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Throughout these notes m denotes Lebesgue measure.

1. ABSTRACT INTEGRATION

o-Algebras. A o-algebra in X is a non-empty collection
of subsets of X which is closed under taking complements
and countable unions. The pair (X, M) is called a mea-
surable space and the subsets of X which belong to M
are called measurable sets.

Theorem. Given a collection § of subsets of X there
exists a smallest o-algebra which contains §. (The o-
algebra generated by §.)

Borel sets. The o-algebra generated by the topology of
a topological space is called the Borel o-algebra. Its ele-
ments are called Borel sets. Two types of Borel sets have
special names. Sets of type F, are countable unions of
closed sets and sets of type G are countable intersections
of open sets.

Measurable functions. Let X be a measurable space
and Y a topological space. Then f : X — Y is said to
measurable if one of the following equivalent definitions is
satisfied.

(1) preimages of Borel sets are measurable,

(2) preimages of open sets are measurable,

(3) f~'((cr, 00]) is measurable for all « € R (Y = R).
If X is in addition a topological space and the measurable
sets are the Borel sets then a measurable function is called
a Borel function. In this case every continuous function
is measurable.

Theorem. Let f,g: X — C where X is a measurable
space.
(1) f is measurable if and only if Re(f) and Im(f)
are measurable.
(2) If f and g are measurable then so are f + g, f - g,
and |f|.

Theorem. 1If f,g,f, : X — R are measurable then
so are sup f,, inf f,, limsup f,,, liminf, f,, lim f, (if it
exists), max(f,g), min(f,g) and fi. If f,g: X — [0, o0]
are measurable then so are f + g and f - g.

A simple function s : X — C is a function of the
form s =" | a;xa,, where the sets A; are disjoint and
n < oco. For every function f : X — [0, cc] there exists a
sequence s, of simple functions s.t. 0 < s, < 5,41 < f

and s, (z) — f(z) for all z and s.t. s, is measurable if f
is.

Measures. A (positive) measure on a measurable space
(X, M) isamap p : M — [0,00], p # 400, which is
countably additive:

N(U An) = Z w(An)

on disjoint sets A,. The triple (X, M, u) is called a mea-
sure space. A measure space is complete if all subsets of
sets of measure zero are measurable. The measure p is
o-finite if X is a countable union of sets of finite measure.

Theorem. Every measure space (X, M, 1) has a small-
est complete extension (X, M* u*). A set E C X be-
longs to M* if and only if there exist A,B € M, s.t.
A CE C B and pu(B\A) =0, then p*(E) := p(A).

Positive measures have the following properties
(1) If A, /" A then u(Ay,) — u(A)
(2) If A, \, A4 and p(A41) < oo then p(4,) — u(A)
(3) M(U An) < Zﬂ(An)

Theorem (Egorov). Suppose f, is a sequence of com-
plex measurable functions on a measure space (X, p) with
w(X) < oo. If f, = f ae. and f is finite then for each
€ > 0 there exists a £ C X with u(X\E) < € such that
fn — [ uniformly on E.

Regularity. A measure p whose o-algebra contains all
Borel sets is inner regular if

w(E) =sup{u(K) : K C E, Kcompact}
and outer regular if
w(E) =inf{u(V):V D E, Vopen}.

If w4 is inner and outer regular then p is said to be regular.
Lebesgue measure on R is regular.

Convergence in measure. Let u be a positive measure
on X. A sequence (f,) of complex measurable functions
on X is said to converge in measure to a measurable func-
tion f (fn * f) if for each € > 0

Jim gz s [fo(2) = f(2)] > e} = 0.

Theorem.
(i) If fo(x) — f(z) ae. (p) and p(X) < oo then
fu = f.
(ii) If f, & f then there exists a subsequence In;
such that f,,;(z) — f(z) a.e. (u).
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Integration. Let s = Z?zl a;x4,; > 0 be a measurable
simple function and let f > 0 be measurable. Then

/ sdp = Z%‘M(Ai NE)

E
fdp = sup / sdu
E 0<s<fJE
where ¥ € M. The sup is taken over measurable simple
functions. One has [, fdu = [ xefdu.

