
REAL ANALYSIS

A survey of MA 641-643, UAB 1999-2000
M. Griesemer

Throughout these notes m denotes Lebesgue measure.

1. Abstract Integration

σ-Algebras. A σ-algebra in X is a non-empty collection
of subsets of X which is closed under taking complements
and countable unions. The pair (X,M) is called a mea-
surable space and the subsets of X which belong to M
are called measurable sets.

Theorem. Given a collection F of subsets of X there
exists a smallest σ-algebra which contains F. (The σ-
algebra generated by F.)

Borel sets. The σ-algebra generated by the topology of
a topological space is called the Borel σ-algebra. Its ele-
ments are called Borel sets. Two types of Borel sets have
special names. Sets of type Fσ are countable unions of
closed sets and sets of type Gδ are countable intersections
of open sets.

Measurable functions. Let X be a measurable space
and Y a topological space. Then f : X → Y is said to
measurable if one of the following equivalent definitions is
satisfied.

(1) preimages of Borel sets are measurable,
(2) preimages of open sets are measurable,
(3) f−1((α,∞]) is measurable for all α ∈ R (Y = R̄).

If X is in addition a topological space and the measurable
sets are the Borel sets then a measurable function is called
a Borel function. In this case every continuous function
is measurable.

Theorem. Let f, g : X → C where X is a measurable
space.

(1) f is measurable if and only if Re(f) and Im(f)
are measurable.

(2) If f and g are measurable then so are f + g, f · g,
and |f |.

Theorem. If f, g, fn : X → R̄ are measurable then
so are sup fn, inf fn, lim sup fn, lim infn fn, lim fn (if it
exists), max(f, g), min(f, g) and f±. If f, g : X → [0,∞]
are measurable then so are f + g and f · g.

A simple function s : X → C is a function of the
form s =

∑n
i=1 αiχAi , where the sets Ai are disjoint and

n <∞. For every function f : X → [0,∞] there exists a
sequence sn of simple functions s.t. 0 ≤ sn ≤ sn+1 ≤ f

and sn(x)→ f(x) for all x and s.t. sn is measurable if f
is.

Measures. A (positive) measure on a measurable space
(X,M) is a map µ : M → [0,∞], µ 6≡ +∞, which is
countably additive:

µ(
⋃
An) =

∑
µ(An)

on disjoint sets An. The triple (X,M, µ) is called a mea-
sure space. A measure space is complete if all subsets of
sets of measure zero are measurable. The measure µ is
σ-finite if X is a countable union of sets of finite measure.

Theorem. Every measure space (X,M, µ) has a small-
est complete extension (X,M∗, µ∗). A set E ⊂ X be-
longs to M∗ if and only if there exist A,B ∈ M, s.t.
A ⊂ E ⊂ B and µ(B\A) = 0, then µ∗(E) := µ(A).

Positive measures have the following properties

(1) If An ↗ A then µ(An)→ µ(A)
(2) If An ↘ A and µ(A1) <∞ then µ(An)→ µ(A)
(3) µ(

⋃
An) ≤

∑
µ(An)

Theorem (Egorov). Suppose fn is a sequence of com-
plex measurable functions on a measure space (X,µ) with
µ(X) < ∞. If fn → f a.e. and f is finite then for each
ε > 0 there exists a E ⊂ X with µ(X\E) < ε such that
fn → f uniformly on E.

Regularity. A measure µ whose σ-algebra contains all
Borel sets is inner regular if

µ(E) = sup{µ(K) : K ⊂ E, Kcompact}

and outer regular if

µ(E) = inf{µ(V ) : V ⊃ E, V open}.

If µ is inner and outer regular then µ is said to be regular.
Lebesgue measure on Rk is regular.

Convergence in measure. Let µ be a positive measure
on X. A sequence (fn) of complex measurable functions
on X is said to converge in measure to a measurable func-
tion f (fn

µ→ f) if for each ε > 0

lim
n→∞

µ{x : |fn(x)− f(x)| > ε} = 0.

