Errata to and remarks on the book: G. Friedlander and M. Joshi, Introduction to the theory of distributions, Cambridge University Press, 1999, second printing

collected by Tom H. Koornwinder, thk@science.uva.nl, February 3, 2006.

With thanks to Erik Hendriksen, Ta Ngoc Tri and Igor Stojkovic

Warning In the first 1982 edition of the book there are many more errata, not listed below because they were corrected in the 1999 second printing.

Chapter 1

p.9, Proof of Theorem 1.3.2, l.5: Add $\phi \neq 0$.

p.9, Proof of Theorem 1.3.2, l.7: Add $\phi_N \neq 0$.

p.9, Proof of Theorem 1.3.2, l.10: Replace right-hand side by $\phi_N(x) / \left(N \sum_{|\alpha| \le N} \sup |\partial^{\alpha} \phi_N| \right)$.

p.9, Definition 1.3.2': One may add:

"A sequence $(\phi_j)_{1 \le j < \infty} \in C_c^m(X)$ is said to converge in $C_c^m(X)$ to a function $\phi \in C_c^m(X)$ if the sequence $\phi_j - \phi$ converges to zero in $C_c^m(X)$."

p.11, l.12 of Proof: Replace "tha" by "that".

p.12, Theorem 1.4.3, l.2: After "index set" insert "and $X_{\lambda} \subset X$ ".

p.12, Proof of Theorem 1.4.3, l.8: Replace ψ'_n by ψ'_1 .

p.12, l.-1: Replace ψ'_n by ψ'_1

p.13, Note on partitions of unity, 1.2: Replace 1.4.4 by 1.4.1.

p.16, Exercise 1.7: Replace last line by: Show also that, if f_{ε} satisfies (a) and (c) and if $f_{\varepsilon} \to \delta$ in $\mathcal{D}'(\mathbf{R}^n)$ as $\varepsilon \downarrow 0$, then $\lim_{\varepsilon \downarrow 0} \int f_{\varepsilon}(x) dx = 1$.

p.16, Exercise 1.9, l.4: Replace C_k by c_k .

Chapter 2

p.18, first line after (2.2.2): Replace R by **R**.

p.19, l.1: Insert minus sign after last equality sign.

p.19, second line after (2.2.8): Insert between minus sign and $\partial \phi(x)$: $\int_{-\infty}^{\infty}$.

p.21, l.2: Replace 8.2.1 by 8.1.2.

p.22, l.-9: Replace "chose" by "choose".

p.23, Proof of Theorem 2.4.1, lines 4 and 8: Twice replace "supp ϕ_0 " by "hull of supp ϕ_0 ".

p.23, Proof of Theorem 2.4.1, l.5: Replace $\sup |\phi_0|$ by $\int_{-\infty}^{\infty} |\phi_0(t)| dt$.

p.24, l.5: Theorem 2.5.1 can be proved without using (2.5.1).

p.24, (2.5.4): Insert u after $(\partial_i f)$.

p.25, second line after (2.6.1): Replace $a_{\alpha} \equiv 0$ by $a_{\alpha} \not\equiv 0$.

p.25, (2.6.3): Replace $(-1)^{\alpha}$ by $(-1)^{|\alpha|}$.

p.26, (2.6.6): On the right-hand side move $\frac{\partial^{\alpha} u}{\alpha!}$ to the right of f.

- p.26, l.-7: Insert "linear" before "differential".
- p.27, Theorem 2.7.1 (i): The converse implication also holds.
- p.28, bottom: We need that the linear map μ is continuous in the sense of Definition 2.8.1.
- p.31, last formula in Exercise 2.5: On the left-hand side replace v by v_i .
- p.31, Exercise 2.6, l.4: Replace a_n by a_1 .
- p.31, Exercise 2.7, l.3: Replace "if $\beta > \alpha$ " by "otherwise".
- p.31, Exercise 2.9: This Exercise can better be moved to Chapter 3.
- p.31, Exercise 2.11: Replace $u \sin \pi x$ by $(\sin \pi x)u$.
- p.32, l.2: Here $0(\varepsilon^{\operatorname{Re}\lambda+k-1})$ means $o(\varepsilon^{\operatorname{Re}\lambda+k-1})$ (small oh).
- p.32, l.3: Replace j = 1 by j = 0.
- p.32, Exercise 2.14, last formula: This should read: $|x|^{\lambda-1} \operatorname{sign} x = x_+^{\lambda-1} x_-^{\lambda-1}$.
- p.32, Exercise 2.15, l.3: Replace $\exp(\lambda 1)$ by $\exp((\lambda 1)$.
- p.32, Exercise 2.15, l.5: Replace $x^{\lambda-1}$ by $x_{-}^{\lambda-1}$.