Theorems. Let f, : X — R be a sequence of measur-
able functions with f,, > 0.

(1) (Monotone convergence)
If fn, /' f then [ fodu— [ fdpu.

2) [ X fodu =3[ fudp.
(3) (Fatou) [liminf f, du < liminf [ f, dp.

Integration of complex functions. A measurable func-
tion f : X — C is said to be (Lebesgue-) integrable
if [|fldp < co. The set of these functions is denoted
L'(X). Suppose f is measurable and real-valued. Then
|fl = f+ + f- and hence f € L'(X) if and only if
fr € L(X). If at least one of the functions fy is in-
tegrable then the integral

[taw= [ tedn= [ s-an

exists. If f € L(X) is complex valued one defines

[ ran= [Re(prdu+i [tm(s)an

A property P(z) is said to hold almost everywhere
w.r.t. u (a.e. (p)) if it hold everywhere except for a set of
measure zero. For instance, if f > 0 is measurable then
f fdp =0 if and only if f = 0 almost everywhere. This
example shows that integration is not sensitive for sets of
measure zero, which allows one to strengthen the above
theorems.

Theorems. Suppose f,, n = 1,2 ... are measurable
functions on a measure space X and ¢ € L(X).

(1) (Monotone convergence) If f,, /* f a.e. and f, >
¢ for all n then [ f,dp— [ fdu.

(2) (Fatou) If f, > ¢ for all n then [liminf f, du <
liminf [ f, dp.

(3) (Dominated convergence) If f, — f a.e. and if
|fn| < ¢ for all n then f € L(X) and [ f, dp —
[ fdp.

(4) It > [ |fnldp < oo then Y f,, converges a.e., is
integrable and [ frodu=>" [ fndp.

2. LEBESGUE MEASURE AND OUTER MEASURE

Intervals. An interval in R” is a set of the form I =
{z € R"|a; < z; < b;} where —oo < a; < b; < oo. Its
volume is by definition v(I) = [} (b; — a;). Two intervals
are said to be non-overlapping if there intersection has no

inner points.

Parallelepipeds. n+ 1 vectors zg, e, ..., e, in R™ span
a parallelepiped P with edges parallel to eq,...,e, and
one corner at zp. Its volume v(P) is by definition v(P) =
det E where F is the nxn matrix with components E;;, =
(ex); (= ith component of e; w. r. to the standard basis).
This generalizes the above definitions for intervals.

Basic facts about volume. We take the following basic
facts about volume for granted without proof. If P is a
parallelepiped and I, K = 1,..., N < oo are intervals
then
(1) P c Iy implies v(P) < > v(Iy).
(2) If |JIx C P and the intervals are non-overlapping
then > v(I) < v(P).

Lebesgue outer measure. Given an arbitrary sub-
set E C R™ its (Lebesgue-) outer measure is defined as
m*(E) = inf )" v(I}) where the infimum is take over all
countable collections of intervals Iy such that E C | I.

Theorem. m™* is an outer measure on R”, i.e.,
(1) m*(0) =o0.

(2) If A C B then m*(A) < m*(B).

(3) m*(Unzl E,) < Zn21 m*(Ep).

For a finite collection {I,,}_, of non-overlapping in-
tervals it follows from the Heine-Borel theorem and basic
facts about volume that

m* (| JI) = v(ln).

It is also straight forward to prove that given £ C R™
and € > 0 there exists an open set G O F such that

(1) m*(G) <m*(E)+e.

Lebesgue measurable. A set £ C R™ is said to be
Lebesgue measurable if given € > 0 there exists an open
set G D E such that m*(G\E) < e.

Theorem. The collection of all Lebesgue measurable
subsets of R™ is a o-algebra (containing al Borel sets) and

m* restricted to this o-algebra is a (positive) measure,
called Lebesgue measure.

We use m to denote Lebesgue measure.