Theorem.

(i) If fn(x) → f(x) a.e. (µ) and µ(X) < ∞ then
fn

µ→ f .
(ii) If fn

µ→ f then there exists a subsequence fnj
such that fnj (x)→ f(x) a.e. (µ).

1



2 REAL ANALYSIS

Integration. Let s =
∑n
i=1 αiχAi ≥ 0 be a measurable

simple function and let f ≥ 0 be measurable. Then∫
E

s dµ :=
n∑
i

αiµ(Ai ∩ E)∫
E

f dµ := sup
0≤s≤f

∫
E

s dµ

where E ∈ M. The sup is taken over measurable simple
functions. One has

∫
E
f dµ =

∫
χEf dµ.

Theorems. Let fn : X → R̄ be a sequence of measur-
able functions with fn ≥ 0.

(1) (Monotone convergence)
If fn ↗ f then

∫
fn dµ→

∫
f dµ.

(2)
∫ ∑

fn dµ =
∑∫

fn dµ.
(3) (Fatou)

∫
lim inf fn dµ ≤ lim inf

∫
fn dµ.

Integration of complex functions. A measurable func-
tion f : X → C is said to be (Lebesgue-) integrable
if
∫
|f | dµ < ∞. The set of these functions is denoted

L1(X). Suppose f is measurable and real-valued. Then
|f | = f+ + f− and hence f ∈ L1(X) if and only if
f± ∈ L(X). If at least one of the functions f± is in-
tegrable then the integral∫

f dµ :=
∫
f+ dµ−

∫
f− dµ

exists. If f ∈ L(X) is complex valued one defines∫
f dµ :=

∫
Re(f) dµ+ i

∫
Im(f) dµ.

A property P (x) is said to hold almost everywhere
w.r.t. µ (a.e. (µ)) if it hold everywhere except for a set of
measure zero. For instance, if f ≥ 0 is measurable then∫
f dµ = 0 if and only if f = 0 almost everywhere. This

example shows that integration is not sensitive for sets of
measure zero, which allows one to strengthen the above
theorems.

Theorems. Suppose fn, n = 1, 2, . . . are measurable
functions on a measure space X and φ ∈ L(X).

(1) (Monotone convergence) If fn ↗ f a.e. and fn ≥
φ for all n then

∫
fn dµ→

∫
f dµ.

(2) (Fatou) If fn ≥ φ for all n then
∫

lim inf fn dµ ≤
lim inf

∫
fn dµ.

(3) (Dominated convergence) If fn → f a.e. and if
|fn| ≤ φ for all n then f ∈ L(X) and

∫
fn dµ →∫

f dµ.
(4) If

∑∫
|fn| dµ < ∞ then

∑
fn converges a.e., is

integrable and
∫ ∑

fn dµ =
∑∫

fn dµ.

2. Lebesgue Measure and Outer Measure

Intervals. An interval in Rn is a set of the form I =
{x ∈ Rn|ai ≤ xi ≤ bi} where −∞ < ai ≤ bi < ∞. Its
volume is by definition v(I) =

∏n
i (bi−ai). Two intervals

are said to be non-overlapping if there intersection has no
inner points.

Parallelepipeds. n+ 1 vectors x0, e1, . . . , en in Rn span
a parallelepiped P with edges parallel to e1, . . . , en and
one corner at x0. Its volume v(P ) is by definition v(P ) =
det E where E is the n×n matrix with components Eik =
(ek)i (= ith component of ek w. r. to the standard basis).
This generalizes the above definitions for intervals.

Basic facts about volume. We take the following basic
facts about volume for granted without proof. If P is a
parallelepiped and Ik, k = 1, . . . , N < ∞ are intervals
then

(1) P ⊂
⋃
Ik implies v(P ) ≤

∑
v(Ik).

(2) If
⋃
Ik ⊂ P and the intervals are non-overlapping

then
∑
v(Ik) ≤ v(P ).