Chapter 3

p.34, (3.1.2): Put "sup $|\partial^{\alpha}\phi|$: $x \in K$ " in brackets.

p.35, l.3: The increasing sequence of compact subsets K_1, K_2, \ldots must also satisfy that $K_i \subset K_{i+1}^0$ for all *i*, where A^0 denotes the interior of $A \subset \mathbf{R}^n$.

p.35, Theorem 3.1.2: One may add: If $u \in \mathcal{D}'(X)$ has compact support then (3.1.1) holds for any compact $K \subset X$ such that $\operatorname{supp}(u) \subset K^0$.

p.37, l.8: This formula should read:

$$|\partial^{\beta}\phi(x)| \leq \varepsilon^{N-|\beta|+1} \sum_{|\gamma|=N+1-|\beta|} \sup\{|\partial^{\gamma+\beta}\phi(x)| : |x| \leq \varepsilon\}/\gamma! \quad \text{if } |x| \leq \varepsilon.$$

p.37, lines 14,15: This should read:

$$|\partial^{\alpha}(\phi(x)\psi(x/\varepsilon))| \leq C_{\alpha} \sum_{\beta+\gamma=\alpha} \varepsilon^{N-|\beta|+1} \varepsilon^{-|\gamma|} = C_{\alpha}' \varepsilon^{N+1-|\alpha|},$$

where C_{α}, C'_{α} are constants independent of ε .

p.37, Proof of Theorem 3.2.1, l.4: Insert "= 0" after $\partial^{\alpha} \phi'(0)$.

p.38, l.2: Replace \mathbf{R}^n by X.

- p.38, l.6: Replace $\frac{1}{4}\varepsilon$ by 4ε .
- p.38, l.7: One may insert after K_{ε} : "and supp $\psi_{\varepsilon} \subset K_{3\varepsilon}$ ".
- p.38, l.8: After the equality sign replace 1 by |.
- p.38, l.14: Replace (3.2.1) by (3.1.1).

p.39, (3.2.8): Replace left-hand side by its absolute value.

On the right-hand side insert a factor N before the summation sign.

p.39, Exercise 3.1, l.2: Replace $C^{\infty}(x)$ by $C^{\infty}(X)$.

Chapter 4

p.40, Theorem 4.1.1, l.1: Replace \mathbf{R}^n by \mathbf{R}^m .

p.40, Theorem 4.1.1, l.4: One may insert " $\subset X$ " after "K(y')".

p.41, l.16, 21: Replace $\partial(\partial y_i)$ by $\partial/\partial y_i$.

p.41, l.19: Replace χ by χ_{ε} .

p.41, l.24: Replace n by m.

p.41, Corollary 4.1.2, l.1: Replace ψ by $\psi(y)$.

p.43, two lines above Theorem 4.2.2: Replace "function" by "mapping".

p.45, Lemma 4.3.1: One may add:

"and such that for all α we have $\sum_{j=1}^{\infty} \sup |\partial^{\alpha} \psi_{j1} \otimes \cdots \otimes \psi_{jN}| < \infty$."

p.46, l.-9: Replace $\langle u(x), \phi(x, y) \rangle = g(y)$ by $g(y) = \langle u(x), \phi(x, y) \rangle$.

p.47, (4.3.8): Replace by: $\partial_x^{\alpha} \partial_y^{\beta}(u(x) \otimes v(y)) = \partial^{\alpha} u \otimes \partial^{\beta} v.$

p.47, Proof of Theorem 4.3.3, part (ii), 1.5,6:

Replace $\operatorname{supp} y$ by $\operatorname{supp} v$.