From (1) it follows that every set of outer measure zero
is Lebesgue measurable. I.e. Lebesgue measure is com-
plete. In fact, Lebesgue measure on R™ is the completion
of Lebesgue measure restricted to the Borel-sets of R™.
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Characterizations of measurability. The following
three statements are equivalent.

(i) E is Lebesgue measurable.
(ii) There exists a set H of type G5 with H D E and

m(H\FE) = 0.
(iii) There exists a set H of type F, with H C E and
m(E\H) = 0.

Translation invariance. It is easy to show that Lebesgue
measure is translation invariant. This is a property which
characterizes Lebesgue measure up to an over all con-
stant. More precisely, if p is a positive Borel measure on
R* which is translation invariant and finite on compact
sets then there exists a constant ¢ > 0 such that u = cm.

Theorem (Vitali). There exists a subset of R which is
not Lebesgue measurable.

The proof is based on the axiom of choice, the trans-
lation invariance of Lebesgue measure and the fact that
EN(E+d) # 0 for |d| small enough if E C R is measurable
and has positive measure.

Lipschitz transformations. If £ C R* is Lebesgue
measurable and T : R¥ — RF is continuous then T'(E)
does not need to be measurable (the Cantor-Lebesgue
function provides a counter example). However if T is
locally Lipschitz then T(E) is Lebesgue measurable. If T
is even linear then

m(TE) = | det(T)|m(E).
It follows that Lebesgue measure is invariant under arbi-

trary motions in R¥. The following theorem thus implies
the existence of non-measurable sets in R*, k > 3.

Theorem (Banach € Tarski 1924). Suppose k > 3 and
A,B C R* are bounded sets with non-empty interior.
Then there exist disjoint subsets C1i,...,C,, of A and
disjoint subsets D1, ..., Dy, of B, m being finite, such
that A = |J", C;, B = |J;~, D; and C; is congruent to
D;foralli=1,...,m.

3. RIEMANN VERSUS LEBESGUE INTEGRAL

Theorem. Suppose f : [a,b] C R — R is a bounded,

Riemann integrable function and let fab f(z) dx denote its
Riemann integral. Then f € L'([a,b]) and

/[a’b] fdm= /abf(:c)dx.

4. INTEGRATION ON PRODUCT SPACES

Let (X,S8) and (Y, 7) be measurable spaces. Then S x
7T denotes the smallest o-algebra in X x Y witch contains
all measurable rectangles. In this way X x Y becomes a
measurable space. It is important that S x 7 is also the
smallest monotone class which contains all finite unions
of disjoint measurable rectangles (elementary sets).

IfECXXY let

E,={yeY :(z,y) € E}
EY={zeX:(z,y) € E}.

Theorems.

(i) All sections E, and EY of a measurable set F C
X x'Y are measurable.

(i) If f : X x Y — C is measurable then the maps
i fU(2) = f(z,y) and y — fo(y) = f(z,y) are
measurable for all z € X and all y € Y.

Theorem. If (X,u) and (Y, \) are o-finite measure
spaces and @@ C X X Y is measurable then the mappings
x— MNQ,) and y — pu(QY) are measurable and

(2) / Q) dp = / QYN = (1 x N)(Q).

Theorem. Let (X, p) and (Y, A) be o-finite measure
spaces.
(i) (Tonells) If f : X xY — [0,00] is measurable
then the maps z — [ f,d\ and y — [ f¥du are
measurable and

@ [ fdur = [du [ars = [awxns.

In particular if f : X xY — C is measurable then
f € LY(X x Y) if and only if one of these three
integrals for | f| is finite.

(i) (Fubini) If f € L'(X x Y) then f¥ € L'(X) for
almost every y, f, € L'(Y) for almost every x,
z— [ fydX\and y — [ f¥du are integrable and
(3) holds.

Let By and My, denote the o-algebras of the Borel and
the Lebesgue measurable sets in R respectively. Then
B.-xBs = B,4s. However M,. x My C M, and equality
does not hold.

Theorem. If my, denotes the Lebesgue measure in R¥,
then m,.; is the completion of m,. x mg.