Lebesgue outer measure. Given an arbitrary sub-
set E ⊂ Rn its (Lebesgue-) outer measure is defined as
m∗(E) = inf

∑
v(Ik) where the infimum is take over all

countable collections of intervals Ik such that E ⊂
⋃
Ik.

Theorem. m∗ is an outer measure on Rn, i.e.,
(1) m∗(∅) = 0.
(2) If A ⊂ B then m∗(A) ≤ m∗(B).
(3) m∗(

⋃
n≥1En) ≤

∑
n≥1m

∗(En).

For a finite collection {In}Nn=1 of non-overlapping in-
tervals it follows from the Heine-Borel theorem and basic
facts about volume that

m∗(
⋃
In) =

∑
v(In).

It is also straight forward to prove that given E ⊂ Rn
and ε > 0 there exists an open set G ⊃ E such that

(1) m∗(G) ≤ m∗(E) + ε.

Lebesgue measurable. A set E ⊂ R
n is said to be

Lebesgue measurable if given ε > 0 there exists an open
set G ⊃ E such that m∗(G\E) ≤ ε.

Theorem. The collection of all Lebesgue measurable
subsets of Rn is a σ-algebra (containing al Borel sets) and
m∗ restricted to this σ-algebra is a (positive) measure,
called Lebesgue measure.

We use m to denote Lebesgue measure.

From (1) it follows that every set of outer measure zero
is Lebesgue measurable. I.e. Lebesgue measure is com-
plete. In fact, Lebesgue measure on Rn is the completion
of Lebesgue measure restricted to the Borel-sets of Rn.
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Characterizations of measurability. The following
three statements are equivalent.

(i) E is Lebesgue measurable.
(ii) There exists a set H of type Gδ with H ⊃ E and

m(H\E) = 0.
(iii) There exists a set H of type Fσ with H ⊂ E and

m(E\H) = 0.

Translation invariance. It is easy to show that Lebesgue
measure is translation invariant. This is a property which
characterizes Lebesgue measure up to an over all con-
stant. More precisely, if µ is a positive Borel measure on
R
k which is translation invariant and finite on compact

sets then there exists a constant c ≥ 0 such that µ = cm.

Theorem (Vitali). There exists a subset of R which is
not Lebesgue measurable.

The proof is based on the axiom of choice, the trans-
lation invariance of Lebesgue measure and the fact that
E∩(E+d) 6= ∅ for |d| small enough if E ⊂ R is measurable
and has positive measure.

Lipschitz transformations. If E ⊂ R
k is Lebesgue

measurable and T : Rk → R
k is continuous then T (E)

does not need to be measurable (the Cantor-Lebesgue
function provides a counter example). However if T is
locally Lipschitz then T (E) is Lebesgue measurable. If T
is even linear then

m(TE) = |det(T )|m(E).

It follows that Lebesgue measure is invariant under arbi-
trary motions in Rk. The following theorem thus implies
the existence of non-measurable sets in Rk, k ≥ 3.

Theorem (Banach & Tarski 1924). Suppose k ≥ 3 and
A,B ⊂ R

k are bounded sets with non-empty interior.
Then there exist disjoint subsets C1, . . . , Cm of A and
disjoint subsets D1, . . . , Dm of B, m being finite, such
that A =

⋃m
i=1 Ci, B =

⋃m
i=1Di and Ci is congruent to

Di for all i = 1, . . . ,m.

3. Riemann versus Lebesgue Integral

Theorem. Suppose f : [a, b] ⊂ R → R is a bounded,
Riemann integrable function and let

∫ b
a
f(x) dx denote its

Riemann integral. Then f ∈ L1([a, b]) and∫
[a,b]

f dm =
∫ b

a

f(x) dx.

4. Integration on Product Spaces

Let (X,S) and (Y, T ) be measurable spaces. Then S×
T denotes the smallest σ-algebra in X×Y witch contains
all measurable rectangles. In this way X × Y becomes a
measurable space. It is important that S × T is also the
smallest monotone class which contains all finite unions
of disjoint measurable rectangles (elementary sets).