Replace part of sentence between "can find" and "such that" by:

"for each open neighbourhood U of x in X and each neighbourhood V of y in Y functions $\phi \in C_c^{\infty}(U)$ and $\psi \in C_c^{\infty}(V)$ "

p.48, l.10: Replace ", \rangle " by " \rangle , ".

p.49, Exercise 4.2, l.2: Replace u by A^*u .

p.49, Exercise 4.3 part (ii): One may extend this to: "Show that Euler's equation $\sum_{i=1}^{n} x_i \partial_i u = \lambda u$ holds if and only if u is homogeneous of degree λ ." p.49, Exercise 4.4: Replace $\rangle\rangle$ by \rangle .

Chapter 5

p.50, formula (**): Insert after the equality sign a second integral sign.

p.51, (5.11): Replace = by \subset .

p.52, (5.1.5): Replace ∂_i by ∂_j .

p.52, 3 lines above Theorem 5.1.3: Replace $C_c^{\infty}(\mathbf{R}^n)$ by $\mathcal{D}'(\mathbf{R}^n)$.

- p.53, Proof of Theorem 5.2.1, l.3: Replace $\phi(x-y)$ by $\rho(x-y)$.
- p.54, l.4: Assume moreover about ψ that its support is convex and contains 0.
- p.54, 5 lines above Theorem 5.2.3: Assume moreover that $K_j \subset (K_{j+1})^0$.
- p.54, (5.2.4): Replace $K_j \subset K_{j+1}$ by $K_j \subset (K_{j+1})^0$.
- p.54, (5.2.6): Replace $\psi(x(\epsilon_j) \text{ by } \psi(x/\epsilon_j))$.
- p.55, l.-3: Replace $A_1^{\varepsilon}, \ldots, A_m^{\varepsilon}$ by $A_1^{\varepsilon} \times \cdots \times A_m^{\varepsilon}$.
- p.56, l.2: Replace A by A^{ε} , B by B^{ε} .
- p.56, l.7: Replace |x x'| by |x x' + x'|.
- p.56, l.8: Replace A by A^{ε} , B by B^{ε} .
- p.56, l.13: Replace $C_c^{\infty}(\mathbf{R})$ by $C_c^{\infty}(\mathbf{R}^n)$.
- p.56, l.14: Skip "is supported in $K_{\varepsilon}(\phi)$ ".
- p.56, l.20: After m = 2 insert "and when $u_2 \in \mathcal{E}'(\mathbf{R}^n)$ "
- p.56, l.22: Replace $u_1^* \dots^* u_m$ by $u_1^* \dots u_m^*$.

p.56, second line of Theorem 5.3.2(i): Here one has to use the definition of $\langle u, \phi \rangle$ for $u \in \mathcal{D}'(\mathbb{R}^n)$, $\phi \in C^{\infty}(\mathbb{R}^n)$ and $\operatorname{supp}(u) \cap \operatorname{supp}(\phi)$ compact, see Exercise 3.1.

p.56, Theorem 5.3.2(ii): Add that convolution is commutative.

- p.56, third line of Theorem 5.3.2(ii): Replace $i \in J$ by $i \in I$.
- p.57, first line after (5.3.3): Replace $\delta \ge 0$ by $\delta > 0$.
- p.58, (5.3.9): Replace ∂E^+ by $\partial_n E^+$, ∂E^- by $\partial_n E^-$.
- p.60, l.14: Insert ρ after ε^{-n} .
- p.60, l.17: Insert at the end of the line: "(see Exercise 5.4)".

p.60, l.21: Insert after " $\varepsilon \to 0$." the sentence: "Here $\lim_{j\to\infty} \phi_j = \phi$ in $C^N(\mathbf{R}^n)$ means that for all compact $K \subset \mathbf{R}^n$ and for all α , $|\alpha| \leq N$, we have $\lim_{j\to\infty} \partial^{\alpha} \phi_j = \partial^{\alpha} \phi$, uniform on K."

- p.61, l.1: Twice replace N + 1 by N + 2.
- p.61, second line of Corollary 5.4.1: After "functions" insert "of compact support".
- p.61, l.13: Replace h by n.
- p.61, l.-8: Replace $\alpha \ge 0$ by $|\alpha| \ge 0$.
- p.61, l.-4: Twice replace $\alpha \ge 0$ by $|\alpha| \ge 0$.
- p.62, l.5: Replace $\pi^{1/2n}$ by $\pi^{(1/2)n}$.
- p.62, (5.4.7): Replace by $1/((n-2)\omega_{n-1}|x|^{n-2})$.
- p.62, l.10: Replace $1/4\pi |x|$ by $1/(4\pi |x|)$.
- p.62, l.-2: In the middle part omit the integral sign.
- p.62, l.-1: On the right-hand side insert the factor $\frac{1}{2}$ before the integral.