In this context it is also useful to know that given a
Lebesgue measurable function f : R¥ — C there exists a
Borel function g : R¥ — C such that f = g a.e.

The Distribution Function. Let (X, ) be a o-finite
measure space and suppose f : X — [0, oo] is measurable.
Then the set £ = {(x,t) € X x [0,00) : f(z) > t} is
measurable in X X [0, 00), where [0, 00) is equipped with
the Borel o-algebra. Hence by (2)

[ rdu=tuxm@) = [ utes 1) > ar
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Theorem. Let (X, p) and f be as above and suppose
¢ : [0,00] — [0,00] is non-decreasing, AC on compact
intervals, ¢(0) = 0 and @(t) — @(c0) as t — co. Then

[eotin= [ ute: @ > e a

A nice application of this theorem is the proof of the
next theorem.

Theorem (Hardy-Littlewood). If f € LP(RF) and 1 <
p < oo then the Hardy-Littlewood maximal function M f
of f is also in LP(RF).

5. LP SPACES

Let (X,u) be a measure space. For each p > 0 we
denote by LP(X,u) the set of all measurable functions
f:X — C with || f||, < co where

i1 = ( Ifl”du)l/p (v < o)

[[flloc = esssup|f|

Suppose f,g : X — C are measurable, 1 < p < oo and
p~! 4+ ¢! = 1. Then we have Holder’s inequality

1fglls < N flpll fllg

and Minkowski’s inequality

1+ gllp < [If1lp + llgllp-
In particular fg € L' if f € LP and g € L7, and L? is a
complex linear space. Once one identifies functions in LP
which differ only on a sets of measure zero (L?, || - ||,) for
p > 1 becomes a normed linear space.

Theorem (Fischer-Riesz). If 1 <p < oo then LP(X, u)
is a complete normed space. Moreover, if f, — f in LP
then there exists a subsequence which converges pointwise
almost everywhere.

Lemma. The set of complex-valued, measurable, sim-
ple functions on X with support of finite measure is dense
in LP(X,p) if 1 <p < 0.

This theorem together with Urysohn’s lemma implies
following theorem.

Theorem. Let p be a measure on a locally compact
Hausdorff space X. If Borel sets are measurable, u is
regular and compact sets have finite measure, then the set
C.(X; C) of compactly supported continuous functions on
X is dense in LP(X, pn) if 1 < p < o0.

In particular C.(R™; C) is dense in LP(R™,m) for 1 <
p < oo.

Convolutions. The convolution f * g of two measurable
functions f and g on R* is defined by

(f * 9)(a) = / F(x — y)g(y) dm

provided that y — f(x —y)g(y) is integrable. In this case
fxg=gxf. If fand g are integrable then so is f * g
and [|f « glly < [[fl1llgllx-

Theorem (Young). Suppose f € LP(RF), g € LI(R¥),
1 <pg<ooand 1/p+1/q¢ > 1. Define r > 1 by
1/p+1/¢=1+4+1/r. Then fxg e L" and

1 gllr < £ llsllgllq-
In particular if 1 < p < oo, f € LP(RF) and g € L' (RF)
then fx¢g € LP and

1f* gllo < 1 £llpllgll-

6. CONVEXITY

If ¢ : (a,b) C R — R is convex then ¢ is continuous
and for each x € (a,b) there exists a constant ¢ € R such
that

e(y) = () +cly —x)
for all y € (a,b). This elementary fact immediately im-
plies Jensen’s inequality.

Theorem (Jensen). If (2, ) is a measure space with
u(Q) =1, f € LY (Q,pu) and ¢ is convex on (a,b) D

range f, then
d o fdu.
w(/ﬂf u)é/ﬂw fdp

7. COMPLEX MEASURES

A complex measure is a countably additive set function
i M — C defined on the measurable sets of a measur-
able space (X, M). A complex measure which is actually
real-valued is called a signed measure. The set of complex
measures on a given fixed g-algebra is a complex linear
space.

Total variation. The total variation (measure) |u| of a
given complex measure p is defined by

ul = sup > |pu(Ey)]

where the supremum is taken over all countable collec-
tions of disjoint measurable sets (E,,),>0.

