.

Since KG is a bialgebra, the category of KG-comodules is a monoidal category
by Proposition 3.1.7. One then checks that under the equivalence between M[G] and
Comod -KG tensor products are mapped into corresponding tensor products so that
we have a monoidal equivalence. �

Problem 3.2.22. Give a detailed proof of Proposition 3.2.12.

Example 3.2.13. The following is a bialgebra B = K〈x, y〉/I, where I is gener-
ated by x2, xy + yx. The diagonal is ∆(y) = y ⊗ y, ∆(x) = x ⊗ y + 1 ⊗ x and the
counit is ε(y) = 1, ε(x) = 0.
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Proposition 3.2.14. The monoidal category Comp -K of chain complexes over K
is monoidally equivalent to the category of B-comodules Comod -B with B as in the
preceding example.

Proof. We use the following construction. A chain complex M is mapped to
the B-comodule M = ⊕i∈NMi with the structure map δ : M −→ M ⊗ B, δ(m) :=∑
m ⊗ yi + ∂i(m) ⊗ xyi−1 for all m ∈ Mi and for all i ∈ N resp. δ(m) := m ⊗ 1 for

m ∈ M0. Conversely if M, δ : M −→ M ⊗ B is a B-comodule, then one associates
with it the vector spaces Mi := {m ∈M |∃m′ ∈M [δ(m) = m⊗ yi +m′ ⊗ xyi−1} and
the linear maps ∂i : Mi −→ Mi−1 with ∂i(m) := m′ for δ(m) = m ⊗ yi +m′ ⊗ xyi−1.
It is checked easily that this is an equivalence of categories. By Problem (41) this is
a monoidal equivalence. �

Problem 3.2.23. (1) Give a detailed proof that Comp -K and Comod -B with
B as in the preceding Proposition 3.2.14 are monoidally equivalent categories.

(You may use the following arguments:
Let M ∈ Comod -B. Define

Mi := {m ∈M |∃m′ ∈M : δ(m) = m⊗ yi +m′ ⊗ xyi−1}.
Let m ∈ M . Since yi, xyi form a basis of B we have δ(m) =

∑
imi ⊗ yi +∑

im
′
i ⊗ xyi. Apply (δ ⊗ 1)δ = (1 ⊗ ∆)δ to this equation and compare

coefficients to get

δ(mi) = mi ⊗ yi +m′
i−1 ⊗ xyi−1, δ(m′

i) = m′
i ⊗ yi

for all i ∈ N0 (with m′
−1 = 0). Consequently for each mi ∈ Mi there is

exactly one ∂(mi) = m′
i−1 ∈M such that

δ(mi) = mi ⊗ yi + ∂(mi)⊗ xyi−1.

Since δ(m′
i−1) = m′

i−1 ⊗ yi−1 for all i ∈ N we see that ∂(mi) ∈ Mi−1. So we
have defined ∂ : Mi −→ Mi−1. Furthermore we see from this equation that
∂2(mi) = 0 for all i ∈ N. Hence we have obtained a chain complex from
(M, δ).

If we apply (1 ⊗ ε)δ(m) = m then we get m =
∑
mi with mi ∈ Mi

hence M = ⊕i∈NMi. This together with the inverse construction leads to the
required equivalence.)

(2) Show that the category K-Cocomp of cochain complexes is monoidally equiv-
alent to B-Comod , where B is chosen as in Example 3.2.13.

(3) Show that the bialgebra B from Example 3.2.13 is a Hopf algebra.

We can generalize the notions of an algebra or of a coalgebra in the context of a
monoidal category. We define

Definition 3.2.15. Let C be a monoidal category. An algebra or a monoid in
C consists of an object A together with a multiplication ∇ : A ⊗ A −→ A that is
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associative

A⊗ A A-
∇

A⊗ A⊗ A A⊗ A-id⊗∇

?

∇⊗1

?

∇

or more precisely

(A⊗ A)⊗ A A⊗ (A⊗ A)-α A⊗ A-id⊗∇

A⊗ A A-∇
?

∇⊗id

?

∇

and has a unit η : I −→ A such that the following diagram commutes

I ⊗ A ∼= A ∼= A⊗ I A⊗ A-id⊗η

?

η⊗id

?

∇

A⊗ A A.-
∇

id

HHH
HHHH

HHj

Let A and B be algebras in C. A morphism of algebras f : A −→ B is a morphism
in C such that

A B-
f

A⊗ A B ⊗B-f⊗f

?

∇A

?

∇B and

I

ηA

�
�

�
���

ηB

A
A
A
AAU

A B-f

commute.

Remark 3.2.16. It is obvious that the composition of two morphisms of algebras
is again a morphism of algebras. The identity also is a morphism of algebras. Thus
we obtain the category Alg (C) of algebras in C.

Definition 3.2.17. Let C be a monoidal category. A coalgebra or a comonoid in
C consists of an object C together with a comultiplication ∆ : A −→ A ⊗ A that is
coassociative

C ⊗ C C ⊗ C ⊗ C-
id⊗∆

C C ⊗ C-∆

?

∆

?

∆⊗id
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or more precisely

(C ⊗ C)⊗ C C ⊗ (C ⊗ C)-αC ⊗ C -∆⊗id

C C ⊗ C-∆

?

id⊗∆

?

∆

and has a counit ε : C −→ I such that the following diagram commutes

C C ⊗ C-∆

?

∆

?

id⊗ε

C ⊗ C I ⊗ C ∼= C ∼= C ⊗ I.-
ε⊗id

id

H
HHH

HHH
HHj

Let C and D be coalgebras in C. A morphism of coalgebras f : C −→ D is a
morphism in C such that

C ⊗ C D ⊗D-
f⊗f

C D-f

?

∆C

?

∆D and

I

εC

A
A
A
AAU

εD

�
�

�
���

C D-f

commute.

Remark 3.2.18. It is obvious that the composition of two morphisms of coalge-
bras is again a morphism of coalgebras. The identity also is a morphism of coalgebras.
Thus we obtain the category Coalg (C) of coalgebras in C.

Remark 3.2.19. Observe that the notions of bialgebra, Hopf algebra, and co-
module algebra cannot be generalized to an arbitrary monoidal category since we
need to have an algebra structure on the tensor product of two algebras and this
requires us to interchange the middle tensor factors. These interchanges or flips are
known under the name symmetry, quasisymmetry or braiding and will be discussed
later on.

3. Dual Objects

At the end of the first section in Corollary 3.1.14 we saw that the dual of an H-
module can be constructed. We did not show the corresponding result for comodules.
In fact such a construction for comodules needs some finiteness conditions. With this
restriction the notion of a dual object can be introduced in an arbitrary monoidal
category.
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Definition 3.3.1. Let (C,⊗) be a monoidal category M ∈ C be an object. An
object M∗ ∈ C together with a morphism ev : M∗ ⊗M −→ I is called a left dual for
M if there exists a morphism db : I −→M ⊗M∗ in C such that

(M
db⊗1−→ M ⊗M∗ ⊗M

1⊗ev−→M) = 1M

(M∗ 1⊗db−→ M∗ ⊗M ⊗M∗ ev⊗1−→ M∗) = 1M∗ .

A monoidal category is called left rigid if each object M ∈ C has a left dual.
Symmetrically we define: an object ∗M ∈ C together with a morphism ev : M⊗∗M

−→ I is called a right dual for M if there exists a morphism db : I −→ ∗M ⊗M in C
such that

(M
1⊗db−→ M ⊗ ∗M ⊗M

ev⊗1−→ M) = 1M

(∗M
db⊗1−→ ∗M ⊗M ⊗ ∗M

1⊗ev−→ ∗M) = 1∗M .

A monoidal category is called right rigid if each object M ∈ C has a left dual.
The morphisms ev and db are called the evaluation respectively the dual basis.

Remark 3.3.2. If (M∗, ev) is a left dual for M then obviously (M, ev) is a right
dual for M∗ and conversely. One uses the same morphism db : I −→M ⊗M∗.

Lemma 3.3.3. Let (M∗, ev) be a left dual for M . Then there is a natural iso-
morphism

MorC(-⊗M, -) ∼= MorC(-, -⊗M∗),

i. e. the functor -⊗M : C −→ C is left adjoint to the functor -⊗M∗ : C −→ C.

Proof. We give the unit and the counit of the pair of adjoint functors. We define
Φ(A) := 1A ⊗ db : A −→ A ⊗M ⊗M∗ and Ψ(B) := 1B ⊗ ev : B ⊗M∗ ⊗M −→ B.
These are obviously natural transformations. We have commutative diagrams

(A⊗M A⊗M ⊗M∗ ⊗M-FΦ(A)=

1A⊗db⊗1M
A⊗M) = 1A⊗M-ΨF(A)=

1A⊗1M⊗ev

and

(B ⊗M∗ B ⊗M∗ ⊗M ⊗M∗-ΦG(B)=

1B⊗1M∗⊗db
B ⊗M∗) = 1B⊗M∗-GΨ(B)=

1B⊗ev⊗1M∗

thus the Lemma has been proved by [Advanced Algebra] Corollary 5.17. �

The converse holds as well. If - ⊗M is left adjoint to - ⊗M∗ then the unit Φ
gives a morphism db := Φ(I) : I −→ M ⊗M∗ and the counit Ψ gives a morphism
ev := Ψ(I) : M∗ ⊗M −→ I satisfying the required properties. Thus we have

Corollary 3.3.4. If -⊗M : C −→ C is left adjoint to -⊗M∗ : C −→ C then M∗ is
a left dual for M .

Corollary 3.3.5. (M∗, ev) is a left dual for M if and only if there is a natural
isomorphism

MorC(M
∗ ⊗ -, -) ∼= MorC(-,M ⊗ -),



84 3. REPRESENTATION THEORY, RECONSTRUCTION AND TANNAKA DUALITY

i. e. the functor M∗ ⊗ - : C −→ C is left adjoint to the functor M ⊗ - : C −→ C. The
natural isomorphism if given by

(f : M∗ ⊗N −→ P ) 7→ ((1M ⊗ f)(db⊗1N) : N −→M ⊗M∗ ⊗N −→M ⊗ P )

and

(g : N −→M ⊗ P ) 7→ ((ev⊗1P )(1M∗ ⊗ g) : M∗ ⊗N −→M∗ ⊗M ⊗ P −→ P ).

Proof. We have a natural isomorphism

MorC(M
∗ ⊗ -, -) ∼= MorC(-,M ⊗ -),

iff (M, ev) is a right dual for M∗ (as a symmetric statement to Lemma 3.3.3) iff
(M∗, ev) is a left dual for M . �

Corollary 3.3.6. If M has a left dual then this is unique up to isomorphism.

Proof. Let (M∗, ev) and (M !, ev!) be left duals for M . Then the functors -⊗M∗

and -⊗M ! are isomorphic by [Advanced Algebra] Lemma 5.13. In particular we have
M∗ ∼= I ⊗M∗ ∼= I ⊗M ! ∼= M !. If we consider the construction of the isomorphism
then we get in particular that (ev!⊗1)(1⊗ db) : M ! −→ M ! ⊗M ⊗M∗ −→ M∗ is the
given isomorphism. �

Problem 3.3.24. Let (M∗, ev) be a left dual for M . Then there is a unique
morphism db : I −→ M ⊗ M∗ satisfying the conditions of Definition 3.3.1. db′ =
(1M ⊗ 1M∗) db′ = (1M ⊗ ev⊗1M∗)(1M ⊗ 1M∗ ⊗ db) db′ = (1M ⊗ ev⊗1M∗)(db′⊗ db) =
(1M ⊗ ev⊗1M∗)(db′⊗1M ⊗ 1M∗) db = (1M ⊗ 1M∗) db = db

Definition 3.3.7. Let (M∗, evM) and (N∗, evN) be left duals for M resp. N . For
each morphism f : M −→ N we define the transposed morphism

(f ∗ : N∗ −→M∗) := (N∗ 1⊗dbM−→ N∗ ⊗M ⊗M∗ 1⊗f⊗1−→ N∗ ⊗N ⊗M∗ evN ⊗1−→ M∗).

With this definition we get that the left dual is a contravariant functor, since we
have

Lemma 3.3.8. Let (M∗, evM), (N∗, evN), and (P ∗, evP ) be left duals for M , N
and P respectively.

1. We have (1M)∗ = 1M∗.
2. If f : M −→ N and g : N −→ P are given then (gf)∗ = f ∗g∗ holds.

Proof. 1. (1M)∗ = (ev⊗1)(1⊗ 1⊗ 1)(1⊗ db) = 1M∗ .
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2. The following diagram commutes

M N ⊗N∗ ⊗M-dbN ⊗1

?

f

?

1⊗1⊗f

N N ⊗N∗ ⊗N-dbN ⊗1
N-1⊗evN

?

g⊗1⊗1

?

g

P ⊗N∗ ⊗N P-1⊗evN

Hence we have gf = (1 ⊗ evN)(g ⊗ 1 ⊗ f)(dbN ⊗1). Thus the following diagram
commutes

P ∗ P ∗ ⊗N ⊗N∗-1⊗db
P ∗ ⊗ P ⊗N∗-1⊗g⊗1

?

1⊗db

?

1⊗db

?

1⊗db

P ∗ ⊗M ⊗M∗ P ∗ ⊗N ⊗N∗ ⊗M ⊗M∗-1⊗db⊗1

P ∗ ⊗ P ⊗N∗ ⊗M ⊗M∗
1⊗g⊗1

XXXXXXz

?

1⊗gf⊗1

P ∗ ⊗ P ⊗M∗ P ∗ ⊗ P ⊗N∗ ⊗N ⊗M∗�1⊗ev⊗1
1⊗f⊗1

������9

?

ev⊗1

?

ev⊗1

?

ev⊗1

M∗ N∗ ⊗N ⊗M∗� 1⊗ev
N∗ ⊗M ⊗M∗�1⊗f⊗1

?

1⊗g⊗1⊗f⊗1 N∗

ev⊗1

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

1⊗db

�
�

�
�

�
�

�
�

��=

�

Problem 3.3.25. (1) In the category of N-graded vector spaces determine
all objects M that have a left dual.

(2) In the category of chain complexes K-Comp determine all objects M that
have a left dual.

(3) In the category of cochain complexes K-Cocomp determine all objects M that
have a left dual.

(4) Let (M∗, ev) be a left dual for M . Show that db : I −→M ⊗M∗ is uniquely
determined by M , M∗, and ev. (Uniqueness of the dual basis.)

(5) Let (M∗, ev) be a left dual for M . Show that ev : M∗ ⊗M −→ I is uniquely
determined by M , M∗, and db.
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Corollary 3.3.9. Let M,N have the left duals (M∗, evM) and (N∗, evN) and let
f : M −→ N be a morphism in C. Then the following diagram commutes

N ⊗N∗ N ⊗M∗.-
1⊗f∗

I M ⊗M∗-dbM

?

dbN

?

f⊗1

Proof. The following diagram commutes

M N ⊗N∗ ⊗M-db⊗1

N N ⊗N∗ ⊗N-db⊗1
?

f
?
1⊗1⊗f

N
?
1⊗ev1

HH
HHj

This implies (f ⊗ 1M∗) dbM = ((1N ⊗ evN)(1N ⊗ 1N∗ ⊗ f)(dbN ⊗1M) ⊗ 1M∗) dbM =
(1N⊗evN ⊗1M∗)(1N⊗1N∗⊗f⊗1M∗)(dbN ⊗1M⊗1M∗) dbM = (1N⊗evN ⊗1M∗)(1N⊗
1N∗ ⊗ f ⊗ 1M∗)(1N ⊗ 1N∗ ⊗ dbM) dbN = (1N ⊗ (evN ⊗1M∗)(1N∗ ⊗ f ⊗ 1M∗)(1N∗ ⊗
dbM)) dbN = (1N ⊗ f ∗) dbN . �

Corollary 3.3.10. Let M,N have the left duals (M∗, evM) and (N∗, evN) and let
f : M −→ N be a morphism in C. Then the following diagram commutes

N∗ ⊗N I.-
evN

N∗ ⊗M M∗ ⊗M-f∗⊗1

?

1⊗f

?

evM

Proof. This statement follows immediately from the symmetry of the definition
of a left dual. �

Example 3.3.11. Let M ∈ R-Mod -R be an R-R-bimodule. Then HomR(M.,R.)
is an R-R-bimodule by (rfs)(x) = rf(sx). Furthermore we have the morphism
ev : HomR(M.,R.)⊗RM −→ R defined by ev(f ⊗R m) = f(m).

(Dual Basis Lemma:) A module M ∈ Mod -R is called finitely generated and
projective if there are elements m1, . . . ,mn ∈ M und m1, . . . ,mn ∈ HomR(M.,R.)
such that

∀m ∈M :
n∑
i=1

mim
i(m) = m.

Actually this is a consequence of the dual basis lemma. But this definition is
equivalent to the usual definition.
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Let M ∈ R-Mod -R. M as a right R-module is finitely generated and projective
iff M has a left dual. The left dual is isomorphic to HomR(M.,R.).

If MR is finitely generated projective then we use db : R −→M ⊗R HomR(M.,R.)
with db(1) =

∑n
i=1mi ⊗R m

i. In fact we have (1 ⊗R ev)(db⊗R1)(m) = (1 ⊗R

ev)(
∑
mi ⊗R m

i ⊗R m) =
∑
mim

i(m) = m. We have furthermore (ev⊗R1)(1 ⊗R

db)(f)(m) = (ev⊗R1)(
∑n

i=1 f ⊗Rmi⊗Rm
i)(m) =

∑
f(mi)m

i(m) = f(
∑
mim

i(m))
= f(m) for all m ∈M hence (ev⊗R1)(1⊗R db)(f) = f .

Conversely if M has a left dual M∗ then ev : M∗ ⊗R M −→ R defines a ho-
momorphism ι : M∗ −→ HomR(M.,R.) in R-Mod -R by ι(m∗)(m) = ev(m∗ ⊗R m).
We define

∑n
i=1mi ⊗mi := db(1) ∈ M ⊗M∗, then m = (1⊗ ev)(db⊗1)(m) = (1⊗

ev)(
∑
mi⊗mi⊗m) =

∑
miι(m

i)(m) so thatm1, . . . ,mn ∈M and ι(m1), . . . , ι(mn) ∈
HomR(M.,R.) form a dual basis for M , i. e. M is finitely generated and projective
as an R-module. Thus M∗ and HomR(M.,R.) are isomorphic by the map ι.

Analogously HomR(.M, .R) is a right dual for M iff M is finitely generated and
projective as a left R-module.

Problem 3.3.26. Find an example of an object M in a monoidal category C that
has a left dual but no right dual.

Definition 3.3.12. Given objects M,N in C. An object [M,N ] is called a
left inner Hom of M and N if there is a natural isomorphism MorC(- ⊗ M,N) ∼=
MorC(-, [M,N ]), i. e. if it represents the functor MorC(-⊗M,N).

If there is an isomorphism MorC(P ⊗ M,N) ∼= MorC(P, [M,N ]) natural in the
three variable M,N,P then the category C is called monoidal and left closed.

If there is an isomorphism MorC(M ⊗ P,N) ∼= MorC(P, [M,N ]) natural in the
three variable M,N,P then the category C is called monoidal and right closed.

If M has a left dual M∗ in C then there are inner Homs [M, - ] defined by
[M,N ] := N ⊗M∗. In particular left rigid monoidal categories are left closed.

Example 3.3.13. (1) The category of finite dimensional vector spaces is a
monoidal category where each object has a (left and right) dual. Hence it is
(left and right) closed and rigid.