If E ⊂ X × Y let

Ex = {y ∈ Y : (x, y) ∈ E}
Ey = {x ∈ X : (x, y) ∈ E}.

Theorems.

(i) All sections Ex and Ey of a measurable set E ⊂
X × Y are measurable.

(ii) If f : X × Y → C is measurable then the maps
x 7→ fy(x) = f(x, y) and y 7→ fx(y) = f(x, y) are
measurable for all x ∈ X and all y ∈ Y .

Theorem. If (X,µ) and (Y, λ) are σ-finite measure
spaces and Q ⊂ X × Y is measurable then the mappings
x 7→ λ(Qx) and y 7→ µ(Qy) are measurable and

(2)
∫
λ(Qx)dµ =

∫
µ(Qy)dλ =: (µ× λ)(Q).

Theorem. Let (X,µ) and (Y, λ) be σ-finite measure
spaces.

(i) (Tonelli) If f : X × Y → [0,∞] is measurable
then the maps x 7→

∫
fx dλ and y 7→

∫
fy dµ are

measurable and

(3)
∫
dλ

∫
dµ fy =

∫
dµ

∫
dλ fx =

∫
d(µ× λ)f.

In particular if f : X×Y → C is measurable then
f ∈ L1(X × Y ) if and only if one of these three
integrals for |f | is finite.

(ii) (Fubini) If f ∈ L1(X × Y ) then fy ∈ L1(X) for
almost every y, fx ∈ L1(Y ) for almost every x,
x 7→

∫
fx dλ and y 7→

∫
fy dµ are integrable and

(3) holds.

Let Bk andMk denote the σ-algebras of the Borel and
the Lebesgue measurable sets in Rk respectively. Then
Br×Bs = Br+s. HoweverMr×Ms ⊂Mr+s and equality
does not hold.

Theorem. If mk denotes the Lebesgue measure in Rk,
then mr+s is the completion of mr ×ms.

In this context it is also useful to know that given a
Lebesgue measurable function f : Rk → C there exists a
Borel function g : Rk → C such that f = g a.e.

The Distribution Function. Let (X,µ) be a σ-finite
measure space and suppose f : X → [0,∞] is measurable.
Then the set E = {(x, t) ∈ X × [0,∞) : f(x) > t} is
measurable in X × [0,∞), where [0,∞) is equipped with
the Borel σ-algebra. Hence by (2)∫

f dµ = (µ×m)(E) =
∫ ∞

0

µ{x : f(x) > t}dt.
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Theorem. Let (X,µ) and f be as above and suppose
ϕ : [0,∞] → [0,∞] is non-decreasing, AC on compact
intervals, ϕ(0) = 0 and ϕ(t)→ ϕ(∞) as t→∞. Then∫

ϕ ◦ f dµ =
∫ ∞

0

µ{x : f(x) > t}ϕ′(t) dt.

A nice application of this theorem is the proof of the
next theorem.

Theorem (Hardy-Littlewood). If f ∈ Lp(Rk) and 1 <
p <∞ then the Hardy-Littlewood maximal function Mf
of f is also in Lp(Rk).

5. Lp Spaces

Let (X,µ) be a measure space. For each p > 0 we
denote by Lp(X,µ) the set of all measurable functions
f : X → C with ‖f‖p <∞ where

‖f‖p =
(∫
|f |p dµ

)1/p

(p <∞)

‖f‖∞ = esssup|f |
Suppose f, g : X → C are measurable, 1 ≤ p ≤ ∞ and
p−1 + q−1 = 1. Then we have Hölder’s inequality

‖fg‖1 ≤ ‖f‖p‖f‖q
and Minkowski’s inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
In particular fg ∈ L1 if f ∈ Lp and g ∈ Lq, and Lp is a
complex linear space. Once one identifies functions in Lp

which differ only on a sets of measure zero (Lp, ‖ · ‖p) for
p ≥ 1 becomes a normed linear space.