Theorem. The total variation measure of a complex
measure is a finite, positive measure.

If 11 is a signed measure it follows that the positive and
negative variations

1
ft = §(|u| + 1)

of p are finite positive measures. They give rise to the
Jordan decomposition p = py — p— of a signed measure.
Correspondingly there exists a partition of the measur-
able space on which p is defined.
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Theorem (Hahn-decomposition). If u is a signed mea-
sure on X then there exist disjoint measurable sets X
and X_ such that X = X, UX_ and

pte =p(ENXL),  po=—p(ENXD).

Absolute Continuity. Suppose A is an arbitrary mea-
sure defined on the same measurable space as a given pos-
itive measure p. Then X\ is absolutely continuous w.r. to
w (A< p)if w(E) = 0 implies that A(E) = 0.

If X is a compler measure then this is equivalent to the
condition that for every € > 0 there exists a § > 0 such
that p(E) < § implies |MN(E)| < e.

Two arbitrary measures Ay and Ay defined on the same
measurable space are mutually singular (\y L A\g) if there
exists a measurable set A such that |A\1](A°) = 0 and
[A2[(A) = 0.

Theorem (Lebesque-Radon-Nikodym). Suppose p is a
o-finite positive measure on a measurable space (X, M)
and A is a complex measure on the same space. Then
there exists a unique decomposition

A=A+ As
and furthermore there is a unique h € L*(X, 1) such that

(4) 7(B) = [ .

Remark. Note that, since As L u, there exists a set
Z of p-measure zero such that \,(E) = A(E\Z), and
As(E) = AENZ).

Ao Lty As Lopy

Corollary. If both A and u are o-finite measures on the
same measurable space, then there exists a unique pair
of o-finite measures A\, and A; such that A\ = A\, + A4,
Ao < pand A; L p. Furthermore there is a non-negative
measurable function & such that (4) holds.

As a consequence from the Radon-Nikodym theorem
every complex measure p can be represented as

W(E) = /E Bl

where h is a measurable function with |h| = 1. This
immediately implies that Hahn-decomposition for signed
measures.

8. DIFFERENTIATION

Derivatives of measures. Suppose p is a Borel measure
on R*, that is a measure defined in the sigma-algebra of
Borel sets, and B,.(z) = B(z,r) denotes the open ball in
R* with center at x and radius 7. Then

(B (x))
Dp(x) = }13(1) m7

if it exists, is called the symmetric derivative of u at z.

An important tool in the study of the Du(x) is the
Hardy-Littlewood maximal function M f of a measurable
function fon R*. By definition

1
VIO = )

Its distribution function satisfies the bound
m{ax s Mf(x) > A} < 3"A7Y| fl1.
Lebesgue points. Suppose f € L}(R¥), z € R* and

1

1 -

Then z is called a Lebesgue point of f. It is easy to see
that if du = fdm, f € L' and x is a Lebesgue point of
f, then Du(x) = f(z). However much more is true.

Theorem. If f € L'(R¥) then almost every z € R¥ is
a Lebesgue point of f.

Theorem. If 11 is a complex Borel measure on R¥ and
du = fdm+dus is its Lebesgue decomposition w.r. to m,
then Du(x) = f(z) a.e. (m). In particular g L m if and
only if Dy =0 a.e.(m).

This theorem still hold if the balls in the definition
of Du(x) are replaced by Borel sets {E,,} that shrink to
x mecely in the sense that there exists an o > 0 and a
sequence of balls B(x,r,) such that

(#) rn—0
(i) B(x,rn) D E,
(i) m(E,) > am(B(x,ry,)).
Here «, E, and r, will depend on the x where Du(x) is
evaluated.

The Fundamental Theorem of Calculus. The func-
tion f : [a,b] — C is said to be absolutely continuous
(AC) if for every € > 0 there exists a § > 0 such that

n

1B = flew)| <&

i=1
for every finite collection of disjoint intervals {(c, ;) }i=1..n
in [a,b] with > (8; — a;) < 4.