(2) Let Ban be the category of (complex) Banach spaces where the morphisms
satisfy ‖ f(m) ‖≤‖ m ‖ i. e. the maps are bounded by 1 or contracting.
Ban is a monoidal category by the complete tensor product M⊗̂N . In Ban
exists an inner Hom functor [M,N ] that consists of the set of bounded linear
maps from M to N made into a Banach space by an appropriate topology.
Thus Ban is a monoidal closed category.

(3) Let H be a Hopf algebra. The category H-Mod of left H-modules is a
monoidal category (see Example 3.2.5 2.). Then HomK(M,N) is an object
in H-Mod by the multiplication

(hf)(m) :=
∑

h(1)f(mS(h(2))
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as in Proposition 3.1.13.
HomK(M,N) is an inner Hom functor in the monoidal category H-Mod .

The isomorphism φ : HomK(P,HomK(M,N)) ∼= HomK(P ⊗M,N) can be
restricted to an isomorphism

HomH(P,HomK(M,N)) ∼= HomH(P ⊗M,N),

because φ(f)(h(p ⊗ m)) = φ(f)(
∑
h(1)p ⊗ h(2)m) =

∑
f(h(1)p)(h(2)m) =∑

(h(1)(f(p)))(h(2)m) =
∑
h(1)(f(p)(S(h(2))h(3)m)) = h(f(p)(m)) = h(φ(f)

(p⊗m)) and conversely (h(f(p)))(m) =
∑
h(1)(f(p)(S(h(2))m)) =

∑
h(1)(φ(f)

(p⊗S(h(2))m)) =
∑
φ(f)(h(1)p⊗h(2)S(h(3))m) = φ(f)(hp⊗m) = f(hp)(m).

Thus H-Mod is left closed.
If M ∈ H-Mod is a finite dimensional vector space then the dual vector

space M∗ := HomK(M,K) again is an H-module by (hf)(m) := f(S(h)m).
Furthermore M∗ is a left dual for M with the morphisms

db : K 3 1 7→
∑
i

mi ⊗mi ∈M ⊗M∗

and

ev : M∗ ⊗M 3 f ⊗m 7→ f(m) ∈ K
where mi and mi are a dual basis of the vector space M . Clearly we have
(1 ⊗ ev)(db⊗1) = 1M and (ev⊗1)(1 ⊗ db) = 1M∗ since M is a finite di-
mensional vector space. We have to show that db and ev are H-module
homomorphisms. We have

(h db(1))(m) = (h(
∑
mi ⊗mi))(m) = (

∑
h(1)mi ⊗ h(2)m

i)(m) =∑
(h(1)mi)((h(2)m

i)(m)) =
∑

(h(1)mi)(m
i(S(h(2))m)) =∑

h(1)S(h(2))m = ε(h)m = ε(h)(
∑
mi ⊗mi)(m) = ε(h) db(1)(m) =

db(ε(h)1)(m) = db(h1)(m),

hence h db(1) = db(h1). Furthermore we have

h ev(f ⊗m) = hf(m) =
∑
h(1)f(S(h(2))h(3)m) =

∑
(h(1)f)(h(2)m) =∑

ev(h(1)f ⊗ h(2)m) = ev(h(f ⊗m)).

(4) Let H be a Hopf algebra. Then the category of left H-comodules (see Exam-
ple 3.2.5 3.) is a monoidal category. Let M ∈ H-Comod be a finite dimen-
sional vector space. Let mi be a basis for M and let the comultiplication of
the comodule be δ(mi) =

∑
hij ⊗mj. Then we have ∆(hik) =

∑
hij ⊗ hjk.

M∗ := HomK(M,K) becomes a left H-comodule δ(mj) :=
∑
S(hij) ⊗ mi.

One verifies that M∗ is a left dual for M .

Lemma 3.3.14. Let M ∈ C be an object with left dual (M∗, ev). Then
1. M ⊗M∗ is an algebra with multiplication

∇ := 1M ⊗ ev⊗1M∗ : M ⊗M∗ ⊗M ⊗M∗ −→M ⊗M∗
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and unit

u := db : I −→M ⊗M∗;

2. M∗ ⊗M is a coalgebra with comultiplication

∆ := 1M∗ ⊗ db⊗1M : M∗ ⊗M −→M∗ ⊗M ⊗M∗ ⊗M

and counit

ε := ev : M∗ ⊗M −→ I.

Proof. 1. The associativity is given by (∇ ⊗ 1)∇ = (1M ⊗ ev⊗1M∗ ⊗ 1M ⊗
1M∗)(1M ⊗ ev⊗1M∗) = 1M ⊗ ev⊗ ev⊗1M∗ = (1M ⊗ 1M∗ ⊗ 1M ⊗ ev⊗1M∗)(1M ⊗
ev⊗1M∗) = (1⊗∇)∇. The axiom for the left unit is ∇(u⊗1) = (1M⊗ev⊗1M∗)(db⊗
1M ⊗ 1M∗) = 1M ⊗ 1M∗ .

2. is dual to the statement for algebras. �

Lemma 3.3.15. 1. Let A be an algebra in C and left M ∈ C be a left rigid object
with left dual (M∗, ev). There is a bijection between the set of morphisms f : A⊗M

−→M making M a left A-module and the set of algebra morphisms f̃ : A −→M⊗M∗.
2. Let C be a coalgebra in C and left M ∈ C be a left rigid object with left dual (M∗, ev).
There is a bijection between the set of morphisms f : M −→M ⊗C making M a right

C-comodule and the set of coalgebra morphisms f̃ : M∗ ⊗M −→ C.

Proof. 1. By Lemma 3.3.14 the object M ⊗M∗ is an algebra. Given f : A⊗M
−→ M such that M becomes an A-module. By Lemma 3.3.3 we associate f̃ :=

(f ⊗ 1)(1 ⊗ db) : A −→ A ⊗M ⊗M∗ −→ M ⊗M∗. The compatibility of f̃ with the
multiplication is given by the commutative diagram

A⊗ A A-∇

A⊗ A⊗M ⊗M∗ A⊗M ⊗M∗-∇⊗1⊗1

A⊗M ⊗M∗ M ⊗M∗-f⊗1

A⊗M ⊗M∗ ⊗M ⊗M∗ A⊗M ⊗M∗-

1⊗1⊗ev⊗1

M ⊗M∗ ⊗M ⊗M∗ M ⊗M∗-
1⊗ev⊗1

?

f̃⊗f̃
?
1⊗f⊗1

?
1⊗db⊗1⊗1

?
f⊗1

?

f̃

1⊗1⊗db
H

HHHj
@

@
@

@
@@R

1⊗f̃

�
�

�
�

��	

f̃⊗1⊗1

f⊗1⊗1
��

���

1
XXXXXXXXz

1⊗db
�

����

1

@
@

@
@

@@R
f⊗1
HH

HHj

The unit axiom is given by

I M ⊗M∗-db

A A⊗M ⊗M∗-1⊗db
M ⊗M∗-f⊗1

?
u

?
u⊗1 1⊗1

HH
HHHj
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Conversely let g : A −→ M ⊗M∗ be an algebra homomorphism and consider g̃ :=
(1⊗ ev)(g ⊗ 1) : A⊗M −→ M ⊗M∗ ⊗M −→ M . Then M becomes a left A-module
since

A⊗ A⊗M A⊗M-∇⊗1

A⊗M ⊗M∗ ⊗M M ⊗M∗ ⊗M ⊗M∗ ⊗M-

g⊗1⊗1⊗1
M ⊗M∗ ⊗M-

1⊗ev⊗1⊗1

A⊗M M-g̃
?

1⊗g̃

M ⊗M∗ ⊗M
?

1⊗1⊗1⊗ev

?

g̃

1⊗g⊗1
@

@
@@R

1⊗1⊗ev

�
�

�
�

�
�

�
��

g⊗g⊗1

XXXXXXXXXXXXXz

g⊗1

�������������:

1⊗ev

XXXXXXXXXXXXXz

1⊗ev

A
A
A
A
A
A
A
AU

g⊗1
�

�
��	

and

A⊗M M ⊗M∗ ⊗M-
g⊗1 M-

1⊗ev

M

?

u⊗1 db⊗1

HH
HHH

HHj

1

XXXXXXXXXXXXXz

commute.
2. (M∗, ev) is a left dual for M in the category C if and only if (M∗, db) is the

right dual for M in the dual category Cop. So if we dualize the result of part 1. we
have to change sides, hence 2. �

4. Finite reconstruction

The endomorphism ring of a vector space enjoys the following universal property.
It is a vector space itself and allows a homomorphism ρ : End(V ) ⊗ V −→ V . It is
universal with respect to this property, i. e. if Z is a vector space and f : Z⊗V −→ V
is a homomorphism, then there is a unique homomorphism g : Z −→ End(V ) such
that

End(V )⊗ V V-
ρ

f
@

@
@

@@R

Z ⊗ V

?

g⊗1

commutes.
The algebra structure of End(V ) comes for free from this universal property.
If we replace the vector space V by a diagram of vector spaces ω : D −→ Vec we

get a similar universal object End(ω). Again the universal property induces a unique
algebra structure on End(ω).
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Problem 3.4.27. (1) Let V be a vector space. Show that there is a universal
vector space E and homomorphism ρ : E ⊗ V −→ V (such that for each
vector space Z and each homomorphism f : Z ⊗ V −→ V there is a unique
homomorphism g : Z −→ E such that

E ⊗ V V-
ρ

f
@

@
@

@@R

Z ⊗ V

?

g⊗1

commutes). We call E and ρ : E ⊗ V −→ V a vector space acting universally
on V .

(2) Let E and ρ : E ⊗ V −→ V be a vector space acting universally on V . Show
that E uniquely has the structure of an algebra such that V becomes a left
E-module.

(3) Let ω : D −→ Vec be a diagram of vector spaces. Show that there is a
universal vector space E and natural transformation ρ : E ⊗ ω −→ ω (such
that for each vector space Z and each natural transformation f : Z⊗ω −→ ω
there is a unique homomorphism g : Z −→ E such that

E ⊗ ω ω-
ρ

f
@

@
@

@@R

Z ⊗ ω

?

g⊗1

commutes). We call E and ρ : E ⊗ ω −→ ω a vector space acting universally
on ω.

(4) Let E and ρ : E⊗ω −→ ω be a vector space acting universally on ω. Show that
E uniquely has the structure of an algebra such that ω becomes a diagram
of left E-modules.

Similar considerations can be carried out for coactions V −→ V ⊗C or ω −→ ω⊗C
and a coalgebra structure on C. There is one restriction, however. We can only use
finite dimensional vector spaces V or diagrams of finite dimensional vector spaces.
This will be done further down.

We want to find a universal natural transformation δ : ω −→ ω ⊗ coend(ω). For
this purpose we consider the isomorphisms

MorC(ω(X), ω(X)⊗M) ∼= MorC(ω(X)∗ ⊗ ω(X),M)

that are given by f 7→ (ev⊗1)(1 ⊗ f) and as inverse g 7→ (1 ⊗ g)(db⊗1). We
first develop techniques to describe the properties of a natural transformation φ : ω
−→ ω ⊗M as properties of the associated family g(X) : ω(X)∗ ⊗ ω(X) −→ M . We
will see that g : ω∗ ⊗ ω −→M will be a cone. Then we will show that φ is a universal
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natural transformation if and only if its associated cone is universal. In the literature
this is called a coend.

Throughout this section assume the following. Let D be an arbitrary diagram
scheme. Let C be a cocomplete monoidal category such that the tensor product
preserves colimits in both arguments. Let C0 be the full subcategory of those objects
in C that have a left dual. Let ω : D −→ C be a diagram in C such that ω(X) ∈ C0 for
all X ∈ D, i. e. ω is given by a functor ω0 : D −→ C0. We call such a diagram a finite
diagram in C. Finally for an object M ∈ C let ω ⊗M : D −→ C be the functor with
(ω ⊗M)(X) = ω(X)⊗M .

Remark 3.4.1. Consider the following category D̃. For each morphism f : X

−→ Y there is an object f̃ ∈ D̃. The object corresponding to the identity 1X : X

−→ X is denoted by X̃ ∈ D̃. For each morphism f : X −→ Y in D there are two

morphisms f1 : f̃ −→ X̃ and f2 : f̃ −→ Ỹ in D̃. Furthermore there are the identities

1f : f̃ −→ f̃ in D̃.

Since there are no morphisms with X̃ as domain other than (1X)i : X̃ −→ X̃ and

1f : f̃ −→ f̃ we only have to define the following compositions (1X)i ◦ fj := fj. Then

D̃ becomes a category and we have 1X̃ = (1X)1 = (1X)2.

We define a diagram ω∗ ⊗ ω : D̃ −→ C as follows. If f : X −→ Y is given then

(ω∗ ⊗ ω)(f̃) := ω(Y )∗ ⊗ ω(X)

and

ω(f1) := ω(f)∗ ⊗ ω(1X),
ω(f2) := ω(1Y )∗ ⊗ ω(f).

The colimit of ω∗ ⊗ ω consists of an object coend(ω) ∈ C together with a family of
morphisms ι(X,X) : ω(X)∗ ⊗ ω(X) −→ coend(ω) such that the diagrams

ω(X)∗ ⊗ ω(X)

(ω∗ ⊗ ω)(f̃) = ω(Y )∗ ⊗ ω(X)

ω(f)∗⊗1
����*

coend(ω)

ι(X,X)
HHHHj

ω(Y )∗ ⊗ ω(Y )

1⊗ω(f)
HHHHj

ι(Y,Y )
��

��*

commute for all f : X −→ Y in D. Indeed, such a family ι(X̃) := ι(X,X) can be

uniquely extended to a natural transformation by defining ι(f̃) := ι(X,X)(ω(f)∗ ⊗
ω(X)) = ι(Y, Y )(ω(Y )∗ ⊗ ω(f)). In addition the pair (coend(ω), ι) is universal with
respect to this property.

In the literature such a universal object is called a coend of the bifunctor ω∗⊗ω :
Dop ×D −→ C.
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Corollary 3.4.2. The following is a coequalizer∐
f∈MorD

ω(Dom(f))∗ ⊗ ω(Codom(f))
∐

X∈ObD

ω(X)∗ ⊗ ω(X)
-p

-
q

coend(ω)-

Proof. This is just a reformulation of [Advanced Algebra] Remark 6.11, since
the colimit may also be built from the commutative squares given above.

Observe that for the construction of the colimit not all objects of the diagram
have to be used but only those of the form ω(X)∗ ⊗ ω(X). �

Theorem 3.4.3. (Tannaka-Krein)
Let ω : D −→ C0 ⊆ C be a finite diagram. Then there exists an object coend(ω) ∈ C

and a natural transformation δ : ω −→ ω ⊗ coend(ω) such that for each object M ∈ C
and each natural transformation ϕ : ω −→ ω ⊗ M there exists a unique morphism
ϕ̃ : coend(ω) −→M such that the diagram

ω ω ⊗ coend(ω)-δ

ϕ

@
@

@
@@R
ω ⊗M

?

1⊗ϕ̃

commutes.

Proof. Let coend(ω) ∈ C together with morphisms ι(f̃) : ω(Y )∗ ⊗ ω(X) −→
coend(ω) be the colimit of the diagram ω∗ ⊗ ω : D̃ −→ C. So we get commutative
diagrams

ω(X)∗ ⊗ ω(X)

ω(f)∗⊗1

��
���

��*
ι(X,X)

H
HHH

HHHj

ω(Y )∗ ⊗ ω(Y )

1⊗ω(f)

H
HHH

HHHj

ι(Y,Y )

���
����*

ω(Y )∗ ⊗ ω(X) coend(ω)-ι(f̃)

for each f : X −→ Y in C.
For X ∈ C we define a morphism δ(X) : ω(X) −→ ω(X) ⊗ coend(ω) by (1 ⊗

ι(X,X))(db⊗1) : ω(X) −→ ω(X)⊗ω(X)∗⊗ω(X) −→ ω(X)⊗ coend(ω). Then we get
as in Corollary 3.3.5 ι(X,X) = (1⊗ ev)(1⊗ δ(X)).

We show that δ is a natural transformation. For each f : X −→ Y the square

ω(Y )⊗ ω(Y )∗ ω(Y )⊗ ω(X)∗.-
1⊗ω(f)∗

I ω(X)⊗ ω(X)∗-dbX

?

dbY

?

ω(f)⊗1
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commutes by Corollary 3.3.9. Thus the following diagram commutes

ω(X) ω(X)⊗ ω(X)∗ ⊗ ω(X)-db⊗1
ω(X)⊗ coend(ω)-1⊗ι(X,X)

ω(Y )⊗ ω(Y )∗ ⊗ ω(X) ω(Y )⊗ ω(X)∗ ⊗ ω(X)-
1⊗ω(f)∗⊗1

ω(Y ) ω(Y )⊗ ω(Y )∗ ⊗ ω(Y )-db⊗1
ω(Y )⊗ coend(ω).-1⊗ι(Y,Y )?

ω(f)

?

ω(f)⊗1

db⊗1

Q
Q

Q
QQs

1⊗1⊗ω(f)

Q
Q

Q
QQs

ω(f)⊗1⊗1

Q
Q

Q
QQs

1⊗ι(X,X)

Q
Q

Q
QQs

Now let M ∈ C be an object and ϕ : ω −→ ω ⊗ M a natural transformation.
Observe that

ω(Y )∗ ⊗ ω(Y ) I-
ev

ω(Y )∗ ⊗ ω(X) ω(X)∗ ⊗ ω(X)-ω(f)∗⊗1

?

1⊗ω(f)

?

ev

commutes by Corollary 3.3.10. Thus also the diagram

ω(X)∗ ⊗ ω(X) ω(X)∗ ⊗ ω(X)⊗M-1⊗ϕ(X)

6
ω(f)∗⊗1 ω(f)∗⊗1⊗1

�
�

���

M

ev⊗1
@

@
@@R

ω(Y )∗ ⊗ ω(X) ω(Y )∗ ⊗ ω(X)⊗M-1⊗ϕ(X)

?

1⊗ω(f) 1⊗ω(f)⊗1
@

@
@@R

ev⊗1

�
�

���

ω(Y )∗ ⊗ ω(Y ) ω(Y )∗ ⊗ ω(Y )⊗M-1⊗ϕ(Y )

commutes. We define ϕ̃ : coend(ω) −→ M from the colimit property as universal
factorization

ω(X)∗ ⊗ ω(X)

ω(Y )∗ ⊗ ω(X)

ω(f)∗⊗1

��
���

��*
ι(X,X)

@
@

@@R

(ev⊗1)(1⊗ϕ(X))

PPPPPPPPPPq

ω(Y )∗ ⊗ ω(Y )

1⊗ω(f)

H
HHH

HHHj

ι(Y,Y )

�
�

���

coend(ω) M-ϕ̃

(ev⊗1)(1⊗ϕ(Y ))

����������1
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Hence the diagram

ω(X) ω(X)⊗ coend(ω)-δ(X)

ω(X)⊗M ω(X)⊗M-
1⊗1

?

ϕ(X)

?

1⊗ϕ̃

ω(X)⊗ ω(X)∗ ⊗ ω(X)

ω(X)⊗ ω(X)∗ ⊗ ω(X)⊗M
?

1⊗1⊗ϕ(X)

db⊗1
H

HHHHj

1⊗ev⊗1
HH

HHHj

1⊗ι(X,X)

�
����*

db⊗1⊗1
���

��*

commutes. The exterior portion of this diagram yields

ω(X) ω(X)⊗ coend(ω)-δ(X)

ω(X)⊗M.
?