- p.63, l.3: On the right-hand side insert a factor π .
- p.63, l.10: Replace the exponent -1/2n by $-\frac{1}{2}n$, and replace $-|x|^2/4t$ by $-|x|^2/(4t)$.
- p.65, l.13: Replace $\phi(0,0)$ by $\phi(0)$.
- p.65, Exercise 5.1(ii), l.2: Replace "to A + B" by "to $A \times B$ ".
- p.65, Exercise 5.2, l.4: Replace $x = \operatorname{supp} u$ by $x \in \operatorname{supp} u$.
- p.66, l.1: Replace $\mathcal{D}'(\mathbf{R})$ by $\mathcal{D}'^+(\mathbf{R})$.
- p.66, Exercise 5.4, l.2: Replace $U * \psi$ by $u * \psi(x)$.
- p.66, Exercise 5.4, l.3: Replace "if u is" by "if $u \in \mathcal{E}'(\mathbf{R}^n)$ is".
- p.66, Exercise 5.5, l.5: Replace " $u_1 \dots u_m$ is" by " $u_1 * \dots * u_m$ is".
- p.66, Exercise 5.5, l.7: Replace $u_1 \ldots u_m * v$ by $u_1 * \ldots * u_m * v$,
- p.67, l.1: Replace 2^{k+1} by 2^{k-1} .
- p.67, l.4: Replace " $\leq \phi_k$ " by " $\leq \mu_k$ ".

Chapter 6

p.71, l.-5: Insert $(1+|h|)^N$ after $(1+|g|)^N$.

- p.71, l.-2: Replace $\hat{\chi}$ by $\hat{\chi}_{q,h}$.
- p.78, l.4: Replace "right" by "left".
- p.78, (6.3.12): Replace $\langle E, \chi \rangle$ by $\langle {}^tE, \chi \rangle$.

p.78, Exercise 6.3: Here a differential operator is meant of the form in p.25, §2.6 with coefficients a_{α} in $\mathcal{D}'(X)$.

There is also an extension of Peetre's theorem stating that if $k: C_c^{\infty}(X) \to C^{\infty}(X)$ is a linear (a priori not necessarily continuous) map with $\operatorname{supp}(k(u)) \subset \operatorname{supp}(u)$ for all $u \in C_c^{\infty}(X)$ then k is a differential operator with C^{∞} coefficients. See J. Peetre, Rectification à l'article "Une caractérisation abstraite des opérateurs différentiels" Math. Scand. 8 (1960), 116–120.

Chapter 8

- p.91, Theorem 8.1.2, l.2: Insert "measurable" before "function".
- p.91, Theorem 8.1.2, l.3: Insert "in t" after "function".
- p.91, Proof of Theorem 8.1.2, l.1: Insert "(i) and" after "By".
- p.92, l.-2: Omit the integral sign on the left-hand side.
- p.93, l.2: Replace $e^{-ix\cdot\xi}$ by $e^{-iz\cdot\xi}$.
- p.93, (8.1.8): Replace the last part by " $(i = \sqrt{-1})$ ".
- p.93, l.-3: Add: "for a linear map from a Fréchet space to a topological space".
- p.95, l.3: Replace $D^{\alpha}\phi$ by $D^{\alpha}\hat{\phi}$.
- p.95, l.6: Replace $\|(-1)^{|\beta|} (D^{\alpha}(x^{\beta}\phi))^{\hat{}}\|$ by $\sup |(-1)^{|\beta|} (D^{\alpha}(x^{\beta}\phi))^{\hat{}}\|$