Theorem. 1If f : [a,b] — C is absolutely continuous
then f is differentiable a.e., f’ € L' and

6 f@-tw- [ “pdm zelab)

Conversely, the antiderivative of every integrable function
is absolutely continuous.

Functions of bounded variation. A function f : [a,b] —
C is said to be of bounded variation if

V(f) = SUPZ |f(t:) = f(ti—1)| < o0
i=1
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where the sup is taken over all partitions of [a,b]. If f is
AC the V(f) < f[a,b] |f/| dm by the fundamental theorem
of calculus and hence f is of bounded variation. On the
other hand if f is of bounded variation then f is differen-
tiable a.e. and f’ € L'. However (5) will not hold unless

f is AC. The cantor Lebesgue function is a nice example.

Differentiable Transformations. A mapping 7 : V C

R™ — R™, V open, is said to be differentiable at x if there

exists a linear transformation A : R™ — R such that
lim |T(x+ h) —T(x) — Ah|
h—0 |h‘

Then T'(x) := A is called the derivative of f at .

=0.

Theorem. If T : V C R*¥ — RF, V is open and T is
continuous on V and differentiable at x then
m(T'(Br(z)))

M (B, (x))

r—0

=|det T'(z)|.

Theorem. Suppose T : V C R¥ — R*, V is open and T
is continuous on V and one-to-one and differentiable on
a measurable subset X C V for which m(T(V\X)) = 0.
Then for every measurable function f : R¥ — [0, oo]

/ fdm:/(foT)|detT’\dm.
T(X) X

9. HILBERT SPACE THEORY

Terminology. Inner product space, unitary space,
Hilbert space, linear subspace, orthogonality, continuous
linear functional, isomorphism.

The inner product (z,y) of two vectors x and y is linear
in the first and antilinear in the second argument. ||z| =
(z,x)"/? defines a norm.

Theorem. If M is a closed linear subspace of a Hilbert
space H then for each © € H there is a unique decompo-
sition

T =z + xo, r1 €EM, xo L M
and x; is characterized by

lz = 21| = nin [lz — y]].

Theorem (Riesz). To every continuous linear func-
tional f on a Hilbert space H there exists a unique vector
z* such that

f(@) = (2,27),
Orthonormal systems. A countable family of vectors
(un)n>1 in a inner product space E is called an orthonor-
mal system (ONS) if (upn,ur) = dpg. It is mazimal if
(x, upn)n>0 implies £ = 0. An ONS (uy)p>1 is called an
orthonormal basis (ONB) if ¢ = > (x, u,)uy, forallz € E.

all z € H.

Theorem. Suppose (up)n>0 is an ONS in an inner
product space E. Then for each x € E we have:

(i) (Bessel’s inequality)
Dl ) < Jlz)?
n>0

and equality holds if and only if > (x, u,)u, = .
(ii) If F is complete then

Z(a@un)un =1

n>0
where z; is the orthogonal projection of x onto
span{uy, }.

Parseval’s Identity. If (uy)n>1 is an ONB in a Hilbert
space H then for all x,y € H

Z(xaun)(%un)'

n>1

(‘Tvy) =

Theorems.

(i) An ONS in a Hilbert space is a ONB if and only
if it is maximal.
(ii) Every separable inner product space has a count-
able ONB.
(iii) Every Hilbert space with a countably infinite ONB
is isomorphic to 2.

Remark. L*(R™) is separable.

10. APPENDIX

Let (Aa)acr, B be subsets of a set X, where I is an
arbitrary index set.

Distributive laws.

BN (Uaerda) = Uaer(BNAy)
BU (Nacrda) = Naci(BUA,)
De Morgan’s Laws.
(Uaerda)® (NaerAg)
(Naerda)® = (Uaer4y)

For any map f : X — Y and sets A, C X and B, B, C
Y where a € 1

f7UBY) = By
71(UaBa) = Uaf I(Ba)
_l(maBa) = Naf” I(Boz)

f(UaAa) - Uaf( a)

f(Nada) C Naf(Aa).
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