1⊗ϕ̃ϕ(X)

H
HHH

HHHj

It remains to show that ϕ̃ : coend(ω) −→ M is uniquely determined. Let ϕ̃0 :
coend(ω) −→ M be another morphism with ϕ(X) = (1 ⊗ ϕ̃0)δ(X) for all X ∈ D.
Then the following diagram commutes

ω(X)∗ ⊗ ω(X) coend(ω)-ι(X,X)

ω(X)∗ ⊗ ω(X)⊗ coend(ω)

1⊗δ(X)
PPPPPPq

1⊗ϕ(X)

@
@

@
@

@
@

@
@

@R

ev⊗1
������1

?

1⊗1⊗ϕ̃0

?

ϕ̃0

ω(X)∗ ⊗ ω(X)⊗M M,-ev⊗1

hence we have ϕ̃0 = ϕ̃. �

Corollary 3.4.4. The functor Nat(ω, ω ⊗ M) is a representable functor in M
represented by coend(ω).

Proof. The universal problem implies the isomorphism

Nat(ω, ω ⊗M) ∼= MorC(coend(ω),M)

and the universal natural transformation δ : ω −→ ω ⊗ coend(ω) is mapped to the
identity under this isomorphism. �
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It is also possible to construct an isomorphism

Nat(ω, ω′ ⊗M) ∼= MorC(cohom(ω′, ω),M)

for different functors ω, ω′ : D −→ C and thus define cohomomorphism objects. Observe
that only ω′ has to take values in C0 since then we can build objects ω′(X)∗ ⊗ ω(X).

5. The coalgebra coend

Proposition 3.5.1. Let C be a monoidal category and ω : D −→ C be a diagram
in C. Assume that there is a universal object coend(ω) and natural transformation
δ : ω −→ ω ⊗ coend(ω).

Then there is exactly one coalgebra structure on coend(ω) such that the diagrams

ω ⊗ coend(ω) ω ⊗ coend(ω)⊗ coend(ω)-
δ⊗1

ω ω ⊗ coend(ω)-δ

?

δ

?

1⊗∆

and

ω ω ⊗ coend(ω)-δ

idω

@
@

@
@@R
ω ⊗ I

?

1⊗ε

commute.

Proof. Because of the universal property of coend(ω) there are structure mor-
phisms ∆ : coend(ω) −→ coend(ω) ⊗ coend(ω) and ε : coend(ω) −→ I. This implies
the coalgebra property similar to the proof of Corollary 3.3.8. �

Observe that by this construction all objects and all morphisms of the diagram
ω : D −→ C0 ⊆ C are comodules or morphisms of comodules over the coalgebra
coend(ω). In fact C := coend(ω) is the universal coalgebra over which the given
diagram becomes a diagram of comodules.

Corollary 3.5.2. Let (D, ω) be a diagram C with objects in C0. Then all objects
of the diagram are comodules over the coalgebra C := coend(ω) and all morphisms
are morphisms of comodules. If D is another coalgebra and all objects of the diagram
are D-comodules by ϕ(X) : ω(X) −→ ω(X) ⊗ D and all morphisms of the diagram
are morphisms of D-comodules then there exists a unique morphism of coalgebras
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ϕ̃ : coend(ω) −→ D such that the diagram

ω ω ⊗ coend(ω)-δ

ϕ

@
@

@
@@R
ω ⊗D

?

1⊗ϕ̃

commutes.

Proof. The morphisms ϕ(X) : ω(X) −→ ω(X)⊗D define a natural transforma-
tion since all morphisms of the diagram are morphisms of comodules. So the existence
and the uniqueness of a morphism ϕ̃ : coend(ω) −→ D is clear. The only thing to show
is that this is a morphism of coalgebras. This follows from the universal property of
C = coend(ω) and the diagram

ω ω ⊗ C-δ

δ
@

@
@@R

1⊗∆
@

@
@@R

?

1

?

1⊗ϕ̃

ω ⊗ C ω ⊗ C ⊗ C-δ⊗1

?

1⊗ϕ̃

?

1⊗ϕ̃⊗ϕ̃
ω ω ⊗D-

ϕ

ϕ
@

@
@@R

1⊗∆
@

@
@@R

ω ⊗D ω ⊗D ⊗D-
ϕ⊗1

where the right side of the cube commutes by the universal property. Similarly we
get that ϕ̃ preserves the counit since the following diagram commutes

ω ω ⊗ C-δ

ω ω ⊗D-ϕ
?

1

?
1⊗ϕ̃

?

1

1⊗ε
@

@
@

@@R

1⊗ε
@

@
@

@@R

ω ⊗K

H
HHH

HHH
HHj

1

ω ⊗K

1

HHH
HHH

HHHj

�
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6. The bialgebra coend

Let ω : D −→ C and ω′ : D′ −→ C be diagrams in C. We call the diagram
(D, ω) ⊗ (D′, ω′) := (D × D′, ω ⊗ ω′) with (ω ⊗ ω′)(X, Y ) := ω(X) ⊗ ω′(Y ) the
tensor product of these two diagrams. The new diagram consists of all possible tensor
products of all objects and all morphisms of the original diagrams.

From now on we assume that the category C is the category of vector spaces and
we use the symmetry τ : V ⊗W −→ W ⊗ V in Vec .

Proposition 3.6.1. Let (D, ω) and (D′, ω′) be finite diagrams in Vec . Then

coend(ω ⊗ ω′) ∼= coend(ω)⊗ coend(ω′).

Proof. First observe the following. If two diagrams ω : D −→ Vec and ω′ : D′

−→ Vec are given then lim−→D lim−→D′(ω ⊗ ω′) ∼= lim−→D×D′(ω ⊗ ω′) ∼= lim−→D(ω) ⊗ lim−→D′(ω
′)

since the tensor product preserves colimits and colimits commute with colimits. For
this consider the diagram

ω(X)⊗ ω′(Y ) ω(X)⊗ lim−→D′(ω
′)-

?
lim−→D(ω)⊗ ω′(Y ) lim−→D(ω)⊗ lim−→D′(ω

′)-
? ∼= lim−→D×D′(ω ⊗ ω′).

The maps in the diagram are the injections for the corresponding colimits. In particu-
lar we have coend(ω⊗ω′) ∼= lim−→D×D′((ω⊗ω

′)∗⊗(ω⊗ω′)) ∼= lim−→D×D′(ω
∗⊗ω⊗ω′∗⊗ω′) ∼=

lim−→D(ω∗ ⊗ ω)⊗ lim−→D′(ω
′∗ ⊗ ω′) ∼= coend(ω)⊗ coend(ω′).

The (universal) morphism

(ι(X)⊗ι′(Y ))(1⊗τ⊗1) : ω(X)∗⊗ω′(Y )∗⊗ω(X)⊗ω′(Y ) −→ lim−→(ω∗⊗ω)⊗lim−→(ω′
∗⊗ω′)

can be identified with the universal morphism

ι(X, Y ) : ω(X)∗ ⊗ ω′(Y )∗ ⊗ ω(X)⊗ ω′(Y ) −→ lim−→((ω ⊗ ω′)∗ ⊗ (ω ⊗ ω′)).

Hence the induced morphisms

(1⊗ τ ⊗ 1)(δ ⊗ δ′) : ω(X)⊗ ω′(Y ) −→ ω(X)⊗ ω′(Y )⊗ coend(ω)⊗ coend(ω′)

and

δ : ω(X)⊗ ω′(Y ) −→ ω(X)⊗ ω′(Y )⊗ coend(ω ⊗ ω′)

can be identified. �

Corollary 3.6.2. For all finite diagrams (D, ω) and (D′, ω′) in D there is a uni-
versal natural transformation δ : ω⊗ω′ −→ ω⊗ω′⊗ coend(ω)⊗ coend(ω′) so that for
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each object M and each natural transformation ϕ : ω⊗ω′ −→ ω⊗ω′⊗M there exists
a unique morphism ϕ̃ : coend(ω)⊗ coend(ω′) −→M such that

ω ⊗ ω′ ω ⊗ ω′ ⊗ coend(ω)⊗ coend(ω′)-δ

ω ⊗ ω′ ⊗M
?

1⊗1⊗ϕ̃ϕ

H
HHH

HHH
HHj

commutes.

Definition 3.6.3. Let (D, ω) be a diagram in C = Vec . Then ω is called recon-
structive

• if there is an object coend(ω) in C and a universal natural transformation
δ : ω −→ ω ⊗ coend(ω)

• and if (1⊗τ⊗1)(δ⊗δ) : ω⊗ω −→ ω⊗ω⊗coend(ω)⊗coend(ω) is a univesarl
natural transformation of bifunctors.

Definition 3.6.4. Let (D, ω) be a diagram in Vec . Let D be a monoidal category
and ω be a monoidal functor. Then (D, ω) is called a monoidal diagram.

Let (D, ω) be a monoidal diagram Vec . Let A ∈ Vec be an algebra. A natural
transformation ϕ : ω −→ ω ⊗B is called monoidal monoidal if the diagrams

ω(X)⊗ ω(Y ) ω(X)⊗ ω(Y )⊗B ⊗B-ϕ(X)⊗ϕ(Y )

?

ρ

?

ρ⊗m

ω(X ⊗ Y ) ω(X ⊗ Y )⊗B-ϕ(X⊗Y )

and
K K⊗K-∼=

? ?
ω(I) ω(I)⊗B-ϕ(I)

commute.
We denote the set of monoidal natural transformations by Nat⊗(ω, ω ⊗B).

Problem 3.6.28. Show that Nat⊗(ω, ω ⊗B) is a functor in B.

Theorem 3.6.5. Let (D, ω) be a reconstructive, monoidal diagram in Vec . Then
coend(ω) is a bialgebra and δ : ω −→ ω⊗ coend(ω) is a monoidal natural transforma-
tion.

If B is a bialgebra and ∂ : ω −→ ω ⊗ B is a monoidal natural transformation,
then there is a unique homomorphism of bialgebras f : coend(ω) −→ B such that the



100 3. REPRESENTATION THEORY, RECONSTRUCTION AND TANNAKA DUALITY

diagram

ω ω ⊗ coend(ω)-δ

∂

@
@

@
@@R
ω ⊗B

?

1⊗f

commutes.

Proof. The multiplication of coend(ω) arises from the following diagram

ω(X)⊗ ω(Y ) ω(X)⊗ ω(Y )⊗ coend(ω)⊗ coend(ω)-δ⊗δ

ω(X ⊗ Y ) ω(X ⊗ Y )⊗ coend(ω)-δ
? ? ∼= ω(X)⊗ ω(Y )⊗ coend(ω)

@
@

@
@@R

For the construction of the unit we consider the diagram D0 = ({I}, {id}) together
with ω0 : D0 −→ Vec , ω0(I) = K, the monoidal unit object in the monoidal category
of diagrams in Vec . Then (K −→ K ⊗ K) = (ω0 −→ ω0 ⊗ coend(ω0)) is the universal
map. The following diagram then induced the unit for coend(ω)

K K⊗K-∼=

ω(I) ω(I)⊗ coend(ω)-
? ? ∼= K⊗ coend(ω)

Q
Q

Q
Q

Q
QQs

By using the universal property one checks the laws for bialgebras.
The above diagrams show in particular that the natural transformation δ : ω

−→ ω ⊗ coend(ω) is monoidal. �

7. The quantum monoid of a quantum space

Problem 3.7.29. If A is a finite dimensional algebra and δ : A −→ M(A) ⊗ A
the universal cooperation of the Tambara bialgebra on A from the left then τδ : A
−→ A ⊗ M(A) (with the same multiplication on M(A)) is a universal cooperation
of M(A) on A from the right. The comultiplication defined by this cooperation is
τ∆ : M(A) −→M(A)⊗M(A). Thus we have to distinguish between the left and the
right Tambara bialgebra on A and we have Mr(A) = Ml(A)cop.

Now consider the special monoidal diagram scheme D := D[X;m,u]. To make
things simpler we assume that Vec is strict monoidal. The category D[X;m,u] has
the objects X ⊗ . . . ⊗ X = X⊗n for all n ∈ N (and I := X⊗0) and the morphisms
m : X ⊗X −→ X, u : I −→ X and all morphisms formally constructed from m,u, id
by taking tensor products and composition of morphisms.
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Let A be an algebra with multiplication mA : A⊗ A −→ A and unit uA : K −→ A.
Then ωA : D −→ C defined by ω(X) = A, ω(X⊗n) = A⊗n, ω(m) = mA and ω(u) = uA
is a strict monoidal functor. If A is finite dimensional then the diagram is finite. We
get

Theorem 3.7.1. Let A be a finite dimensional algebra. Then the algebra M(A)
coacting universally from the right on A (the right Tambara bialgebra) M(A) and
coend(ωA) are isomorphic as bialgebras.

Proof. We have studied the Tambara bialgebra for left coaction f : A −→M(A)⊗
A but here we need the analogue for universal right coaction f : A −→ A⊗M(A) (see
Problem (44).

Let B be an algebra and f : A −→ A ⊗ B be a homomorphism of algebras. For
ω = ωA we define

ϕ(X⊗n) : ω(X⊗n) = A⊗n
f⊗n

−→ A⊗n ⊗B⊗n 1⊗mn
B−→ A⊗n ⊗B = ω(X⊗n)⊗B,

where mn
B : B⊗n −→ B is the n-fold multiplication on B. The map ϕ is a natural

transformation since the diagrams

A A⊗B-
ϕ(X)

K K⊗B-ϕ(I)

?

u

?

1⊗u

and
A⊗ A A⊗ A⊗B-ϕ(X⊗X)

A⊗ A⊗B ⊗B
f⊗fXXXz 1⊗m���:

?

m
?
m⊗m

?

m⊗1

A⊗B
f���: 1⊗1XXXz

A A⊗B-
ϕ(X)

commute. Furthermore the following commute

A⊗r ⊗ A⊗s A⊗r ⊗ A⊗s ⊗B ⊗B-ϕ(X⊗r)⊗ϕ(X⊗s)

A⊗r ⊗ A⊗s ⊗B⊗r ⊗B⊗s
XXXz ���:

?

?

?
A⊗(r+s) ⊗B⊗(r+s)

���: XXXz

A⊗(r+s) A⊗(r+s) ⊗B-
ϕ(X⊗(r+s))
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so that ϕ : ωA −→ ωA ⊗B is a monoidal natural transformation.
Conversely let ϕ : ωA −→ ωA ⊗B be a natural transformation. Let f := ϕ(X) : A

−→ A⊗B. Then the following commute

A⊗ A A⊗ A⊗B ⊗B-f⊗f

?

=

?

1⊗m

A⊗ A A⊗ A⊗B-ϕ(X⊗X)

?

m

?

m⊗1

A A⊗B-f

and
K K⊗K-∼=

?

=

?
K K⊗B-

?

u

?

u⊗1

A A⊗B.-f

Hence f : A −→ A⊗B is a homomorphism of algebras.
Thus we have defined an isomorphism

KAlg (A,A⊗B) ∼= Nat⊗(ωA, ωA ⊗B)

that is natural in B. If A is finite dimensional then the left hand side is represented
by the Tambara bialgebra Mr(A) and the right hand side by the bialgebra coend(ωA).
Thus both bialgebras must be isomorphic. �

Corollary 3.7.2. There is a unique isomorphism of bialgebras Mr(A) ∼=
coend(ωA) such that the diagram

A A⊗Mr(A)-

@
@

@
@@R

A⊗ coend(ωA)
?

commutes

Proof. This is a direct consequence of the universal property. �

Thus the Tambara bialgebra that represents the universal quantum monoid acting
on a finite quantum space may be reconstructed by the Tannaka-Krein reconstruction
from representation theory. Similar reconstructions can be given for more complicated
quantum spaces such as so called quadratic quantum spaces.
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8. Reconstruction and C-categories

Now we show that an arbitrary coalgebra C can be reconstructed by the methods
introduced above from its (co-)representations or more precisely from the underlying
functor ω : Comod -C −→ Vec . In this case one can not use the usual construction of
coend(ω) that is restricted to finite dimensional comodules.

The following Theorem is an example that shows that the restriction to finite
dimensional comodules in general is too strong for Tannaka reconstruction. There
may be universal coendomorphism bialgebras for more general diagrams. On the
other hand the following Theorem also holds if one only considers finite dimensional
corepresentations of C. However the proof then becomes somewhat more complicated.

Definition 3.8.1. Let C be a monoidal category. A category D together with a
bifunctor ⊗ : C×D −→ D and natural isomorphisms β : (A⊗B)⊗M −→ A⊗(B⊗M),
η : I ⊗M −→M is called a C-category if the following diagrams commute

((A⊗B)⊗ C)⊗M (A⊗ (B ⊗ C))⊗M-α(A,B,C)⊗1
A⊗ ((B ⊗ C)⊗M)-β(A,B⊗C,M)

?

β(A⊗B,C,M)

?

1⊗β(B,C,M)

(A⊗B)⊗ (C ⊗M) A⊗ (B ⊗ (C ⊗M))-β(A,B,C⊗M)

(A⊗ I)⊗M A⊗ (I ⊗M)-β(A,I,M)

A⊗M

ρ(A)⊗1

Q
Q

Q
QQs

1⊗η(M)

�
�

�
��+

A C-category is called strict if the morphisms β, η are the identities.
Let (D,⊗) and (D′,⊗) be C-categories. A functor F : D −→ D′ together with a

natural transformation ζ(A,M) : A⊗F(M) −→ F(A⊗M) is called a weak C-functor
if the following diagrams commute

(A⊗B)⊗F(M) F((A⊗B)⊗M)-ζ

?

β

?

F(β)

A⊗ (B ⊗F(M)) A⊗F(B ⊗M)-1⊗ζ F(A⊗ (B ⊗M))-ζ

I ⊗F(M) F(I ⊗M)-ζ

F(M)

η
@

@
@@R

F(η)
�

�
��	

If, in addition, ζ is an isomorphism then we call F a C-functor. The functor is
called a strict C-functor if ζ is the identity morphism.
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A natural transformation ϕ : F −→ F ′ between (weak) C-functors is called a
C-transformation if

A⊗F ′(M) F ′(A⊗M)-
ζ′

A⊗F(M) F(A⊗M)-ζ

?

1A⊗ϕ(M)

?

ϕ(A⊗M)

commutes.

Example 3.8.2. Let C be a coalgebra and C := Vec . Then the category Comod -C
of right C-comodules is a C-category since N ∈ Comod -C and V ∈ C = Vec implies
that V ⊗N is a comodules with the comodule structure of N .

The underlying functor ω : Comod -C −→ Vec is a strict C-functor since we have
V ⊗ ω(N) = ω(V ⊗ N). Similarly ω ⊗M : Comod -C −→ Vec is a C-functor since
V ⊗ (ω(N)⊗M) ∼= ω(V ⊗N)⊗M .

Lemma 3.8.3. Let C be a coalgebra. Let ω : Comod -C −→ Vec be the under-
lying functor. Let ϕ : ω −→ ω ⊗ M be a natural transformation. Then ϕ is a
C-transformation with C = Vec .

Proof. It suffices to show 1V ⊗ϕ(N) = ϕ(V ⊗N) for an arbitrary comodule N .
We show that the diagram

V ⊗N V ⊗N ⊗M-
1V ⊗ϕ(N)

V ⊗N V ⊗N ⊗M-ϕ(V⊗N)

?

1

?