Theorem (Fischer-Riesz). If 1 ≤ p ≤ ∞ then Lp(X,µ)
is a complete normed space. Moreover, if fn → f in Lp

then there exists a subsequence which converges pointwise
almost everywhere.

Lemma. The set of complex-valued, measurable, sim-
ple functions on X with support of finite measure is dense
in Lp(X,µ) if 1 ≤ p <∞.

This theorem together with Urysohn’s lemma implies
following theorem.

Theorem. Let µ be a measure on a locally compact
Hausdorff space X. If Borel sets are measurable, µ is
regular and compact sets have finite measure, then the set
Cc(X;C) of compactly supported continuous functions on
X is dense in Lp(X,µ) if 1 ≤ p <∞.

In particular Cc(Rn;C) is dense in Lp(Rn,m) for 1 ≤
p <∞.

Convolutions. The convolution f ∗ g of two measurable
functions f and g on Rk is defined by

(f ∗ g)(x) =
∫
f(x− y)g(y) dm

provided that y 7→ f(x−y)g(y) is integrable. In this case
f ∗ g = g ∗ f . If f and g are integrable then so is f ∗ g
and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Theorem (Young). Suppose f ∈ Lp(Rk), g ∈ Lq(Rk),
1 ≤ p, q ≤ ∞ and 1/p + 1/q ≥ 1. Define r ≥ 1 by
1/p+ 1/q = 1 + 1/r. Then f ∗ g ∈ Lr and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

In particular if 1 ≤ p ≤ ∞, f ∈ Lp(Rk) and g ∈ L1(Rk)
then f ∗ g ∈ Lp and

‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

6. Convexity

If ϕ : (a, b) ⊂ R̄ → R is convex then ϕ is continuous
and for each x ∈ (a, b) there exists a constant c ∈ R such
that

ϕ(y) ≥ ϕ(x) + c(y − x)

for all y ∈ (a, b). This elementary fact immediately im-
plies Jensen’s inequality.

Theorem (Jensen). If (Ω, µ) is a measure space with
µ(Ω) = 1, f ∈ L1(Ω, µ) and ϕ is convex on (a, b) ⊃
range f , then

ϕ

(∫
Ω

f dµ

)
≤
∫

Ω

ϕ ◦ f dµ.

7. Complex Measures

A complex measure is a countably additive set function
µ : M→ C defined on the measurable sets of a measur-
able space (X,M). A complex measure which is actually
real-valued is called a signed measure. The set of complex
measures on a given fixed σ-algebra is a complex linear
space.

Total variation. The total variation (measure) |µ| of a
given complex measure µ is defined by

|µ| = sup
∑
n

|µ(En)|

where the supremum is taken over all countable collec-
tions of disjoint measurable sets (En)n≥0.

Theorem. The total variation measure of a complex
measure is a finite, positive measure.

If µ is a signed measure it follows that the positive and
negative variations

µ± =
1
2

(|µ| ± µ)

of µ are finite positive measures. They give rise to the
Jordan decomposition µ = µ+ − µ− of a signed measure.
Correspondingly there exists a partition of the measur-
able space on which µ is defined.
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Theorem (Hahn-decomposition). If µ is a signed mea-
sure on X then there exist disjoint measurable sets X+

and X− such that X = X+ ∪X− and

µ+ = µ(E ∩X+), µ− = −µ(E ∩X−).

Absolute Continuity. Suppose λ is an arbitrary mea-
sure defined on the same measurable space as a given pos-
itive measure µ. Then λ is absolutely continuous w.r. to
µ (λ� µ) if µ(E) = 0 implies that λ(E) = 0.

If λ is a complex measure then this is equivalent to the
condition that for every ε > 0 there exists a δ > 0 such
that µ(E) < δ implies |λ(E)| < ε.

Two arbitrary measures λ1 and λ2 defined on the same
measurable space are mutually singular (λ1 ⊥ λ2) if there
exists a measurable set A such that |λ1|(Ac) = 0 and
|λ2|(A) = 0.