- p.96, l.11: Replace $\hat{\phi}(e)$ by $\hat{\phi}(\xi)$.
- p.98, l.7: Insert "and by Exercise 5.4" after "Theorem 5.4.1".
- p.98, l.12: Take the sup of the absolute value of the given expression.
- p.99, Corollary 8.3.1, l.2: Replace (8.3.1) by (8.1.1).
- p.99, l.-6: Replace $\phi(\xi + h)$ by $\hat{\phi}(\xi + h)$.
- p.101, l.-4: Replace 4.3.6 by 4.3.3.
- p.102, Lemma 8.4.1: After "then" replace v by \hat{v} .
- p.102, Proof of Lema 8.4.1, l.3: The fact that $x^{\alpha}v$ is in $\mathcal{E}'(\mathbf{R}^n)$ is true, but it is not used.
- p.103, Lemma 8.4.2: This is essentially the Remark after Definition 8.3.2.
- p.103, l.-5: Replace $C_c(\mathbf{R}^n)$ by $C_c^{\infty}(\mathbf{R}^n)$.
- p.104, Lemma 8.5.1, l.4: Replace " $(\tau_g \psi)_g \in \mathbb{Z}^n$ " by " $(\tau_g \psi)_{g \in \mathbb{Z}^n}$ ".
- p.105, l.-10: Replace h by n.
- p.107, l.1: Replace " $u \in \mathcal{E}'(\mathbf{R}^n)$ " by " $\psi u \in \mathcal{E}'(\mathbf{R}^n)$ ".
- p.107, (8.5.12): On the right-hand side insert a factor $(2\pi)^n$.
- p.108, Definition 8.6.1, l.1: Replace \mathcal{S}' by \mathcal{D}' .
- p.108, Lemma 8.6.1, l.1: Replace \mathcal{D}' by \mathcal{E}' .

p.108, Proof of Lemma 8.6.1, l.1: Replace $\rho \in C^{\infty}(\mathbf{R}^n)$ by $\rho \in C_c^{\infty}(\mathbf{R}^n)$. Also replace $\psi \in C_c^{\infty}(\mathbf{R}^n)$ by $\psi \in C^{\infty}(\mathbf{R}^n)$.

- p.108, (8.6.3): Replace $|\alpha| \le m$ by $|\alpha| = m$,
- p.109, Proof of Theorem 8.6.1, l.6: Insert "and m is the order of P" after "c > 0".
- p.109, (8.6.10): Replace "= $\{0\}$ " by " $\subset \{0\}$ ".
- p.110, (8.6.11): Replace DE by PE.

p.110, l.3: Insert "Let $u \in \mathcal{D}'(X)$." at beginning of line.

p.110, l.5, 8, 10, 12: At five places replace $P\psi u$ by $P(\psi u)$.

p.110, last line before Exercises: Theorem 8.6.1 (also the generalization with C^{∞} coefficients) was first proved by K. O. Friedrichs, On the differentiability of the solutions of linear elliptic differential equations, Comm. Pure Appl. Math. 6 (1953), 299–326.

p.110, Exercise 8.6, l.2: Replace $(u\psi)^{\hat{}}$ by $(\psi u)^{\hat{}}$.

p.110, Exercise 8.7, l.3: Replace $\mathbb{C}\setminus 0, -1, \ldots$ by $\mathbb{C}\setminus\{0, -1, \ldots\}$.

p.111, l.1: On the right-hand side replace $2\pi i$ by $-2\pi i$.

p.111, l.4: Replace \mathbf{R} by $\mathbf{R} \setminus \{0\}$.

Chapter 9

p.117, l.-10: If indeed the authors prefer to take the statement that $C_c^0(\mathbf{R}^n)$ is dense in $L_2(\mathbf{R}^n)$

from the literature instead of proving it here, then the density of $C_c^{\infty}(\mathbf{R}^n)$ can be proved quicker from this statement together with Theorem 1.2.1.

- p.120, l.-1: Replace the exponent $\frac{1}{2}$ by $\frac{1}{2}s$.
- p.121, (9.3.2): Replace exponent $\frac{1}{2}s$ by s.
- p.121, Proof of Theorem 9.3.1, l.14: Replace $(1+|\xi|^2)^{\frac{1}{2}}$ by $(1+|\xi|^2)^{\frac{1}{2}s}$.
- p.122, Proof of Theorem 9.3.2, l.3: Replace \hat{u} by $\overline{\hat{u}(\xi)}$.
- p.123, l.6: Replace $\xi^{\alpha} u$ by $\xi^{\alpha} \hat{u}$. Also insert "for $|\alpha| \leq m$ " after " $L_2(\mathbf{R}^n)$ ".
- p.123, l.17: Replace u_{α} by u.
- p.124, Proof of Corollary 9.3.3, l.1: Replace 9.3.1 by 9.3.2.