1

commutes. Let (vi) be a basis of V . For an arbitrary vector space W let pi : V ⊗W
−→ W be the projections defined by pi(t) = pi(

∑
j vj ⊗wj) = wi where

∑
j vj ⊗wj is

the unique representation of an arbitrary tensor in V ⊗W . So we get

t =
∑
i

vi ⊗ pi(t)

for all t ∈ V ⊗W . Now we consider V ⊗N as a comodule by the comodule structure of
N . Then the pi : V ⊗N −→ N are homomorphisms of comodules. Hence all diagrams
of the form

N N ⊗M.-
ϕ(N)

V ⊗N V ⊗N ⊗M-ϕ(V⊗N)

?

pi

?

pi⊗M
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commute. Expressed in formulas this means ϕ(N)pi(t) = piϕ(V ⊗ N)(t) for all
t ∈ V ⊗N . Hence we have

(1V ⊗ ϕ(N))(t) = (1V ⊗ ϕ(N))(
∑
vi ⊗ pi(t)) =

∑
vi ⊗ ϕ(N)pi(t)

=
∑

i vi ⊗ piϕ(V ⊗N)(t) = ϕ(V ⊗N)(t)

So we have 1V ⊗ ϕ(N) = ϕ(V ⊗N) as claimed. �

We prove the following Theorem only for the category C = Vec of vector spaces.
The Theorem holds in general and says that in an arbitrary symmetric monoidal
category C the coalgebra C represents the functor C- Nat(ω, ω ⊗M) ∼= MorC(C,M)
of natural C-transformations.

Theorem 3.8.4. (Reconstruction of coalgebras) Let C be a coalgebra. Let ω :
Comod -C −→ Vec be the underlying functor. Then C ∼= coend(ω).

Proof. Let M in Vec and let ϕ : ω −→ ω ⊗M be a natural transformation. We
define the homomorphism ϕ̃ : C −→M by ϕ̃ = (ε⊗ 1)ϕ(C) using the fact that C is a
comodule.

Let N be a C-comodule. Then N is a subcomodule of N ⊗C by δ : N −→ N ⊗C
since the diagram

N ⊗ C N ⊗ C ⊗ C-
δ⊗1

N N ⊗ C-δ

?

δ

?

1⊗∆

commutes. Thus the following diagram commutes

N N ⊗ C-δ

N ⊗M N ⊗ C ⊗M-δ⊗1
?

ϕ(N)

?

ϕ(N⊗C)=1N⊗ϕ(C)

N ⊗M

1

XXXXXXXXXXXXXXXXXz

1⊗ε⊗1

HHH
HHH

HHHj

1⊗ϕ̃

@
@

@
@

@
@

@
@

@
@@R

In particular we have shown that the diagram

ω ω ⊗ C-δ

ϕ

@
@

@
@@R
ω ⊗M

?

1⊗ϕ̃

commutes.
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To show the uniqueness of ϕ̃ let g : C −→ M be another homomorphism with
(1 ⊗ g)δ = ϕ. For c ∈ C we have g(c) = g(ε ⊗ 1)∆(c) = (ε ⊗ 1)(1 ⊗ g)∆(c) =
(ε⊗ 1)ϕ(C)(c) = ϕ̃(c).

The coalgebra structure from Corollary 3.5.1 is the original coalgebra structure
of C. This can be seen as follows. The comultiplication δ : ω −→ ω ⊗ C is a natural
transformation hence (δ ⊗ 1C)δ : ω −→ ω ⊗ C ⊗ C is also a natural transformation.
As in Corollary 3.5.1 this induced a unique homomorphism ∆ : C −→ C ⊗ C so that
the diagram

ω ⊗ coend(ω) ω ⊗ coend(ω)⊗ coend(ω)-
δ⊗1

ω ω ⊗ coend(ω)-δ

?

δ

?

1⊗∆

commutes. In a similar way the natural isomorphism ω ∼= ω ⊗ K induces a unique
homomorphism ε : C −→ K so that the diagram

ω ω ⊗ coend(ω)-δ

idω

@
@

@
@@R
ω ⊗ I

?

1⊗ε

commutes. Because of the uniqueness these must be the structure homomorphisms
of C. �

We need a more general version of this Theorem in the next chapter. So let C be
a coalgebra. Let ω : Comod -C −→ Vec be the underlying functor and δ : ω −→ ω ⊗ C
the universal natural transformation for C ∼= coend(ω).

We use the permutation map τ on the tensor product that gives the natural
isomorphism

τ : N1 ⊗ T1 ⊗N2 ⊗ T2 ⊗ . . .⊗Nn ⊗ Tn ∼= N1 ⊗N2 ⊗ . . .⊗Nn ⊗ T1 ⊗ T2 . . .⊗⊗Tn

which is uniquely determined by the coherence theorems and is constructed by suitable
applications of the flip τ : N ⊗ T ∼= T ⊗N .

Let ωn : Comod -C×Comod -C×. . .×Comod -C −→ Vec be the functor ωn(N1, N2, . . . , Nn) =
ω(N1) ⊗ ω(N2) ⊗ . . . ⊗ ω(Nn). For notational convenience we abbreviate {N}n :=
N1⊗N2⊗ . . .⊗Nn, similarly {C}n = C⊗C⊗ . . .⊗C and {f}n := f1⊗ f2⊗ . . .⊗ fn.
So we get τ : {N ⊗ T}n ∼= {N}n ⊗ {T}n.
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Lemma 3.8.5. Let ϕ : ωn −→ ωn ⊗M be a natural transformation. Then ϕ is a
C-transformation in the sense that the diagrams

{V }n ⊗ {N}n {V }n ⊗ {N}n ⊗M-
{V }n⊗ϕ(N1,...,Nn)

{V ⊗N}n {V ⊗N}n ⊗M-ϕ(V1⊗N1,...,Vn⊗Nn)

?

τ

?

τ⊗M

commute for all vector spaces Vi and C-comodules Ni.

Proof. Choose bases {vij} of the vector spaces Vi with corresponding projections
pij : Vi ⊗Ni −→ Ni. Then we have τ(t1 ⊗ . . . ⊗ tn) =

∑
v1i1 ⊗ . . . ⊗ vnin ⊗ p1i1(t1) ⊗

. . .⊗ pnin(tn) so τ =
∑
v1i1 ⊗ . . .⊗ vnin ⊗ {p}n.

The piji : Vi⊗Ni −→ Ni are homomorphisms of C-comodules. Hence the diagrams

{N}n {N}n ⊗M-
ϕ(N1,...,Nn)

{V ⊗N}n {V ⊗N}n ⊗M-ϕ(V1⊗N1,...,Vn⊗Nn)

?

{p}n

?

{p}n⊗M

commute for all choices of {p}n = p1i1 ⊗ . . .⊗ pnin .
So we get for all ti ∈ Vi ⊗Ni

({V }n ⊗ ϕ(N1, . . . , Nn))τ(t1 ⊗ . . .⊗ tn) =
= ({V }n ⊗ ϕ(N1, . . . , Nn))(

∑
v1i1 ⊗ . . .⊗ vnin ⊗ p1i1(t1)⊗ . . .⊗ pnin(tn))

=
∑
v1i1 ⊗ . . .⊗ vnin ⊗ ϕ(N1, . . . , Nn){p}n(t1 ⊗ . . .⊗ tn)

=
∑
v1i1 ⊗ . . .⊗ vnin ⊗ ({p}n ⊗M)ϕ(V1 ⊗N1, . . . , Vn ⊗Nn)(t1 ⊗ . . .⊗ tn)

= (τ ⊗M)ϕ(V1 ⊗N1, . . . , Vn ⊗Nn)(t1 ⊗ . . .⊗ tn).

�

Theorem 3.8.6. With the notation given above we have

coend(ωn) ∼= C ⊗ C ⊗ . . .⊗ C

with the universal natural transformation

δ(n)(N1, N2, . . . , Nn) := τ(δ(N1)⊗ δ(N2)⊗ . . .⊗ δ(Nn)) :
ω(N1)⊗ ω(N2)⊗ . . .⊗ ω(Nn) −→ ω(N1)⊗ C ⊗ ω(N2)⊗ C ⊗ . . .⊗ ω(Nn)⊗ C

∼= ω(N1)⊗ ω(N2)⊗ . . .⊗ ω(Nn)⊗ C ⊗ C ⊗ . . .⊗ C.

Proof. We proceed as in the proof of the previous Theorem.
Let M in Vec and let ϕ : ωn −→ ωn ⊗M be a natural transformation. We define

the homomorphism ϕ̃ : Cn = ω(C)⊗ ω(C)⊗ . . .⊗ ω(C) = C ⊗C ⊗ . . .⊗C −→M by
ϕ̃ = (εn ⊗ 1M)ϕ(C, . . . , C) using the fact that C is a comodule.
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As in the preceding proof we get that δ : Ni −→ Ni ⊗ C are homomorphisms of
C-comodules. Thus the following diagram commutes

N1 ⊗ . . .⊗Nn N1 ⊗ C ⊗ . . .⊗Nn ⊗ C-δ⊗...⊗δ N1 ⊗ . . .⊗Nn⊗-τ

C ⊗ . . .⊗ C

N1 ⊗ . . .⊗Nn ⊗M N1 ⊗ C ⊗ . . .⊗Nn ⊗ C ⊗M-δ⊗...⊗δ⊗M N1 ⊗ . . .⊗Nn⊗-τ⊗M
C ⊗ . . .⊗ C ⊗M

?

ϕ(N1⊗...⊗Nn)

?

ϕ(N1⊗C,...,Nn⊗C)

?
N1⊗...⊗Nn⊗ϕ(C,...,C)

1

XXXXXXXXXXXXXXXXXz

{1⊗ε}n⊗1

HHH
HHH

HHHj
N1 ⊗ . . .⊗Nn ⊗M

?

1⊗{ε}n⊗1

Hence we get the commutative diagram

ωn ωn ⊗ {C}n-δ
(n)

ϕ

@
@

@
@@R
ωn ⊗M

?

1⊗ϕ̃

To show the uniqueness of ϕ̃ let g : Cn −→ M be another homomorphism with
(1ωn ⊗ g)δ(n) = ϕ. We have g = g(εn ⊗ 1Cn)τ∆n = g(εn ⊗ 1Cn)δ(n)(C, . . . , C) =
(εn ⊗ 1M)(1Cn ⊗ g)δ(n)(C, . . . , C) = (εn ⊗ 1M)ϕ(C, . . . , C) = ϕ̃. �

Now we prove the finite dimensional case of reconstruction of coalgebras.

Proposition 3.8.7. (Reconstruction) Let C be a coalgebra. Let Comod 0-C be
the category of finite dimensional C-comodules and ω : Comod 0-C −→ Vec be the
underlying functor. Then we have C ∼= coend(ω).

Proof. Let M be in Vec and let ϕ : ω −→ ω ⊗M be a natural transformation.
We define the homomorphism ϕ̃ : C −→ M as follows. Let c ∈ C. Let N be a
finite dimensional C-subcomodule of C containing c. Then we define g(c) := (ε|N ⊗
1)ϕ(N)(c). If N ′ is another finite dimensional subcomodule of C with c ∈ N ′ and
with N ⊆ N ′ then the following commutes

N N ⊗M-ϕ(N)

? ?
N ′ N ′ ⊗M-ϕ(N ′)

HHj

��*
C ⊗M M-ε⊗1

Thus the definition of ϕ̃(c) is independent of the choice of N . Furthermore ϕ̃ : N
−→ M is obviously a linear map. For any two elements c, c′ ∈ C there is a finite
dimensional subcomodule N ⊆ C with c, c′ ∈ N e. g. the sum of the finite dimensional
subcomodules containing c and c′ separately. Thus ϕ̃ can be extended to all of C.
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The rest of the proof is essentially the same as the proof of the first reconstruction
theorem. �

The representations allow to reconstruct further structure of the coalgebra. We
prove a reconstruction theorem about bialgebras. Recall that the category of B-
comodules over a bialgebra B is a monoidal category, furthermore that the underlying
functor ω : Comod -B −→ Vec is a monoidal functor. From this information we can
reconstruct the full bialgebra structure of B. We have

Theorem 3.8.8. Let B be a coalgebra. Let Comod -B be a monoidal category such
that the underlying functor ω : Comod -B −→ Vec is a monoidal functor. Then there
is a unique bialgebra structure on B that induces the given monoidal structure on the
corepresentations.

Proof. First we prove the uniqueness of the multiplication ∇ : B ⊗ B −→ B
and of the unit η : K −→ B. The natural transformation δ : ω −→ ω ⊗ B becomes a
monoidal natural transformation with ∇ : B⊗B −→ B and η : K −→ B We show that
∇ and η are uniquely determined by ω and δ.

Let ∇′ : B ⊗ B −→ B and η′ : B −→ K be morphisms that make δ a monoidal
natural transformation. The diagrams

ω(X)⊗ ω(Y ) ω(X)⊗ ω(Y )⊗B ⊗B-δ(X)⊗δ(Y )

?

ρ

?

ρ⊗∇′

ω(X ⊗ Y ) ω(X ⊗ Y )⊗B-δ(X⊗Y )

and

K K⊗K-∼=

? ?

1⊗ η′

ω(K) ω(K)⊗B-δ(K)

commute. In particular the following diagrams commute

ω(B)⊗ ω(B) ω(B)⊗ ω(B)⊗B ⊗B-δ(B)⊗δ(B)

?

ρ

?

ρ⊗∇′

ω(B ⊗B) ω(B ⊗B)⊗B-δ(B⊗B)
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and

K K⊗K-∼=

? ?

1⊗ η′

ω(K) ω(K)⊗B-δ(K)

Hence we get
∑
b(1)⊗c(1)⊗b(2)c(2) =

∑
b(1)⊗c(1)⊗∇′(b(2)⊗c(2)) and 1⊗1 = 1⊗η′(1).

This implies bc =
∑
ε(b(1))ε(c(1))b(2)c(2) =

∑
ε(b(1))ε(c(1))∇′(b(2) ⊗ c(2)) = ∇′(b ⊗ c)

and 1 = η′(1).
Now we show the existence of a bialgebra structure. Let B be a coalgebra only and

let ω : Comod -B −→ Vec be a monoidal functor with ξ : ω(M)⊗ ω(N) −→ ω(M ⊗N)
and ξ0 : K −→ ω(K). First we observe that the new tensor product between the
comodules M and N coincides with the tensor product of the underlying vector
spaces (up to an isomorphism ξ). Because of the coherence theorems for monoidal
categories (that also hold in our situation) we may identify along the maps ξ and ξ0.

We define η := (K δ(K)−→ K ⊗ B ∼= B) and ∇ := (B ⊗ B
δ(B⊗B)−→ B ⊗ B ⊗ B

ε⊗ε⊗1B−→
K⊗K⊗B ∼= B).

Since the structural morphism for the comodule δ : M −→ M ⊗ B is a homomor-
phism of of B comodules where the comodule structure on M ⊗ B is only given by
the diagonal of B that is the C-structure on ω : Comod -B −→ Vec we get that also
δ(M)⊗ δ(N) : M ⊗N −→M ⊗N ⊗B is a comodule homomorphism. Hence the first
square in the following diagram commutes

M ⊗N M ⊗B ⊗N ⊗B-δ(M)⊗δ(N)

M ⊗N ⊗B M ⊗B ⊗N ⊗B ⊗B-δ(M)⊗δ(N)⊗1B

M ⊗N ⊗B ⊗B-1⊗τ⊗1

M ⊗N ⊗B ⊗B ⊗B-1⊗τ⊗1⊗1
?

δ(M⊗N)

?

δ(M⊗B⊗N⊗B)

?

1⊗1⊗δ(B⊗B)

The second square commutes by a similar reasoning since the comodule structure on
M ⊗B resp. N ⊗B is given by the diagonal on B hence M ⊗N can be factored out
of the natural (C-)transformation. Now we attach

1M ⊗ 1N ⊗ ε⊗ ε⊗ 1B : M ⊗N ⊗B ⊗B ⊗B −→M ⊗N ⊗B

to the commutative rectangle and obtain δ(M⊗N) = (1M⊗1N⊗∇)(1⊗τ⊗1)(δ(M)⊗
δ(N). Thus the comodule structure on M ⊗ N is induced by the multiplication
∇ : B ⊗B −→ B defined above.
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So the following diagrams commute

B ⊗B B ⊗B ⊗B ⊗B-∆⊗∆
B ⊗B ⊗B ⊗B-1⊗τ⊗1

B ⊗B B ⊗B ⊗B-δ(B⊗B)

B ⊗B ⊗B B ⊗B ⊗B ⊗B-1⊗1⊗∆

B B ⊗B-∆

?

1B⊗1B

?

1⊗∇

δ(B⊗B)

Q
Q

Q
QQs

δ(B⊗B)⊗1

�
�

�
��+

?

∇

?

∇⊗1

ε⊗ε⊗1

�
�

�
��+

ε⊗ε⊗1⊗1

Q
Q

Q
QQs

B ⊗B B-∇

B ⊗B K-ε⊗ε

B ⊗B ⊗B

δ(B⊗B)

HH
HHH

HHj

ε⊗ε⊗1

��
���

��*

?

1

1⊗1⊗ε
��

���
���

ε

�
�

�
�

�
�

�
�	

K B-η

K⊗B K⊗B ⊗B-δ(K)⊗1
B ⊗B-∼=

B B ⊗B-η⊗1

K⊗B

δ(K)

XXXXXXXXXXXXXz
δ(K)

@
@

@
@

@
@

@
@R

∼=
���

����*

∼=
��

���
���

η⊗1

HH
HHH

HHj

1B

��
���

���?

η

?

1⊗∆

?

∼=

?

∆

and
K K-1

K⊗B

δ(K)

H
HHH

HHHj

1⊗ε
���

����*

η

@
@

@
@

@
@

@
@R

ε

�
�

�
�

�
�

�
��

B
?

∼=

Hence η and ∇ are coalgebra homomorphisms.
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To show the associativity of ∇ we identify along the maps α : (M ⊗ N) ⊗ P ∼=
M⊗(N⊗P ) and furthermore simplify the relevant diagram by fixing that σ represents
a suitable permutation of the tensor factors. Then the following commute

B ⊗B ⊗B B ⊗B ⊗B ⊗B ⊗B ⊗B-σ(δ(B)⊗δ(B)⊗δ(B)
B ⊗B ⊗B-ε⊗ε⊗ε⊗1

B ⊗B ⊗B B ⊗B ⊗B ⊗B ⊗B ⊗B
-σ(δ(B⊗B)⊗δ(B))

-
σ(δ(B)⊗δ(B⊗B))

B ⊗B-ε⊗ε⊗ε⊗1

B ⊗B ⊗B B ⊗B ⊗B ⊗B-δ(B⊗B⊗B)
B-ε⊗ε⊗ε⊗1

?

1

?

1

?

1⊗(∇⊗1)

?

1⊗(1⊗∇)

?

∇⊗1

?

1⊗∇

?

1⊗∇

?

∇

The upper row is the identity hence we get the associative law.
For the proof that η has the properties of a unit we must explicitly consider the

coherence morphisms λ and ρ By reasons of symmetry we will only show one half
of of the unit axiom. This axiom follows from the commutativity of the following
diagram

B B ⊗B-δ(B)
B ⊗B ⊗K-ρ

−1

B ⊗B-ρ
B-ε⊗1

B ⊗K B ⊗B ⊗K⊗B-δ(B)⊗δ(K)
B ⊗K⊗B ⊗B-1⊗τ⊗1

B ⊗B ⊗B-ρ⊗1⊗1
B ⊗B-ε⊗1⊗1

B ⊗K B ⊗K⊗B-δ(B⊗K)

B B ⊗B-δ(B)
B-ε⊗1

?