Theorem (Lebesgue-Radon-Nikodym). Suppose µ is a
σ-finite positive measure on a measurable space (X,M)
and λ is a complex measure on the same space. Then
there exists a unique decomposition

λ = λa + λs λa � µ, λs ⊥ µ,

and furthermore there is a unique h ∈ L1(X,µ) such that

(4) λa(E) =
∫
E

h dµ.

Remark. Note that, since λs ⊥ µ, there exists a set
Z of µ-measure zero such that λa(E) = λ(E\Z), and
λs(E) = λ(E ∩ Z).

Corollary. If both λ and µ are σ-finite measures on the
same measurable space, then there exists a unique pair
of σ-finite measures λa and λs such that λ = λa + λs,
λa � µ and λs ⊥ µ. Furthermore there is a non-negative
measurable function h such that (4) holds.

As a consequence from the Radon-Nikodym theorem
every complex measure µ can be represented as

µ(E) =
∫
E

h d|µ|

where h is a measurable function with |h| ≡ 1. This
immediately implies that Hahn-decomposition for signed
measures.

8. Differentiation

Derivatives of measures. Suppose µ is a Borel measure
on Rk, that is a measure defined in the sigma-algebra of
Borel sets, and Br(x) = B(x, r) denotes the open ball in
R
k with center at x and radius r. Then

Dµ(x) = lim
r→0

µ(Br(x))
m(Br(x))

,

if it exists, is called the symmetric derivative of µ at x.

An important tool in the study of the Dµ(x) is the
Hardy-Littlewood maximal function Mf of a measurable
function fon Rk. By definition

Mf(x) = sup
r>0

1
m(Br)

∫
B(x,r)

|f | dm.

Its distribution function satisfies the bound

m{x : Mf(x) > λ} ≤ 3kλ−1‖f‖1.
Lebesgue points. Suppose f ∈ L1(Rk), x ∈ Rk and

lim
r→0

1
µ(Br)

∫
B(x,r)

|f − f(x)|dm = 0.

Then x is called a Lebesgue point of f . It is easy to see
that if dµ = fdm, f ∈ L1 and x is a Lebesgue point of
f , then Dµ(x) = f(x). However much more is true.

Theorem. If f ∈ L1(Rk) then almost every x ∈ Rk is
a Lebesgue point of f .

Theorem. If µ is a complex Borel measure on Rk and
dµ = fdm+dµs is its Lebesgue decomposition w.r. to m,
then Dµ(x) = f(x) a.e. (m). In particular µ ⊥ m if and
only if Dµ = 0 a.e.(m).

This theorem still hold if the balls in the definition
of Dµ(x) are replaced by Borel sets {En} that shrink to
x nicely in the sense that there exists an α > 0 and a
sequence of balls B(x, rn) such that

(i) rn → 0

(ii) B(x, rn) ⊃ En
(iii) m(En) ≥ αm(B(x, rn)).

Here α, En and rn will depend on the x where Dµ(x) is
evaluated.

The Fundamental Theorem of Calculus. The func-
tion f : [a, b] → C is said to be absolutely continuous
(AC) if for every ε > 0 there exists a δ > 0 such that

n∑
i=1

|f(βi)− f(αi)| < ε

for every finite collection of disjoint intervals {(αi, βi)}i=1..n

in [a, b] with
∑

(βi − αi) < δ.

Theorem. If f : [a, b] → C is absolutely continuous
then f is differentiable a.e., f ′ ∈ L1 and

(5) f(x)− f(a) =
∫ x

a

f ′ dm x ∈ [a, b].

Conversely, the antiderivative of every integrable function
is absolutely continuous.