ρ−1

?

1⊗1⊗δ(K)

?

1⊗1⊗η
?

1⊗η

?

=

?

1⊗1⊗∇

?

1⊗∇

?

∇

?

ρ

δ(B)⊗1

�
���

���*

ρ⊗1

HH
HHH

HHj

�



CHAPTER 4

The Infinitesimal Theory

1. Integrals and Fourier Transforms

Assume for this chapter that K is a field.

Lemma 4.1.1. Let C be a finite dimensional coalgebra. Every right C-comodule
M is a left C∗-module by c∗m =

∑
m(M)〈c∗,m(1)〉 and conversely by δ(m) =

∑
i c
∗
im⊗

ci where
∑
c∗i ⊗ ci is the dual basis.

Proof. We check that M becomes a left C∗-module

(c∗c′∗)m =
∑
m(M)〈c∗c′∗,m(1)〉 =

∑
m(M)〈c∗,m(1)〉〈c′∗,m(2)〉

= c∗
∑
m(M)〈c′∗,m(1)〉 = c∗(c′∗m).

It is easy to check that the two constructions are inverses of each other. In particular
assume that M is a right C-comodule. Choose mi such that δ(m) =

∑
mi⊗ ci. Then

c∗jm =
∑
mi〈c∗j , ci〉 = mj and

∑
c∗im⊗ ci =

∑
mi ⊗ ci = δ(m). �

Definition 4.1.2. 1. Let A be an algebra with augmentation ε : A −→ K, an
algebra homomorphism. Let M be a left A-module. Then AM = {m ∈ M |am =
ε(a)m} is called the space of left invariants of M .

This defines a functor A- : A-Mod −→ Vec .
2. Let C be a coalgebra with a grouplike element 1 ∈ C. Let M be a right

C-comodule. Then M coC := {m ∈ M |δ(m) = m ⊗ 1} is called the space of right
coinvariants of M .

This defines a functor -coC : Comod -C −→ Vec .

Lemma 4.1.3. Let C be a finite dimensional coalgebra with a grouplike element
1 ∈ C. Then A := C∗ is an augmented algebra with augmentation ε : C∗ 3 a 7→
〈a, 1〉 ∈ K. Let M be a right C-comodule. Then M is a left C∗-module and we have

C∗M = M coC .

Proof. Since 1 ∈ C is grouplike we have εA(ab) = 〈ab, 1〉 = 〈a, 1〉〈b, 1〉 =
εA(a)εA(b) and εA(1A) = 〈1A, 1C〉 = εC(1C) = 1.

We have m ∈ M coH iff δ(m) =
∑
m(M) ⊗ m(1) = m ⊗ 1 iff

∑
m(M)〈a,m(1)〉 =

m〈a, 1〉 for all a ∈ A = C∗ and by identifying C∗⊗C = Hom(C∗, C∗) iff am = εA(a)m
iff m ∈ AM . �

Remark 4.1.4. The theory of Fourier transforms contains the following state-
ments. Let H be the (Schwartz) space of infinitely differentiable functions f : R −→ C,

113
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such that f and all derivatives rapidly decrease at infinity. (f decreases rapidly at in-
finity if |x|mf(x) is bounded for all m.) This space is an algebra (without unit) under
the multiplication of values. There is a second multiplication on H, the convolution

(f ∗ g)(x) = (2π)−1/2

∫ +∞

−∞
f(t)g(x− t)dt.

The Fourier transform is a homomorphism -̂ : H −→ H defined by

f̂(x) = (2π)−1/2

∫ +∞

−∞
f(t)e−itxdt.

It satisfies the identity (f ∗ g)̂ = f̂ ĝ hence it is an algebra homomorphism. We want
to find an analogue of this theory for finite quantum groups.

A similar example is the following. Let G be a locally compact topological group.
Let µ be the (left) Haar measure on G and

∫
f :=

∫
G
f(x)dµ(x) be the Haar integral.

The Haar measure is left invariant in the sense that µ(E) = µ(gE) for all g ∈ G
and all compact subsets E of G. The Haar measure exists and is unique up to a
positive factor. The Haar integral is translation invariant i.e. for all y ∈ G we have∫
f(yx)dµ(x) =

∫
f(x)dµ(x).

If µ is a left-invariant Haar measure then there is a continuous homomorphism
mod : G −→ (R+, ·) such that

∫
f(xy−1)dµ(x) = mod (y)

∫
(f(x)dµ(x). The homo-

morphism µ does not depend on f and is called the modulus of G. The group G is
called unimodular if the homomorphism mod is the identity.

If G is a compact, or discrete, or Abelian group, or a connected semisimple or
nilpotent Lie group, then G is unimodular.

Let G be a quantum group (or a quantum monoid) with function algebra H an
arbitrary Hopf algebra. We also use the algebra of linear functionalsH∗ = Hom(H,K)
(called the bialgebra of G in the French literature). The operation H∗ ⊗ H 3 a ⊗
f 7→ 〈a, f〉 ∈ K is nondegenerate on both sides. We denote the elements of H by
f, g, h ∈ H, the elements of H∗ by a, b, c ∈ H∗, the (non existing) elements of the
quantum group G by x, y, z ∈ G.

Remark 4.1.5. In 2.4.8 we have seen that the dual vector space H∗ of a finite
dimensional Hopf algebra H is again a Hopf algebra. The Hopf algebra structures
are connected by the evaluation bilinear form

ev : H∗ ⊗H 3 a⊗ f 7→ 〈a, f〉 ∈ K

as follows:

〈a⊗ b,
∑
f(1) ⊗ f(2)〉 = 〈ab, f〉, 〈

∑
a(1) ⊗ a(2), f ⊗ g〉 = 〈a, fg〉,

〈a, 1〉 = ε(a), 〈1, f〉 = ε(f),
〈a, S(f)〉 = 〈S(a), f〉.
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Definition 4.1.6. 1. The linear functionals a ∈ H∗ are called generalized integrals
on H ([Riesz-Nagy] S.123).

2. An element
∫
∈ H∗ is called a left (invariant) integral on H if

a
∫

= 〈a, 1H〉
∫

or a
∫

= εH∗(a)
∫

for all a ∈ H∗.
3. An element δ ∈ H is called a left integral in H if

fδ = ε(f)δ

for all f ∈ H.
4. The set of left integrals in H is denoted by Intl(H), the set of right integrals

by Intr(H). The set of left (right) integrals on H is Intl(H
∗) (Intr(H

∗)).
5. A Hopf algebra H is called unimodular if Intl(H) = Intr(H).

Lemma 4.1.7. The left integrals Intl(H
∗) form a two sided ideal of H∗. If the

antipode S is bijective then S induces an isomorphism S : Intl(H
∗) −→ Intr(H

∗).

Proof. For
∫

in Intl(H
∗) we have a

∫
= ε(a)

∫
∈ Intl(H

∗) and a
∫
b = ε(a)

∫
b

hence
∫
b ∈ Intl(H

∗). If S is bijective then the induced map S : H∗ −→ H∗ is
also bijective and satisfies S(

∫
)b = S(

∫
)S(S−1(b)) = S(S−1(b)

∫
) = S(

∫
)ε(b) hence

S(
∫

) ∈ Intr(H
∗). �

Remark 4.1.8. Maschke’s Theorem has an extension to finite dimensional Hopf
algebras: ε(

∫
) 6= 0 iff H∗ is semisimple.

Corollary 4.1.9. Let H be a finite dimensional Hopf algebra. Then H∗ is a left
H∗-module by the usual multiplication, hence a right H-comodule. We have

(H∗)coH = Intl(H
∗).

Proof. By definition we have Intl(H
∗) = H∗H∗. �

Example 4.1.10. Let G be a finite group. Let H := Map(G,K) be the Hopf
algebra defined by the following isomorphism

KG = Map(G,K) ∼= Hom(KG,K) = (KG)∗.

This isomorphism between the vector space KG of all set maps from the group G to
the base ring K and the dual vector space (KG)∗ of the group algebra KG defines the
structure of a Hopf algebra on KG.

We regard H := KG as the function algebra on the set G. In the sense of algebraic
geometry this is not quite true. The algebra KG represents a functor from K-cAlg
to Set that has G as value for all connected algebras A in particular for all field
extensions of K.

As before we use the map ev : KG ⊗ KG −→ K. The multiplication of KG is
given by pointwise multiplication of maps since 〈x, ff ′〉 = 〈

∑
x(1) ⊗ x(2), f ⊗ f ′〉 =

〈x ⊗ x, f ⊗ f ′〉 = 〈x, f〉〈x, f ′〉 for all f, f ′ ∈ KG and all x ∈ G. The unit element
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1KG of KG is the map ε : KG −→ K restricted to G, hence ε(x) = 1 = 〈x, 1KG〉 for all
x ∈ G. The antipode of f ∈ KG is given by S(f)(x) = 〈x, S(f)〉 = f(x−1).

The elements of the dual basis (x∗|x ∈ G) with 〈x, y∗〉 = δx,y considered as maps
from G to K form a basis of KG. They satisfy the conditions

x∗y∗ = δx,yx
∗ and

∑
x∈G

x∗ = 1KG

since 〈z, x∗y∗〉 = 〈z, x∗〉〈z, y∗〉 = δz,xδz,y = δx,y〈z, x∗〉 and 〈z,
∑

x∈G x
∗〉 = 1 = 〈z, 1KG〉.

Hence the dual basis (x∗|x ∈ G) is a decomposition of the unit into a set of
minimal orthogonal idempotents and the algebra of KG has the structure

KG = ⊕x∈GKx∗ ∼= K× . . .×K.

In particular KG is commutative and semisimple.
The diagonal of KG is

∆(x∗) =
∑
y∈G

y∗ ⊗ (y−1x)∗ =
∑

y,z∈G,yz=x

y∗ ⊗ z∗

since
〈z ⊗ u,∆(x∗)〉 = 〈zu, x∗〉 = δx,zu = δz−1x,u =

∑
y∈G δy,zδy−1x,u

=
∑

y∈G〈z, y∗〉〈u, (y−1x)∗〉 = 〈z ⊗ u,
∑

y∈G y
∗ ⊗ (y−1x)∗〉.

Let a ∈ KG. Then a defines a map ã : G −→ K ∈ KG by a =
∑

x∈G ã(x)x. For
arbitrary f ∈ KG and a ∈ KG this gives

〈a, f〉 = f(
∑
x∈G

ã(x)x) =
∑
x∈G

ã(x)f(x).

The counit of KG is given by ε(x∗) = δx,e where e ∈ G is the unit element.
The antipode is, as above, S(x∗) = (x−1)∗.
We consider H = KG as the function algebra on the finite group G and KG as

the dual space of H = KG hence as the set of distributions on H.
Then

(7)
∫

:=
∑
x∈G

x ∈ H∗ = KG

is a (two sided) integral on H since
∑

x∈G yx =
∑

x∈G x = ε(y)
∑

x∈G x =
∑

x∈G yx.
We write ∫

f(x)dx := 〈
∫
, f〉 =

∑
x∈G

f(x).

We have seen that there is a decomposition of the unit 1 ∈ KG into a set of
primitive orthogonal idempotents {x∗|x ∈ G} such that every element f ∈ KG has
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a unique representation f =
∑
f(x)x∗. Since

∫
y∗ =

∑
x∈G〈x, y∗〉 we get

∫
fy∗ =∑

x∈G〈x, fy∗〉 =
∑
f(x)y∗(x) = f(y) hence

f =
∑

(

∫
f(x)y∗(x)dx)y∗.

Problem 4.1.30. Describe the group valued functor K-cAlg (KG,−) in terms of
sets and their group structure.

Definition and Remark 4.1.11. Let K be an algebraicly closed field and let G
be a finite abelian group (replacing R above). Assume that the characteristic of K
does not divide the order of G. Let H = KG. We identify KG = Hom(KG,K) along
the linear expansion of maps as in Example 2.1.10.

Let us consider the set Ĝ := {χ : G −→ K∗|χ group homomorphism}. Since K∗ is

an abelian group, the set Ĝ is an abelian group by pointwise multiplication.
The group Ĝ is called the character group of G.
Obviously the character group is a multiplicative subset of KG = Hom(KG,K).

Actually it is a subgroup of K-cAlg (KG,K) ⊆ Hom(KG,K) since the elements χ ∈ Ĝ
expand to algebra homomorphisms: χ(ab) = χ(

∑
αxx

∑
βyy) =

∑
αxβyχ(xy) =

χ(a)χ(b) and χ(1) = χ(e) = 1. Conversely an algebra homomorphism f ∈
K-cAlg (KG,K) restricts to a character f : G −→ K∗. Thus Ĝ = K-cAlg (KG,K), the
set of rational points of the affine algebraic group represented by KG.

There is a more general observation behind this remark.

Lemma 4.1.12. Let H be a finite dimensional Hopf algebra. Then the set Gr(H∗)
of grouplike elements of H∗ is equal to K-Alg (H,K).

Proof. In fact f : H −→ K is an algebra homomorphism iff 〈f ⊗ f, a ⊗ b〉 =
〈f, a〉〈f, b〉 = 〈f, ab〉 = 〈∆(f), a⊗ b〉 and 1 = 〈f, 1〉 = ε(f). �

Hence there is a Hopf algebra homomorphism ϕ : KĜ −→ KG by 2.1.5.

Proposition 4.1.13. The Hopf algebra homomorphism ϕ : KĜ −→ KG is bijec-
tive.

Proof. We give the proof by several lemmas.

Lemma 4.1.14. Any set of grouplike elements in a Hopf algebra H is linearly
independent.

Proof. Assume there is a linearly dependent set {x0, x1, . . . , xn} of grouplike
elements in H. Choose such a set with n minimal. Obviously n ≥ 1 since all elements
are non zero. Thus x0 =

∑n
i=1 αixi and {x1, . . . , xn} linearly independent. We get∑

i,j

αiαjxi ⊗ xj = x0 ⊗ x0 = ∆(x0) =
∑
i

αixi ⊗ xi.



118 4. THE INFINITESIMAL THEORY

Since all αi 6= 0 and the xi ⊗ xj are linearly independent we get n = 1 and α1 = 1 so
that x0 = x1, a contradiction. �

Corollary 4.1.15. (Dedekind’s Lemma) Any set of characters in KG is linearly
independent.

Thus ϕ : KĜ −→ KG is injective. Now we prove that the map ϕ : KĜ −→ KG is
surjective.

Lemma 4.1.16. (Pontryagin duality) The evaluation Ĝ × G −→ K∗ is a non-
degenerate bilinear map of abelian groups.

Proof. First we observe that Hom(Cn,K∗) ∼= Cn for a cyclic group of order n
since K has a primitive n-th root of unity (char(K)6− |G|).

Since the direct product and the direct sum coincide in Ab we can use the funda-
mental theorem for finite abelian groups G ∼= Cn1 × . . .×Cnt to get Hom(G,K∗) ∼= G

for any abelian group G with char(K)6− |G|. Thus Ĝ ∼= G and
ˆ̂
G = G. In particular

χ(x) = 1 for all x ∈ G iff χ = 1. By the symmetry of the situation we get that the

bilinear form 〈., .〉 : Ĝ×G −→ K∗ is non-degenerate. �

Thus |Ĝ| = |G| hence dim(KĜ) = dim(KG). This proves Proposition 2.1.13. �

Definition 4.1.17. Let H be a Hopf algebra. A K-module M that is a right
H-module by ρ : M ⊗H −→M and a right H-comodule by δ : M −→M ⊗H is called
a Hopf module if the diagram

M ⊗H H-ρ M ⊗H-δ

M ⊗H ⊗H ⊗H M ⊗H ⊗H ⊗H-1⊗τ⊗1
?

δ⊗∆
6
ρ⊗∇

commutes, i.e. if δ(mh) =
∑
m(M)h(1) ⊗m(1)h(2) holds for all h ∈ H and all m ∈M .

Observe that H is an Hopf module over itself. Furthermore each module of the
form V ⊗ H is a Hopf module by the induced structure. More generally there is a
functor Vec 3 V 7→ V ⊗H ∈ Hopf-Mod-H.

Proposition 4.1.18. The two functors -coH : Hopf-Mod-H −→ Vec and -⊗H :
Vec 3 V 7→ V ⊗H ∈ Hopf-Mod-H are inverse equivalences of each other.

Proof. Define natural isomorphisms

α : M coH ⊗H 3 m⊗ h 7→ mh ∈M
with inverse map

α−1 : M 3 m 7→
∑

m(M)S(m(1))⊗m(2) ∈M coH ⊗H

and
β : V 3 v 7→ v ⊗ 1 ∈ (V ⊗H)coH
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with inverse map
(V ⊗H)coH 3 v ⊗ h 7→ vε(h) ∈ V.

Obviously these homomorphisms are natural transformations in M and V . Fur-
thermore α is a homomorphism of H-modules. α−1 is well-defined since

δ(
∑
m(M)S(m(1))) =

∑
m(M)S(m(3))⊗m(1)S(m(2))

(since M is a Hopf module)
=

∑
m(M)S(m(2))⊗ ηε(m(1))

=
∑
m(M)S(m(1))⊗ 1

hence
∑
m(M)S(m(1)) ∈ M coH . Furthermore α−1 is a homomorphism of comodules

since

δα−1(m) = δ(
∑
m(M)S(m(1))⊗m(2)) =

∑
m(M)S(m(1))⊗m(2) ⊗m(3)

=
∑
α−1(m(M))⊗m(1) = (α−1 ⊗ 1)δ(m).

Finally α and α−1 are inverse to each other by

αα−1(m) = α(
∑

m(M)S(m(1))⊗m(2)) =
∑

m(M)S(m(1))m(2) = m

and

α−1α(m⊗ h) = α−1(mh) =
∑
m(M)h(1)S(m(1)h(2))⊗m(2)h(3)

=
∑
mh(1)S(h(2))⊗ h(3) ( by δ(m) = m⊗ 1 ) = m⊗ h.

Thus α and α−1 are mutually inverse homomorphisms of Hopf modules.
The image of β is in (V ⊗H)coH by δ(v ⊗ 1) = v ⊗∆(1) = (v ⊗ 1) ⊗ 1. Both β

and β−1 are K-linear maps. Furthermore we have

β−1β(v) = β−1(v ⊗ 1) = vε(1) = v

and

ββ−1(
∑
vi ⊗ hi) = β(

∑
viε(hi)) =

∑
viε(hi)⊗ 1 =

∑
vi ⊗ ε(hi)1

=
∑
vi ⊗ ε(hi(1))hi(2) ( since

∑
vi ⊗ hi ∈ (V ⊗H)coH ) =

∑
vi ⊗ hi.

Thus β and β−1 are mutually inverse homomorphisms. �

Since H∗ = Hom(H,K) and S : H −→ H is an algebra antihomomorphism, the
dual H∗ is an H-module in four different ways:

(8)
〈(f ⇀ a), g〉 := 〈a, gf〉, 〈(a ↼ f), g〉 := 〈a, fg〉,
〈(f ⇁ a), g〉 := 〈a, S(f)g〉, 〈(a ↽ f), g〉 := 〈a, gS(f)〉.

If H is finite dimensional then H∗ is a Hopf algebra. The equality 〈(f ⇀ a), g〉 =
〈a, gf〉 =

∑
〈a(1), g〉〈a(2), f〉 implies

(9) (f ⇀ a) =
∑

a(1)〈a(2), f〉.

Analogously we have

(10) (a ↼ f) =
∑

〈a(1), f〉a(2).
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Proposition 4.1.19. Let H be a finite dimensional Hopf algebra. Then H∗ is a
right Hopf module over H.

Proof. H∗ is a left H∗-module by left multiplication hence by 2.1.1 a right H-
comodule by δ(a) =

∑
i b
∗
i a⊗bi. Let f, g ∈ H and a, b ∈ H∗. The (left) multiplication

of H∗ satisfies
ab =

∑
b(H∗)〈a, b(1)〉.

We use the right H-module structure

(a ↽ f) =
∑

a(1)〈S(f), a(2)〉.

on H∗ = Hom(H,K).
Now we check the Hopf module property. Let a, b ∈ H∗ and f, g ∈ H. We apply

H∗ ⊗H to its dual H ⊗H∗ and get

δ(a ↽f)(g ⊗ b) =
∑
〈(a ↽ f)(H∗), g〉〈b, (a ↽ f)(1)〉 = 〈b(a ↽ f), g〉

=
∑
〈b, g(1)〉〈(a ↽ f), g(2)〉 =

∑
〈b, g(1)〉〈a, g(2)S(f)〉

=
∑
〈b, g(1)ε(f(2))〉〈a, g(2)S(f(1))〉 =

∑
〈(f(3) ⇀ b), g(1)S(f(2))〉〈a, g(2)S(f(1))〉

=
∑
〈(f(2) ⇀ b)a, gS(f(1))〉 =

∑
〈((f(2) ⇀ b)a) ↽ f(1), g〉

=
∑
〈(a(H∗)〈(f(2) ⇀ b), a(1)〉) ↽ f(1), g〉

=
∑
〈(a(H∗) ↽ f(1))〈(f(2) ⇀ b), a(1)〉, g〉 =

∑
〈(a(H∗) ↽ f(1))〈b, a(1)f(2)〉, g〉

hence δ(a ↽ f) =
∑

(a(H∗) ↽ f(1))⊗ a(1)f(2). �

Theorem 4.1.20. Let H be a finite dimensional Hopf algebra. Then the antipode
S is bijective, the space of left integrals Intl(H

∗) has dimension 1, and the homomor-
phism

H 3 f 7→ (f ⇀
∫

) =
∑ ∫

(1)
〈
∫

(2)
, f〉 3 H∗

is bijective for any 0 6=
∫
∈ Intl(H

∗).

Proof. By Proposition 2.1.19 H∗ is a right Hopf module over H. By Proposition
2.1.18 there is an isomorphism α : (H∗)coH ⊗H 3 a⊗ f 7→ (a ↽ f) = (S(f) ⇀ a) ∈
H∗. Since (H∗)coH ∼= Intl(H

∗) by 2.1.9 we get

Intl(H
∗)⊗H ∼= H∗

as right H-Hopf modules by the given map. This shows dim(Intl(H
∗)) = 1. So

we get an isomorphism H 3 f 7→ (
∫
↽ f) ∈ H∗ that is a composition of S and

f 7→ (f ⇀
∫

). Since H is finite dimensional both of these maps are bijective. �

If G is a finite group then every generalized integral a ∈ KG can be written with
a uniquely determined g ∈ H = KG as

(11) 〈a, f〉 =

∫
f(x)S(g)(x)dx =

∑
x∈G

f(x)g(x−1)

for all f ∈ H.
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If G is a finite Abelian group then each group element (rational integral) y ∈ G ⊆
KG can be written as

y =
∑
x∈G

∑
χ∈Ĝ

βχ〈x−1, χ〉x

since

〈y, f〉 = 〈(
∫
↽

∑
χ∈Ĝ βχχ), f〉 = 〈

∫
, fS(

∑
χ∈Ĝ βχχ)〉

=
∑

x∈G〈x, f〉
∑

χ∈Ĝ βχ〈x, S(χ)〉 = 〈
∑

x∈G
∑

χ∈Ĝ βχ〈x−1, χ〉x, f〉.

In particular the matrix (〈x−1, χ〉) is invertible.
Let H be finite dimensional. Since 〈

∫
, fg〉 = 〈(

∫
↼ f), g〉 as a functional on g is

a generalized integral, there is a unique ν(f) ∈ H such that

(12) 〈
∫
, fg〉 = 〈

∫
, gν(f)〉

or

(13)

∫
f(x)g(x)dx =

∫
g(x)ν(f)(x)dx.

Although the functions f, g ∈ H of the quantum group do not commute under mul-
tiplication, there is a simple commutation rule if the product is integrated.

Proposition and Definition 4.1.21. The map ν : H −→ H is an algebra auto-
morphism, called the Nakayama automorphism.

Proof. It is clear that ν is a linear map. We have
∫
fν(gh) =

∫
ghf =∫

hfν(g) =
∫
fν(g)ν(h) hence ν(gh) = ν(g)ν(h) and

∫
fν(1) =

∫
f hence ν(1) = 1.

Furthermore if ν(g) = 0 then 0 = 〈
∫
, fν(g)〉 = 〈

∫
, gf〉 = 〈(f ⇀

∫
), g〉 for all f ∈ H

hence 〈a, g〉 = 0 for all a ∈ H∗ hence g = 0. So ν is injective hence bijective. �

Corollary 4.1.22. The map H 3 f 7→ (
∫
↼ f) ∈ H∗ is an isomorphism.

Proof. We have
(
∫
↼ f) = (ν(f) ⇀

∫
)

since 〈(
∫
↼ f), g〉 = 〈

∫
, fg〉 = 〈

∫
, gν(f)〉 = 〈(ν(f) ⇀

∫
), g〉. This implies the

corollary. �

If G is a finite group and H = KG then H is commutative hence ν = id.

Definition 4.1.23. An element δ ∈ H is called a Dirac δ-function if δ is a left
invariant integral in H with 〈

∫
, δ〉 = 1, i.e. if δ satisfies

fδ = ε(f)δ and

∫
δ(x)dx = 1

for all f ∈ H. If H has a Dirac δ-function then we write

(14)

∫ ∗
a(x)dx =

∫ ∗
a := 〈a, δ〉.
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Proposition 4.1.24..

(1) If H is finite dimensional then there exists a unique Dirac δ-function δ.
(2) If H is infinite dimensional then there exists no Dirac δ-function.

Proof. 1. Since H 3 f 7→ (f ⇀
∫

) ∈ H∗ is an isomorphism there is a δ ∈ H
such that (δ ⇀

∫
) = ε. Then (fδ ⇀

∫
) = (f ⇀ (δ ⇀

∫
)) = (f ⇀ ε) = ε(f)ε =

ε(f)(δ ⇀
∫

) which implies fδ = ε(f)δ. Furthermore we have 〈
∫
, δ〉 = 〈

∫
, 1Hδ〉 =

〈(δ ⇀
∫

), 1H〉 = ε(1H) = 1K.
2. is [Sweedler] exercise V.4. �

Lemma 4.1.25. Let H be a finite dimensional Hopf algebra. Then
∫
∈ H∗ is a

left integral iff

(15) a(
∑ ∫

(1)
⊗ S(

∫
(2)

)) = (
∑ ∫

(1)
⊗ S(

∫
(2)

))a

iff

(16)
∑

S(a)
∫

(1)
⊗

∫
(2)

=
∑ ∫

(1)
⊗ a

∫
(2)

iff

(17)
∑

f(1)〈
∫
, f(2)〉 = 〈

∫
, f〉1H .

Proof. Let
∫

be a left integral. Then∑
a(1)

∫
(1)
⊗ S(

∫
(2)

)S(a(2)) =
∑

(a
∫

)(1) ⊗ S((a
∫

)(2)) = ε(a)(
∑ ∫

(1)
⊗ S(

∫
(2)

))

for all a ∈ H. Hence

(
∑∫

(1)
⊗ S(

∫
(2)

))a =
∑
ε(a(1))(

∫
(1)
⊗ S(

∫
(2)

))a(2)

=
∑
a(1)

∫
(1)
⊗ S(

∫
(2)

)S(a(2))a(3)

=
∑
a(1)

∫
(1)
⊗ S(

∫
(2)

)ε(a(2)) = a(
∑∫

(1)
⊗ S(

∫
(2)

)).

Conversely a(
∑∫

(1)
ε(S(

∫
(2)

))) = (
∑∫

(1)
ε(S(

∫
(2)

)a)) = ε(a)(
∑∫

(1)
ε(S(

∫
(2)

))),

hence
∫

=
∑∫

(1)
ε(S(

∫
(2)

)) is a left integral.

Since S is bijective the following holds∑
S(a)

∫
(1)
⊗

∫
(2)

=
∑
S(a)

∫
(1)
⊗S−1(S(

∫
(2)

))

=
∑∫

(1)
⊗S−1(S(

∫
(2)

)S(a)) =
∑∫

(1)
⊗a

∫
(2)
.

The converse follows easily.
If

∫
∈ Intl(H) is a left integral then

∑
〈a, f(1)〉〈

∫
, f(2)〉 = 〈a

∫
, f〉 = 〈a, 1H〉〈

∫
, f〉.

Conversely if λ ∈ H∗ with (17) is given then 〈aλ, f〉 =
∑
〈a, f(1)〉〈λ, f(2)〉 =

〈a, 1H〉〈λ, f〉 hence aλ = ε(a)λ. �

If G is a finite group then

(18) δ(x) =

{
0 if x 6= e;

1 if x = e.
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In fact since δ is left invariant we get f(x)δ(x) = f(e)δ(x) for all x ∈ G and f ∈ KG.
Since G ⊂ H∗ = KG is a basis, we get δ(x) = 0 if x 6= e. Furthermore

∫
δ(x)dx =∑

x∈G δ(x) = 1 implies δ(e) = 1. So we have δ = e∗.
If G is a finite Abelian group we get δ = α

∑
χ∈Ĝ χ for some α ∈ K. The

evaluation gives 1 = 〈
∫
, δ〉 = α

∑
x∈G,χ∈Ĝ〈χ, x〉. Now let λ ∈ Ĝ. Then

∑
χ∈Ĝ〈χ, x〉 =∑

χ∈Ĝ〈λχ, x〉 = 〈λ, x〉
∑

χ∈Ĝ〈χ, x〉. Since for each x ∈ G \ {e} there is a λ such that

〈λ, x〉 6= 1 and we get ∑
χ∈Ĝ

〈χ, x〉 = |G|δe,x.

Hence
∑

x∈G,χ∈Ĝ〈χ, x〉 = |G| = α−1 and

(19) δ = |G|−1
∑
χ∈Ĝ

χ.

Let H be finite dimensional for the rest of this section. In Corollary 1.22 we have
seen that the map H 3 f 7→ (

∫
↼ f) ∈ H∗ is an isomorphism. This map will be

called the Fourier transform.

Theorem 4.1.26. The Fourier transform H 3 f 7→ f̃ ∈ H∗ is bijective with

(20) f̃ = (
∫
↼ f) =

∑
〈
∫

(1)
, f〉

∫
(2)

The inverse Fourier transform is defined by

(21) ã =
∑

S−1(δ(1))〈a, δ(2)〉.

Since these maps are inverses of each other the following formulas hold

(22)
〈f̃ , g〉 =

∫
f(x)g(x)dx 〈a, b̃〉 =

∫ ∗
S−1(a)(x)b(x)dx

f =
∑
S−1(δ(1))〈f̃ , δ(2)〉 a =

∑
〈
∫

(1)
, ã〉

∫
(2)
.

Proof. We use the isomorphisms H −→ H∗ defined by f̂ := f̃ = (
∫
↼ f) =∑

〈
∫

(1)
, f〉

∫
(2)

and H∗ −→ H defined by â := (a ⇀ δ) =
∑
δ(1)〈a, δ(2)〉. Because of

(23) 〈a, b̂〉 = 〈a, (b ⇀ δ)〉 = 〈ab, δ〉

and

(24) 〈f̃ , g〉 = 〈(
∫
↼ f), g〉 = 〈

∫
, fg〉

we get for all a ∈ H∗ and f ∈ H

〈a, ̂̂
f〉 = 〈af̂ , δ〉 =

∑
〈a, δ(1)〉〈f̂ , δ(2)〉 =

∑
〈a, δ(1)〉〈

∫
, fδ(2)〉 ( by Lemma 1.25 )

=
∑
〈a, S(f)δ(1)〉〈

∫
, δ(2)〉 = 〈a, S(f)〉〈

∫
, δ〉 = 〈a, S(f)〉.
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This gives
̂̂
f = S(f). So the inverse map of H −→ H∗ with f̂ = (

∫
↼ f) = f̃ is H∗

−→ H with S−1(â) =
∑
S−1(δ(1))〈a, δ(2)〉 = ã. Then the given inversion formulas are

clear.
We note for later use 〈a, b̃〉 = 〈a, S−1(̂b)〉 = 〈S−1(a), b̂〉 = 〈S−1(a)b, δ〉. �

If G is a finite group and H = KG then

f̃ =
∑
x∈G

f(x)x.

Since ∆(δ) =
∑

x∈G x
−1∗⊗ x∗ where the x∗ ∈ KG are the dual basis to the x ∈ G, we

get

ã =
∑
x∈G

〈a, x∗〉x∗.

If G is a finite Abelian group then the groups G and Ĝ are isomorphic so the
Fourier transform induces a linear automorphism -̃ : KG −→ KG and we have

ã = |G|−1
∑
χ∈Ĝ

〈a, χ〉χ−1

By substituting the formulas for the integral and the Dirac δ-function (7) and (19)
we get

(25)
f̃ =

∑
x∈G f(x)x, ã = |G|−1

∑
χ∈Ĝ a(χ)χ−1,

f = |G|−1
∑

χ∈Ĝ f̃(χ)χ−1, a =
∑

x∈G ã(x)x.

This implies

(26) f̃(χ) =
∑
x∈G

f(x)χ(x) =

∫
f(x)χ(x)dx

with inverse transform

(27) ã(x) = |G|−1
∑
χ∈Ĝ

χ(a)χ−1(x).

Corollary 4.1.27. The Fourier transforms of the left invariant integrals in H
and H∗ are

(28) δ̃ = εν−1 ∈ H∗ and
∫̃

= 1 ∈ H.

Proof. We have 〈δ̃, f〉 = 〈
∫
, δf〉 = 〈

∫
, ν−1(f)δ〉 = εν−1(f)〈

∫
, δ〉 = εν−1(f)

hence δ̃ = εν−1. From 1̃ = (
∫
↼ 1) =

∫
we get

∫̃
= 1. �

Proposition 4.1.28. Define a convolution multiplication on H∗ by

〈a ∗ b, f〉 :=
∑

〈a, S−1(δ(1))f〉〈b, δ(2)〉.
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Then the following transformation rule holds for f, g ∈ H:

(29) f̃g = f̃ ∗ g̃.

In particular H∗ with the convolution multiplication is an associative algebra with unit
1̃H =

∫
, i.e.

(30)
∫
∗ a = a ∗

∫
= a.

Proof. Given f, g, h ∈ H∗. Then

〈f̃g, h〉 = 〈
∫
, fgh〉 = 〈

∫
, fS−1(1H)gh〉〈

∫
, δ〉

=
∑
〈
∫
, fS−1(δ(1))gh〉〈

∫
, δ(2)〉 =

∑
〈
∫
, fS−1(δ(1))h〉〈

∫
, gδ(2)〉

=
∑
〈f̃ , S−1(δ(1))h〉〈g̃, δ(2)〉 = 〈f̃ ∗ g̃, h〉.

From (28) we get 1̃H =
∫

. So we have f̃ = 1̃f = 1̃ ∗ f̃ =
∫
∗f̃ . �

If G is a finite Abelian group and a, b ∈ H∗ = KĜ. Then

(a ∗ b)(µ) = |G|−1
∑

χ,λ∈Ĝ,χλ=µ

a(λ)b(χ).

In fact we have

(a ∗ b)(µ) = 〈a ∗ b, µ〉 =
∑
〈a, S−1(δ(1))µ〉〈b, δ(2)〉

= |G|−1
∑

χ∈Ĝ〈a, χ−1µ〉〈b, χ〉 = |G|−1
∑

χ,λ∈Ĝ,χλ=µ a(λ)b(χ).

One of the most important formulas for Fourier transforms is the Plancherel for-
mula on the invariance of the inner product under Fourier transforms. We have

Theorem 4.1.29. (The Plancherel formula)

(31) 〈a, f〉 = 〈f̃ , ν(ã)〉.

Proof. First we have from (22)

〈a, f〉 =
∑
〈
∫

(1)
, ã〉〈

∫
(2)
, S−1(δ(1))〉〈f̃ , δ(2)〉 =

∑
〈
∫
, ãS−1(δ(1))〉〈f̃ , δ(2)〉

=
∑
〈
∫
, S−1(δ(1))ν(ã)〉〈f̃ , δ(2)〉 =

∑
〈
∫
, S−1(S(ν(ã))δ(1))〉〈f̃ , δ(2)〉

=
∑
〈
∫
, S−1(δ(1))〉〈f̃ , ν(ã)δ(2)〉 =

∑
〈
∫
, S−1(δ)(2)〉〈f̃ , ν(ã)S(S−1(δ)(1))〉

= 〈
∫
, S−1(δ)〉〈f̃ , ν(ã)〉.

Apply this to 〈
∫
, δ〉. Then we get

1 = 〈
∫
, δ〉 = 〈

∫
, S−1(δ)〉〈δ̃, ν(

∫̃
)〉 = 〈

∫
, S−1(δ)〉εν−1ν(1) = 〈

∫
, S−1(δ)〉.

Hence we get 〈a, f〉 = 〈f̃ , ν(ã)〉. �

Corollary 4.1.30. If H is unimodular then ν = S2.
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Proof. H unimodular means that δ is left and right invariant. Thus we get

〈a, f〉 =
∑
〈
∫

(1)
, ã〉〈

∫
(2)
, S−1(δ(1))〉〈f̃ , δ(2)〉

=
∑
〈
∫
, ãS−1(δ(1))〉〈f̃ , δ(2)〉 =

∑
〈
∫
, S−1(δ(1)S(ã))〉〈f̃ , δ(2)〉

=
∑
〈
∫
, S−1(δ(1))〉〈f̃ , δ(2)S2(ã)〉 ( since δ is right invariant)

= 〈
∫
, S−1(δ)〉〈f̃ , S2(ã)〉 = 〈f̃ , S2(ã)〉.

Hence S2 = ν. �

We also get a special representation of the inner product H∗ ⊗H −→ K by both
integrals:

Corollary 4.1.31.

(32) 〈a, f〉 =

∫
ã(x)f(x)dx =

∫ ∗
S−1(a)(x)f̃(x)dx.

Proof. We have the rules for the Fourier transform. From (24) we get 〈a, f〉 =

〈
∫
, ãf〉 =

∫
ã(x)f(x)dx and from (23) 〈a, f〉 = 〈S−1(a)f̃ , δ〉 =

∫ ∗
S−1(a)(x)f̃(x)dx.

�

The Fourier transform leads to an interesting integral transform on H by double
application.

Proposition 4.1.32. The double transform f̆ := (δ ↼ (
∫
↼ f)) defines an

automorphism H −→ H with

f̆(y) =

∫
f(x)δ(xy)dx.