Functions of bounded variation. A function f : [a, b]→
C is said to be of bounded variation if

V (f) = sup
n∑
i=1

|f(ti)− f(ti−1)| <∞
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where the sup is taken over all partitions of [a, b]. If f is
AC the V (f) ≤

∫
[a,b]
|f ′| dm by the fundamental theorem

of calculus and hence f is of bounded variation. On the
other hand if f is of bounded variation then f is differen-
tiable a.e. and f ′ ∈ L1. However (5) will not hold unless
f is AC. The cantor Lebesgue function is a nice example.

Differentiable Transformations. A mapping T : V ⊂
R
m → R

n, V open, is said to be differentiable at x if there
exists a linear transformation A : Rm → R

n such that

lim
h→0

|T (x+ h)− T (x)−Ah|
|h|

= 0.

Then T ′(x) := A is called the derivative of f at x.

Theorem. If T : V ⊂ Rk → R
k, V is open and T is

continuous on V and differentiable at x then

lim
r→0

m(T (Br(x)))
m(Br(x))

= |detT ′(x)|.

Theorem. Suppose T : V ⊂ Rk → R
k, V is open and T

is continuous on V and one-to-one and differentiable on
a measurable subset X ⊂ V for which m(T (V \X)) = 0.
Then for every measurable function f : Rk → [0,∞]∫

T (X)

f dm =
∫
X

(f ◦ T )|detT ′| dm.

9. Hilbert Space Theory

Terminology. Inner product space, unitary space,
Hilbert space, linear subspace, orthogonality, continuous
linear functional, isomorphism.

The inner product (x, y) of two vectors x and y is linear
in the first and antilinear in the second argument. ‖x‖ =
(x, x)1/2 defines a norm.

Theorem. If M is a closed linear subspace of a Hilbert
space H then for each x ∈ H there is a unique decompo-
sition

x = x1 + x2, x1 ∈M, x2 ⊥M
and x1 is characterized by

‖x− x1‖ = min
y∈M
‖x− y‖.

Theorem (Riesz). To every continuous linear func-
tional f on a Hilbert space H there exists a unique vector
x∗ such that

f(x) = (x, x∗), all x ∈ H.
Orthonormal systems. A countable family of vectors
(un)n≥1 in a inner product space E is called an orthonor-
mal system (ONS) if (un, uk) = δnk. It is maximal if
(x, un)n≥0 implies x = 0. An ONS (un)n≥1 is called an
orthonormal basis (ONB) if x =

∑
(x, un)un for all x ∈ E.

Theorem. Suppose (un)n≥0 is an ONS in an inner
product space E. Then for each x ∈ E we have:

(i) (Bessel’s inequality)∑
n≥0

|(x, un)|2 ≤ ‖x‖2

and equality holds if and only if
∑

(x, un)un = x.
(ii) If E is complete then∑

n≥0

(x, un)un = x1

where x1 is the orthogonal projection of x onto
span{un}.

Parseval’s Identity. If (un)n≥1 is an ONB in a Hilbert
space H then for all x, y ∈ H

(x, y) =
∑
n≥1

(x, un)(y, un).

Theorems.
(i) An ONS in a Hilbert space is a ONB if and only

if it is maximal.
(ii) Every separable inner product space has a count-

able ONB.
(iii) Every Hilbert space with a countably infinite ONB

is isomorphic to l2.

Remark. L2(Rn) is separable.

10. Appendix

Let (Aα)α∈I , B be subsets of a set X, where I is an
arbitrary index set.

Distributive laws.

B ∩ (∪α∈IAα) = ∪α∈I(B ∩Aα)
B ∪ (∩α∈IAα) = ∩α∈I(B ∪Aα)

De Morgan’s Laws.

(∪α∈IAα)c = (∩α∈IAcα)
(∩α∈IAα)c = (∪α∈IAcα)

For any map f : X → Y and sets Aα ⊂ X and B,Bα ⊂
Y where α ∈ I

f−1(Bc) = f−1(B)c

f−1(∪αBα) = ∪αf−1(Bα)
f−1(∩αBα) = ∩αf−1(Bα)
f(∪αAα) = ∪αf(Aα)
f(∩αAα) ⊂ ∩αf(Aα).
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