Proof. We have

〈y, f̆〉 = 〈y, (δ ↼ (
∫
↼ f))〉 = 〈(

∫
↼ f)y, δ〉

=
∑
〈(

∫
↼ f), δ(1)〉〈y, δ(2)〉 =

∑
〈
∫
, fδ(1)〉〈y, δ(2)〉

=
∑
〈
∫

(1)
, f〉〈

∫
(2)
, δ(1)〉〈y, δ(2)〉 =

∑
〈
∫

(1)
, f〉〈

∫
(2)
y, δ〉

=
∑
〈
∫

(1)
, f〉〈

∫
(2)
, (y ⇀ δ)〉 = 〈

∫
, f(y ⇀ δ)〉

=
∫
f(x)δ(xy)dx

since 〈x, (y ⇀ δ)〉 = 〈xy, δ〉. �

2. Derivations

Definition 4.2.1. Let A be a K-algebra and AMA be an A-A-bimodule (with
identical K-action on both sides). A linear map D : A −→M is called a derivation if

D(ab) = aD(b) +D(a)b.

The set of derivations DerK(A, AMA) is a K-module and a functor in AMA.
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By induction one sees that D satisfies

D(a1 . . . an) =
n∑
i=1

a1 . . . ai−1D(ai)ai+1 . . . an.

Let A be a commutative K-algebra and AM be an A-module. Consider M as
an A-A-bimodule by ma := am. We denote the set of derivations from A to M by
DerK(A,M)c.

Proposition 4.2.2. 1. Let A be a K-algebra. Then the functor DerK(A, -) :
A-Mod -A −→ Vec is representable by the module of differentials ΩA.

2. Let A be a commutative K-algebra. Then the functor DerK(A, -)c : A-Mod
−→ Vec is representable by the module of commutative differentials Ωc

A.

Proof. 1. Represent A as a quotient of a free K-algebra A := K〈Xi|i ∈ J〉/I
where B = K〈Xi|i ∈ J〉 is the free algebra with generators Xi. We first prove the
theorem for free algebras.

a) A representing module for DerK(B, -) is (ΩB, d : B −→ ΩB) with

ΩB := B ⊗ F (dXi|i ∈ J)⊗B

where F (dXi|i ∈ J) is the free K-module on the set of formal symbols {dXi|i ∈ J}
as a basis.

We have to show that for every derivation D : B −→ M there exists a unique
homomorphisms ϕ : ΩB −→M of B-B-bimodules such that the diagram

B ΩB
-d

D

@
@

@
@@R
M
?

ϕ

commutes. The module ΩB is a B-B-bimodule in the canonical way. The products
X1 . . . Xn of the generators Xi of B form a basis for B. For any product X1 . . . Xn

we define d(X1 . . . Xn) :=
∑n

i=1X1 . . . Xi−1⊗ dXi⊗Xi+1 . . . Xn in particular d(Xi) =
1⊗dXi⊗1. To see that d is a derivation it suffices to show this on the basis elements:

d(X1 . . . XkXk+1 . . . Xn)

=
∑k

j=1X1 . . . Xj−1 ⊗ dXj ⊗Xj+1 . . . XkXk+1 . . . Xn

+
∑n

j=k+1X1 . . . XkXk+1 . . . Xj−1 ⊗ dXj ⊗Xj+1 . . . Xn

= d(X1 . . . Xk)Xk+1 . . . Xn +X1 . . . Xkd(Xk+1 . . . Xn)

Now let D : B −→ M be a derivation. Define ϕ by ϕ(1 ⊗ dXi ⊗ 1) := D(Xi). This
map obviously extends to a homomorphism of B-B-bimodules. Furthermore we have

ϕd(X1 . . . Xn) = ϕ(
∑

j X1 . . . Xj−1 ⊗ dXj ⊗Xj+1 . . . Xn)
=

∑
j X1 . . . Xj−1ϕ(1⊗ dXj ⊗ 1)Xj+1 . . . Xn = D(X1 . . . Xn)

hence ϕd = D.
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To show the uniqueness of ϕ let ψ : ΩB −→M be a bimodule homomorphism such
that ψd = D. Then ψ(1 ⊗ dXi ⊗ 1) = ψd(Xi) = D(Xi) = ϕ(1 ⊗ dXi ⊗ 1). Since ψ
and ϕ are B-B-bimodules homomorphisms this extends to ψ = ϕ.

b) Now let A := K〈Xi|i ∈ J〉/I be an arbitrary algebra with B = K〈Xi|i ∈ J〉
free. Define

ΩA := ΩB/(IΩB + ΩBI +BdB(I) + dB(I)B).

We first show that IΩB+ΩBI+BdB(I)+dB(I)B is a B-B-subbimodule. Since ΩB and
I are B-B-bimodules the terms IΩB and ΩBI are bimodules. Furthermore we have
bdB(i)b′ = bdB(ib′)− bidB(b′) ∈ BdB(I) + IΩB hence IΩB + ΩBI +BdB(I) + dB(I)B
is a bimodule.

Now IΩB and ΩBI are subbimodules of IΩB + ΩBI + BdB(I) + dB(I)B. Hence
A = B/I acts on both sides on ΩA so that ΩA becomes an A-A-bimodule.

Let ν : ΩB −→ ΩA and also ν : B −→ A be the residue homomorphisms. Since
νdB(i) ∈ νdB(I) = 0 ⊆ ΩA we get a unique factorization map dA : A −→ ΩA such that

A ΩA
-

dA

B ΩB
-dB

?

ν

?

ν

commutes. Since dA(b) = dB(b) it is clear that dA is a derivation.
Let D : A −→M be a derivation. The A-A-bimodule M is also a B-B-bimodule by

bm = bm. Furthermore Dν : B −→ A −→M is again a derivation. Let ϕB : ΩB −→M
be the unique factorization map for the B-derivation Dν. Consider the following
diagram

B ΩB
-dB

A ΩA
-dA

? ?

?

ψ

?

ϕ

M

D
@

@
@@R

We want to construct ψ such that the diagram commutes. Let iω ∈ IΩB. Then
ϕ(iω) = iϕ(ω) = 0 and similarly ϕ(ωi) = 0. Let bdB(i) ∈ BdB(I) then ϕ(bdB(i)) =
bϕdB(i) = bD(i) = 0 and similarly ϕ(dB(i)b) = 0. Hence ϕ vanishes on IΩB + ΩBI +
BdB(I)+dB(I)B and thus factorizes through a unique map ψ : ΩA −→M . Obviously
ψ is a homomorphism of A-A-bimodules. Furthermore we have Dν = ϕdB = ψνdB =
ψdAν and, since ν is surjective, D = ψdA. It is clear that ψ is uniquely determined
by this condition.
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2. If A is commutative then we can write A = K[Xi|i ∈ J ]/I and Ωc
B = B ⊗

F (dXi). With Ωc
A = Ωc

B/(IΩ
c
B + BdB(I)) the proof is analogous to the proof in the

noncommutative situation. �

Remark 4.2.3. 1. ΩA is generated by d(A) as a bimodule, hence all elements are
of the form

∑
i aid(a

′
i)a

′′
i . These elements are called differentials.

2. If A = K〈Xi〉/I, then ΩA is generated as a bimodule by the elements {d(Xi)}.
3. Let f ∈ B = K〈Xi〉. Let Bop be the algebra opposite to B (with opposite

multiplication). Then ΩB = B⊗F (dXi)⊗B is the free B⊗Bop left module over the
free generating set {d(Xi)}. Hence d(f) has a unique representation

d(f) =
∑
i

∂f

∂Xi

d(Xi)

with uniquely defined coefficients

∂f

∂Xi

∈ B ⊗Bop.

In the commutative situation we have unique coefficients

∂f

∂Xi

∈ K[Xi].

4. We give the following examples for part 3:

∂Xi

∂Xj

= δij,

∂X1X2

∂X1

= 1⊗X2,

∂X1X2

∂X2

= X1 ⊗ 1,

∂X1X2X3

∂X2

= X1 ⊗X3,

∂X1X3X2

∂X2

= X1X3 ⊗ 1.

This is obtained by direct calculation or by the product rule

∂fg

∂Xi

= (1⊗ g)
∂f

∂Xi

+ (f ⊗ 1)
∂g

∂Xi

.

The product rule follows from

d(fg) = d(f)g + fd(g) =
∑

((1⊗ g)
∂f

∂Xi

+ (f ⊗ 1)
∂g

∂Xi

)d(Xi).
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Let A = K〈Xi〉/I. If f ∈ I then d(f) = dA(f) = 0 hence∑ ∂f

∂Xi

dA(Xi) = 0.

These are the defining relations for the A-A-bimodule ΩA with the generators dA(Xi).

For motivation of the quantum group case we consider an affine algebraic group
G with representing commutative Hopf algebra A. Recall that Hom(A,R) is an alge-
bra with the convolution multiplication for every R ∈ K-cAlg and that G(R) =
K-cAlg (A,R) ⊆ Hom(A,R) is a subgroup of the group of units of the algebra
Hom(A,R).

Definition and Remark 4.2.4. A linear map T : A −→ A is called left translation
invariant, if the following diagram functorial in R ∈ K-cAlg commutes:

G(R)× Hom(A,R) Hom(A,R)-∗

G(R)× Hom(A,R) Hom(A,R)-∗

?

1⊗Hom(T,R)

?

Hom(T,R)

i. e. if we have

∀g ∈ G(R),∀x ∈ Hom(A,R) : g ∗ (x ◦ T ) = (g ∗ x) ◦ T.
This condition is equivalent to

(33) ∆A ◦ T = (1A ⊗ T ) ◦∆A.

In fact if (33) holds then g ∗ (x ◦ T ) = ∇R(g⊗ x)(1A⊗ T )∆A = ∇R(g⊗ x)∆AT =
(g ∗ x) ◦ T .

Conversely if the diagram commutes, then take R = A, g = 1A and we get
∇A(1A ⊗ x)(1A ⊗ T )∆A = 1A ∗ (x ◦ T ) = (1A ∗ x) ◦ T = ∇A(1A ⊗ x)∆AT for all x ∈
Hom(A,A). To get (33) it suffices to show that the terms ∇A(1A⊗x) can be cancelled
in this equation. Let

∑n
i=1 ai⊗bi ∈ A⊗A be given such that∇A(1A⊗x)(

∑
ai⊗bi) = 0

for all x ∈ Hom(A,A) and choose such an element with a shortest representation (n
minimal). Then

∑
aix(bi) = 0 for all x. Since the bi are linearly independent in such

a shortest representation, there are xi with xj(bi) = δij. Hence aj =
∑
aixj(bi) = 0

and thus
∑
ai ⊗ bi = 0. From this follows (33).

Definition 4.2.5. Let H be an arbitrary Hopf algebra. An element T ∈
Hom(H,H) is called left translation invariant if it satisfies

∆HT = (1H ⊗ T )∆H .

Proposition 4.2.6. Let H be an arbitrary Hopf algebra. Then Φ : H∗ −→ End(H)
with Φ(f) := id ∗uHf is an algebra monomorphism satisfying

Φ(f ∗ g) = Φ(f) ◦ Φ(g).

The image of Φ is precisely the set of left translation invariant elements T ∈ End(H).
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Proof. For f ∈ Hom(H,K) we have uHf ∈ End(H) hence id ∗uHf ∈ End(H).
Thus Φ is a well defined homomorphism. Observe that

Φ(f)(a) = (idH ∗ uHf)(a) =
∑

a(1)f(a(2)).

Φ is injective since it has a retraction End(H) 3 g 7→ εH ◦g ∈ Hom(H,K). In fact
we have (εΦ(f))(a) = ε(

∑
a(1)f(a(2))) =

∑
ε(a(1))f(a(2)) = f(

∑
ε(a(1))a(2)) = f(a)

hence εΦ(f) = f .
The map Φ preserves the algebra unit since Φ(1H∗) = Φ(εH) = idH ∗uHεH = idH .
The map Φ is compatible with the multiplication: Φ(f ∗ g)(a) =

∑
a(1)(f ∗

g)(a(2)) =
∑
a(1)f(a(2))g(a(3)) =

∑
(id ∗uHf)(a(1))g(a(2)) = Φ(f)(

∑
a(1)g(a(2))) =

Φ(f)Φ(g)(a) so that Φ(f ∗ g) = Φ(f) ◦ Φ(g).
For each f ∈ H∗ the element Φ(f) is left translation invariant since ∆Φ(f)(a) =

∆(
∑
a(1)f(a(2))) =

∑
a(1) ⊗ a(2)f(a(3)) = (1⊗ Φ(f))∆(a).

Let T ∈ End(H) be left translation invariant then S ∗T = ∇H(S⊗1)(1⊗T )∆H =
∇H(S ⊗ 1)∆HT = uHεHT . Thus Φ(εT ) = id ∗uHεHT = id ∗S ∗ T = T , so that T is
in the image of Φ. �

Proposition 4.2.7. Let d ∈ Hom(H,K) and Φ(d) = D ∈ Hom(H,H) be given.
The following are equivalent:

(1) d : H −→ εKε is a derivation.
(2) D : H −→ HHH is a (left translation invariant) derivation.

In particular Φ induces an isomorphism between the set of derivations d : H −→ εKε

and the set of left translation invariant derivations D : H −→ HHH .

Proof. Assume that 1. holds so that d satisfies d(ab) = ε(a)d(b) + d(a)ε(b).
Then we get D(ab) = Φ(d)(ab) =

∑
a(1)b(1)d(a(2)b(2)) =

∑
a(1)b(1)ε(a(2))d(b(2)) +∑

a(1)b(1)d(a(2))ε(b(2)) = aD(b) + D(a)b. Conversely assume that D(ab) = aD(b) +
D(a)b. Then d(ab) = εD(ab) = ε(a)εD(b) + εD(a)ε(b) = ε(a)d(b) + d(a)ε(b). �

3. The Lie Algebra of Primitive Elements

Lemma 4.3.1. Let H be a Hopf algebra and Ho be its Sweedler dual. If d ∈
DerK(H, εKε) ⊆ Hom(H,K) is a derivation then d is a primitive element of Ho.
Furthermore every primitive element d ∈ Ho is a derivation in DerK(H, εKε).

Proof. Let d : H −→ K be a derivation and let a, b ∈ H. Then (b ⇀ d)(a) =
d(ab) = ε(a)d(b) + d(a)ε(b) = (d(b)ε + ε(b)d)(a) hence (b ⇀ d) = d(b)ε + ε(b)d.
Consequently we have Hd = (H ⇀ d) ⊆ Kε + Kd so that dimHd ≤ 2 < ∞. This
shows d ∈ Ho. Furthermore we have 〈∆d, a ⊗ b〉 = 〈d, ab〉 = d(ab) = d(a)ε(b) +
ε(a)d(b) = 〈d ⊗ ε, a ⊗ b〉 + 〈ε ⊗ d, a ⊗ b〉 = 〈1Ho ⊗ d + d ⊗ 1Ho , a ⊗ b〉 hence ∆(d) =
d⊗ 1Ho + 1Ho ⊗ d so that d is a primitive element in Ho.

Conversely let d ∈ Ho be primitive. then d(ab) = 〈∆(d), a ⊗ b〉 = d(a)ε(b) +
ε(a)d(b). �
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Proposition and Definition 4.3.2. Let H be a Hopf algebra. The set of primi-
tive elements of H will be denoted by Lie (H) and is a Lie algebra. If char(K) = p > 0
then Lie (H) is a restricted Lie algebra or a p-Lie algebra.

Proof. Let a, b ∈ H be primitive elements. Then ∆([a, b]) = ∆(ab − ba) =
(a⊗1+1⊗a)(b⊗1+1⊗b)−(b⊗1+1⊗b)(a⊗1+1⊗a) = (ab−ba)⊗1+1⊗(ab−ba)
hence Lie (H) ⊆ HL is a Lie algebra. If the characteristic of K is p > 0 then we have
(a⊗ 1 + 1⊗ a)p = ap ⊗ 1 + 1⊗ ap. Thus Lie (H) is a restricted Lie subalgebra of HL

with the structure maps [a, b] = ab− ba and a[p] = ap. �

Corollary 4.3.3. Let H be a Hopf algebra. Then the set of left translation in-
variant derivations D : H −→ H is a Lie algebra under [D,D′] = DD′ − D′D. If
char = p then these derivations are a restricted Lie algebra with D[p] = Dp.

Proof. The map Ψ : Ho −→ H∗ Φ−→ End(H) is a homomorphism of algebras
by 4.2.6. Hence Ψ(d ∗ d′ − d′ ∗ d) = Φ(d ∗ d′ − d′ ∗ d) = Φ(d)Φ(d′) − Φ(d′)Φ(d).
If d is a primitive element in Ho then by 4.2.7 and 4.3.1 the image D := Ψ(d) in
End(H) is a left translation invariant derivation and all left translation invariant
derivations are of this form. Since [d, d′] = d∗d′−d′ ∗d is again primitive we get that
[D,D′] = DD′ −D′D is a left translation invariant derivation so that the set of left
translation invariant derivations DerHK (H,H) is a Lie algebra resp. a restricted Lie
algebra. �

Definition 4.3.4. Let H be a Hopf algebra. An element c ∈ H is called cocom-
mutative if τ∆(c) = ∆(c), i. e. if

∑
c(1) ⊗ c(2) =

∑
c(2) ⊗ c(1). Let C(H) := {c ∈

H|c is cocommutative }.
Let G(H) denote the set of grouplike elements of H.

Lemma 4.3.5. Let H be a Hopf algebra. Then the set of cocommutative elements
C(H) is a subalgebra of H and the grouplike elements G(H) form a linearly indepen-
dent subset of C(H). Furthermore G(H) is a multiplicative subgroup of the group of
units U(C(H)).

Proof. It is clear that C(H) is a linear subspace of H. If a, b ∈ C(H) then
∆(ab) = ∆(a)∆(b) = (τ∆)(a)(τ∆)(b) = τ(∆(a)∆(b)) = τ∆(ab) and ∆(1) = 1⊗ 1 =
τ∆(1). Thus C(H) is a subalgebra of H.

The grouplike elements obviously are cocommutative and form a multiplicative
group, hence a subgroup of U(C(H)). They are linearly independent by Lemma
2.1.14. �

Proposition 4.3.6. Let H be a Hopf algebra with S2 = idH . Then there is a left
module structure

C(H)⊗ Lie (H) 3 c⊗ a 7→ c · a ∈ Lie (H)

with c · a := ∇H(∇H ⊗ 1)(1⊗ τ)(1⊗ S ⊗ 1)(∆⊗ 1)(c⊗ a) =
∑
c(1)aS(c(2)) such that

c · [a, b] =
∑

[c(1) · a, c(2) · b].
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In particular G(H) acts by Lie automorphisms on Lie (H).

Proof. The given action is actually the action H ⊗ H −→ H with h · a =∑
h(1)aS(h(2)), the so-called adjoint action.
We first show that the given map has image in Lie (H). For c ∈ C(H) and a ∈

Lie (H) we have ∆(c · a) = ∆(
∑
c(1)aS(c(2))) =

∑
∆(c(1))(a⊗ 1 + 1⊗ a)∆(S(c(2))) =∑

∆(c(1))(a⊗1)∆(S(c(2)))+
∑

∆(c(2))(1⊗a)∆(S(c(1))) =
∑
c(1)aS(c(4))⊗c(2)S(c(3))+∑

c(3)S(c(2))⊗ c(4)aS(c(1)) = c · a⊗ 1 + 1⊗ c · a since c is cocommutative, S2 = idH
and a is primitive.

We show now that Lie (H) is a C(H)-module. (cd) · a =
∑
c(1)d(1)aS(c(2)d(2)) =∑

c(1)d(1)aS(d(2))S(c(2)) = c · (d · a). Furthermore we have 1 · a = 1aS(1) = a.
To show the given formula let a, b ∈ Lie (H) and c ∈ C(H). Then c · [a, b] =∑
c(1)(ab−ba)S(c(2)) =

∑
c(1)aS(c(2))c(3)bS(c(4))−

∑
c(1)bS(c(2))c(3)aS(c(4)) =

∑
(c(1)·

a)(c(2)·b)−
∑

(c(1)·b)(c(2)·a) =
∑

[c(1)·a, c(2)·b] again since c ∈ C(H) is cocommutative.
Now let g ∈ G(H). Then g · a = gaS(g) = gag−1 since S(g) = g−1 for any

grouplike element. Furthermore g · [a, b] = [g · a, g · b] hence g defines a Lie algebra
automorphism of Lie (H). �

Problem 4.3.31. Show that the adjoint actionH⊗H 3 h⊗a 7→
∑
h(1)aS(h(2)) ∈

H makes H an H-module algebra.

Definition and Remark 4.3.7. The algebra K(δ) = K[δ]/(δ2) is called the
algebra of dual numbers. Observe that K(δ) = K⊕Kδ as a K-module.

We consider δ as a ”small quantity“ whose square vanishes.
The maps p : K(δ) −→ K with p(δ) = 0 and j : K −→ K(δ) are algebra homomor-

phism satisfying pj = id.
Let K(δ, δ′) := K[δ, δ′]/(δ2, δ′2). Then K(δ, δ′) = K⊕Kδ ⊕Kδ′ ⊕Kδδ′. The map

K(δ) 3 δ 7→ δδ′ ∈ K(δ, δ′) is an injective algebra homomorphism. Furthermore for
every α ∈ K we have an algebra homomorphism ϕα : K(δ) 3 δ 7→ αδ ∈ K(δ).

These algebra homomorphisms induce algebra homomorphisms H⊗K(δ) −→ H⊗
K(δ) resp. H ⊗K(δ) −→ H ⊗K(δ, δ′) for every Hopf algebra H.

Proposition 4.3.8. The map

eδ- : Lie (H) −→ H ⊗K(δ) ⊆ H ⊗K(δ, δ′)

with eδa := 1 + a⊗ δ = 1 + δa is called the exponential map and satisfies

eδ(a+b) = eδaeδb,
eδαa = ϕα(e

δa),
eδδ

′[a,b] = eδaeδ
′b(eδa)−1(eδ

′b)−1.

Furthermore all elements eδa ∈ H ⊗ K(δ) are grouplike in the K(δ)-Hopf algebra
H ⊗K(δ).

Proof. 1. eδ(a+b) = (1 + δ(a+ b)) = (1 + δa)(1 + δb) = eδaeδb.
2. eδαa = 1 + δαa = ϕα(1 + δa) = ϕα(e

δa).
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3. Since (1+δa)(1−δa) = 1 we have (eδa) = 1−δa. So we get eδδ
′[a,b] = 1+δ[a, b] =

1 + δ(a− a) + δ′(b− b) + δδ′(ab− ab− ba+ ab) = (1 + δa)(1 + δ′b)(1− δa)(1− δ′b) =
eδaeδ

′b(eδa)−1(eδ
′b)−1.

4. ∆K(δ)(e
δa) = ∆(1 + a ⊗ δ) = 1 ⊗K(δ) 1 + (a ⊗ 1 + 1 ⊗ a) ⊗ δ = 1 ⊗K(δ) 1 +

δa ⊗K(δ) 1 + 1 ⊗K(δ) δa + δa ⊗K(δ) δa = (1 + δa) ⊗K(δ) (1 + δa) = eδa ⊗K(δ) e
δa and

εK(δ)(e
δa) = εK(δ)(1 + δa) = 1 + δε(a) = 1. �

Corollary 4.3.9. (Lie (H), eδ-) is the kernel of the group homomorphism
p : GK(δ)(H ⊗K(δ)) −→ G(H).

Proof. p = 1⊗ p : H ⊗K(δ) −→ H ⊗K = H is a homomorphism of K-algebras.
We show that it preserves grouplike elements. Observe that grouplike elements in
H ⊗ K(δ) are defined by the Hopf algebra structure over K(δ). Let g ∈ GK(δ)(H ⊗
K(δ)). Then (∆H ⊗ 1)(g) = g ⊗K(δ) g and (εH ⊗ 1)(g) = 1 ∈ K(δ).

Since p : K(δ) −→ K is an algebra homomorphism the following diagram commutes

(H ⊗K)⊗ (H ⊗K) H ⊗H ⊗K.-∼=

(H ⊗K(δ))⊗K(δ) (H ⊗K(δ)) H ⊗H ⊗K(δ)-∼=

?

(1⊗p)⊗(1⊗p)
?

1⊗p

We identify elements along the isomorphisms. Thus we get (∆H ⊗ 1K)(1H ⊗ p)(g) =
(1H⊗H ⊗ p)(∆H ⊗ 1K(δ))(g) = ((1H ⊗ p) ⊗K(δ) (1H ⊗ p))(g ⊗K(δ) g) = (1H ⊗ p)(g) ⊗
(1H⊗p)(g), so that 1H⊗p : GK(δ)(H⊗K(δ)) −→ G(H). Now we have (1H⊗p)(gg′) =
(1H ⊗ p)(g)(1H ⊗ p)(g′) so that 1H ⊗ p is a group homomorphism.

Now let g = g0⊗ 1 + g1⊗ δ ∈ GK(δ)(H ⊗K(δ)) ⊆ H ⊗K⊕H ⊗Kδ. Then we have
(1H ⊗ p)(g) = 1 iff g0 = 1 iff g = 1H ⊗ 1K(δ) + g1 ⊗ δ. Furthermore we have

∆H⊗K(δ)(g) = g ⊗K(δ) g ⇐⇒
1H ⊗ 1H ⊗ 1K(δ) + ∆H(g1)⊗ δ = (1H ⊗ 1K(δ) + g1 ⊗ δ)⊗K(δ) (1H ⊗ 1K(δ) + g1 ⊗ δ)

= 1H ⊗ 1H ⊗ 1K(δ) + (g1 ⊗ 1H + 1H ⊗ g1)⊗ δ ⇐⇒
∆H(g1) = g1 ⊗ 1H + 1H ⊗ g1.

Similarly we have εK(δ))(g) = 1 iff 1⊗ 1 + ε(g1)⊗ δ = 1 iff ε(g1) = 0. �

4. Derivations and Lie Algebras of Affine Algebraic Groups

Lemma and Definition 7.4.1. Let G : K-cAlg −→ Set be a group valued functor.
The kernel Lie(G)(R) of the sequence

0 Lie(G)(R)- G(R(δ))- -G(p)
�

G(j)
G(R) 0-

is called the Lie algebra of G and is a group valued functor in R.
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Proof. For every algebra homomorphism f : R −→ S the following diagram of
groups commutes

0 Lie(G)(R)- G(R(δ))- -G(p)
�

G(j)
G(R) 0-

? ?

G(f(δ))

?

G(f)

0 Lie(G)(S)- G(S(δ))- -G(p)
�

G(j)
G(S) 0-

�

Proposition 4.4.2. Let G : K-cAlg −→ Set be a group valued functor with mul-
tiplication ∗. Then there are functorial operations

G(R)× Lie(G)(R) 3 (g, x) 7→ g · x ∈ Lie(G)(R)

R× Lie(G)(R) 3 (a, x) 7→ ax ∈ Lie(G)(R)

such that
g · (x+ y) = g · x+ g · y,
h · (g · x) = (h ∗ g) · x,
a(x+ y) = ax+ ay,

(ab)x = a(bx),
g · (ax) = a(g · x).

Proof. First observe that the composition + on Lie(G)(R) is induced by the
multiplication ∗ of G(R(δ)) so it is not necessarily commutative.

We define g ·x := G(j)(g)∗x∗G(j)(g)−1. Then G(p)(g ·x) = G(p)G(j)(g)∗G(p)(x)∗
G(p)G(j)(g)−1 = g ∗ 1 ∗ g−1 = 1 hence g · x ∈ Lie(G)(R).

Now let a ∈ R. To define a : Lie(G)(R) −→ Lie(G)(R) we use ua : R(δ) −→ R(δ)
defined by ua(δ) := aδ and thus ua(b+cδ) := b+acδ. Obviously ua is a homomorphism
of R-algebras. Furthermore we have pua = p and uaj = j. Thus we get a commutative
diagram

0 Lie(G)(R)- G(R(δ))- -G(p)
�

G(j)
G(R) 0-

?

a

?

G(ua)

?
id

0 Lie(G)(R)- G(R(δ))- -G(p)
�

G(j)
G(R) 0-

that defines a group homomorphism a : Lie(G)(R) −→ Lie(G)(R) on the kernel of the
exact sequences. In particular we have then a(x+ y) = ax+ ay.

Furthermore we have uab = uaub hence (ab)x = a(bx).
The next formula follows from g · (x+ y) = G(j)(g) ∗ x ∗ y ∗ G(j)(g)−1 = G(j)(g) ∗

x ∗ G(j)(g)−1 ∗ G(j)(g) ∗ y ∗ G(j)(g)−1 = g · x+ g · y.
We also see (h∗g)·x = G(j)(h∗g)∗x∗G(j)(h∗g)−1 = G(j)(h)∗G(j)(g)∗x∗G(j)(g)−1∗

G(j)(h)−1 = h · (g · x). Finally we have g · (ax) = G(j)(g) ∗ G(ua)(x) ∗ G(j)(g−1) =
G(ua)(G(j)(g) ∗ x ∗ G(j)(g−1)) = a(g · x). �
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Proposition 4.4.3. Let G = K-cAlg (H, -) be an affine algebraic group. Then
Lie(G)(K) ∼= Lie (Ho) as additive groups. The isomorphism is compatible with the
operations given in 4.4.2 and 4.3.6.

Proof. We consider the following diagram

0 Lie(G)(K)- K-cAlg (H,K(δ))- -p� K-cAlg (H,K) 0-

6
e

?

ω

?

∼=

0 Lie (Ho)- GK(δ)(H
o ⊗K(δ))-eδ-

-p
G(Ho) 0-

We know by definition that the top sequence is exact. The bottom sequence is exact
by Corollary 4.3.9.

Let f ∈ K-cAlg (H,K). Since Ker(f) is an ideal of codimension 1 we get f ∈ Ho.
The map f is an algebra homomorphism iff 〈f, ab〉 = 〈f ⊗ f, a⊗ b〉 and 〈f, 1〉 = 1 iff
∆Ho(f) = f ⊗ f and εHo(f) = 1 iff f ∈ G(Ho). Hence we get the right hand vertical
isomorphism K-cAlg (H,K) ∼= G(Ho).

Consider an element f ∈ K-cAlg (H,K(δ)) ⊆ Hom(H,K(δ)). It can be written as
f = f0+f1δ with f0, f1 ∈ Hom(H,K). The linear map f is an algebra homomorphism
iff f0 : H −→ K is an algebra homomorphism and f1 satisfies f1(1) = 0 and f1(ab) =
f0(a)f1(b) + f1(a)f0(b). In fact we have f(1) = f0(1) + f1(1)δ = 1 iff f0(1) = 1
and f1(1) = 0 (by comparing coefficients). Furthermore we have f(ab) = f(a)f(b)
iff f0(ab) + f1(ab)δ = (f0(a) + f1(a)δ)(f0(b) + f1(b)δ) = f0(a)f0(b) + f0(a)f1(b)δ +
f1(a)f0(b)δ iff f0(ab) = f0(a)f0(b) and f1(ab) = f0(a)f1(b) + f1(a)f0(b).

Since f0 is an algebra homomorphism we have as above f0 ∈ Ho. For f1 we
have (b ⇀ f1)(a) = f1(ab) = f0(a)f1(b) + f1(a)f0(b) = (f1(b)f0 + f0(b)f1)(a) hence
(b ⇀ f1) = f1(b)f0+f0(b)f1 ∈ Kf0+Kf1, a two dimensional subspace. Thus f1 ∈ Ho.

In the following computations we will identify (Ho⊗K(δ))⊗K(δ) (H
o⊗K(δ)) with

Ho ⊗Ho ⊗ |K(δ).
Let f = f0 + f1δ = f0 ⊗ 1 + f1 ⊗ δ ∈ Ho ⊕ Hoδ = Ho ⊗ K(δ). Then f is a

homomorphism of algebras iff f(ab) = f(a)f(b) and f(1) = 1 iff f0(ab) = f0(a)f0(b)
and f1(ab) = f0(a)f1(b)+f1(a)f0(b) and f0(1) = 1 and f1(1) = 0 iff ∆Ho(f0) = f0⊗f0

and ∆Ho(f1) = f0⊗f1+f1⊗f0 and εHo(f0) = 1 and εHo(f1) = 0 iff (∆Ho⊗idK(δ))(f0⊗
1+f1⊗δ) = f0⊗f0⊗1+f0⊗f1⊗δ+f1⊗f0⊗δ = (f0⊗1+f1⊗δ)⊗K(δ) (f0⊗1+f1⊗δ)
and (εHo ⊗ idK(δ))(f0 ⊗ 1 + f1 ⊗ δ) = 1 ⊗ 1 iff (∆Ho ⊗ idK(δ))(f) = f ⊗K(δ) f and
(εHo ⊗ idK(δ))(f) = 1 iff f ∈ GK(δ)(H

o ⊗K(δ)).
Hence we have a bijective map ω : K-cAlg (H,K(δ)) 3 f = f0 + f1δ 7→ f0 ⊗

1 + f1⊗ δ ∈ GK(δ)(H
o⊗K(δ)). Since the group multiplication in K-cAlg (H,K(δ)) ⊆

Hom(H,K(δ)) is the convolution ∗ and the group multiplication inGK(δ)(H
o⊗K(δ)) ⊆

Ho⊗K(δ) is the ordinary algebra multiplication, where the multiplication of Ho again
is the convolution, it is clear that ω is a group homomorphism. Furthermore the right
hand square of the above diagram commutes. Thus we get an isomorphism e : Lie (Ho)
−→ Lie(G)(K) on the kernels. This map is defined by e(d) = 1+dδ ∈ K-cAlg (H,K(δ)).



4. DERIVATIONS AND LIE ALGEBRAS OF AFFINE ALGEBRAIC GROUPS 137

To show that this isomorphism is compatible with the actions of K resp. G(Ho)
let α ∈ K, a ∈ H, and d ∈ Lie (Ho). We have e(αd)(a) = ε(a) + αd(a)δ = uα(ε(a) +
d(a)δ) = (uα ◦ (1 + dδ))(a) = (uα ◦ e(d))(a) = (αe(d))(a) hence e(αd) = αe(d).

Furthermore let g ∈ G(Ho) = K-cAlg (H,K), a ∈ H, and d ∈ Lie (Ho). Then we
have e(g · d)(a) = e(gdg−1)(a) = (1 + gdg−1δ)(a) = ε(a) + gdg−1(a)δ =∑
g(a(1))ε(a(2))gS(a(3)) +

∑
g(a(1))d(a(2))gS(a(3))δ =

∑
g(a(1))e(d)(a(2))gS(a(3)) =

(j ◦ g ∗ e(d) ∗ j ◦ g−1)(a) = (g · e(d))(a) hence e(g · d) = g · e(d). �

Proposition 4.4.4. Let H be a Hopf algebra and let I := Ker(ε). Then

Derε(H, -) : Vec −→ Vec is representable by I/I2 and d : H
1−ε−→ I

ν−→ I/I2, in
particular

Derε(H, -) ∼= Hom(I/I2, -) and Lie (Ho) ∼= Hom(I/I2,K).

Proof. Because of ε(id−uε)(a) = ε(a)− εuε(a) = 0 we have Im(id−ε) ⊆ I. Let
i ∈ I. Then we have i = i−ε(i) = (id−ε)(i) hence Im(id−ε) = Ker(ε). We have I2 3
(id−ε)(a)(id−ε)(b) = ab− ε(a)b− aε(b) + ε(a)ε(b) = (id−ε)(ab)− ε(a)(id−ε)(b)−
(id−ε)(b). Hence we have in I/I2 the equation (id−ε)(ab) = ε(a)(id−ε)(b) +
(id−ε)(a)ε(b) so that ν(id−ε) : H −→ I −→ I/I2 is an ε-derivation.

Now let D : H −→ M be an ε-derivation. Then D(1) = D(1 1) = 1D(1) +D(1)1
hence D(1) = 0. It follows D(a) = D(id−ε)(a). From ε(I) = 0 we get D(I2) ⊆
ε(I)D(I) +D(I)ε(I) = 0 hence there is a unique factorization

H I-id−ε
I/I2-ν

D

HHH
HHHHj

D
@

@
@@R
M.

?

f

�

Corollary 4.4.5. Let H be a Hopf algebra that is finitely generated a s an algebra.
Then Lie (Ho) is finite dimensional.

Proof. Let H = K〈a1, . . . , an〉. Since H = K ⊕ I we can choose a1 = 1 and
a2, . . . , an ∈ I. Thus any element in i ∈ I can be written as

∑
αJaj1 . . . ajk so that

I/I2 = Ka2 + . . .+ an. This gives the result. �

Proposition 4.4.6. Let H be a commutative Hopf algebra and HM be an H-
module. Then we have ΩH

∼= H ⊗ I/I2 and d : H −→ H ⊗ I/I2 is given by d(a) =∑
a(1) ⊗ (id−ε)(a(2)).

Proof. Consider the algebra B := H ⊕ M with (a,m)(a′,m′) = (aa′, am′ +
a′m). Let G = K-cAlg (H, -). Then we have G(B) ⊆ Hom(H,B) ∼= Hom(H,H) ⊕
Hom(H,M). An element (ϕ,D) ∈ Hom(H,B) is in G(B) iff (ϕ,D)(1) = (ϕ(1), D(1))
= (1, 0), hence ϕ(1) = 1 and D(1) = 0, and (ϕ(ab), D(ab)) = (ϕ,D)(ab) =
(ϕ,D)(a)(ϕ,D)(b) = (ϕ(a), D(a))(ϕ(b), D(b)) = (ϕ(a)ϕ(b), ϕ(a)D(b) + D(a)ϕ(b),
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hence ϕ(ab) = ϕ(a)ϕ(b) and D(ab) = ϕ(a)D(b) +D(a)ϕ(b). So (ϕ,D) is in G(B) iff
ϕ ∈ G(H) and D is a ϕ-derivation. The ∗-multiplication in Hom(H,B) is given by
(ϕ,D) ∗ (ϕ′, D′) = (ϕ ∗ ϕ′, ϕ ∗ D′ + D ∗ ϕ′) by applying this to an element a ∈ H.
Since (ϕ, 0) ∈ G(B) and (uε,D) ∈ G(B) for every ε-derivation D, there is a bi-
jection Derε(H,M) ∼= {(uε,Dε) ∈ Gε(B)} ∼= {(1H , D1) ∈ G1(B)} ∼= DerK(H,M)
by (uε,Dε) 7→ (1, 0) ∗ (uε,Dε) = (1, 1 ∗ Dε) ∈ G1(B) with inverse map (1, D1) 7→
(S, 0) ∗ (1, D1) = (uε, S ∗D1) ∈ Gε(B). Hence we have isomorphisms DerK(H,M) ∼=
Derε(H,M) ∼= Hom(I/I2,M) ∼= HomH(H ⊗ I/I2,M).

The universal ε-derivation for vector spaces is id−ε : A −→ I/I2. The universal

ε-derivation for H-modules is Dε(a) = 1 ⊗ (id−ε)(a) ∈ A ⊗ I/I2. The universal

1-derivation for H-modules is 1 ∗ Dε with (1 ∗ Dε)(a) =
∑
a(1) ⊗ (id−ε)(a(2)) ∈

A⊗ I/I2. �
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