Institute of Mathematics, LMU Munich – Spring Term 2012 Prof. T. Ø. Sørensen Ph.D, A. Michelangeli Ph.D

Extra exercises: For your own preparation for the make-up/Wiederholungsklausur Oct 20 2012. **Solutions:** *NO* written solutions will be provided. However, there will be two Exercise classes, Oct 15th and 16th, 18:15 - 20:00, in B 138 and B 005, respectively (to be confirmed).

Disclaimer: Neither the themes nor the length nor the difficulty of these exercises give any hint on the exercises on the make-up exam/Wiederholungsklausur Oct 20 2012.

Exercise 1. Let $p \in (1, \infty]$, $\alpha := 1 - \frac{1}{p}$, $I = [a, b] \subset \mathbf{R}$. Prove: $\exists C > 0 : \forall f \in C^1(I), \forall x_0 \in I$: $\|f\|_{C^{0,\alpha}(I)} \le |f(x_0)| + C\|f'\|_{L^p(I)}$.

Exercise 2. Let X and Y be Banach spaces and let $B: X \times Y \to \mathbb{K}$ be bilinear. Assume that B is *partially* continuous in both entries, i.e. $\forall x \in X: B(x, \cdot) \in Y'$ and $\forall y \in Y: B(\cdot, y) \in X'$. Prove that $B: X \times Y \to \mathbb{K}$ is continuous, i.e. B is *jointly* continuous in both entries. Remark. If $B: X \times Y \to \mathbb{C}$ is sesquilinear and partially continuous in both entries, then it also follows that B is continuous on $X \times Y$.

Exercise 3. Let X be a Banach space, Y a normed space, and $T \in B(X, Y)$. Assume that T is not surjective, but that $T(X) \subseteq Y$ is dense.

- (i) Prove that T(X) is of first category in Y.
- (ii) Prove that T(X) is not no-where dense in Y.

Exercise 4. Let $(X, \|\cdot\|)$ be a normed real or complex vector space and let $\varphi : X \to \mathbf{K}$ be some bounded linear functional, i.e.

$$\|\varphi\| = \sup\left\{ |\varphi(x)| \mid x \in X, \, \|x\| \le \right\} < \infty.$$
(1)

(i) Explain why $V := \ker(\varphi)$ is a closed subspace of X.

(ii) Prove that $\|\varphi\| \operatorname{dist}(x, V) = |\varphi(x)|$, for every $x \in X$.

- (iii) Prove that, if $0 < \|\varphi\| < \infty$, then the following conditions are equivalent:
- (a) The supremum in (1) is not attained.
- (b) There is no $x \in X$ such that ||x|| = 1 and dist(x, V) = 1.
- (c) For all $x \in X \setminus V$ and $v \in V$ we have $||x v|| > \operatorname{dist}(x, V)$.

Exercise 5. Let $c_0 = \{x = (x_j)_{j \in \mathbb{N}} \in \ell_\infty \mid x_j \to 0, j \to \infty\}$ be the space of null sequences which is a Banach space with norm $\|\cdot\|_\infty$. Prove that the following formula defines a continuous linear functional on c_0 ,

$$\varphi(x) := \sum_{j=1}^{\infty} \frac{x_j}{2^j}, \qquad x = (x_j)_{j \in \mathbf{N}} \in c_0$$

Compute its norm $\|\varphi\|$ and show that it fulfills one of the equivalent conditions (a), (b), or (c) of Exercise 4(iii).

Exercise 6.

- (i) Let \mathcal{H} be a Hilbert space, and $(x_n)_{n \in \mathbb{N}} \subseteq \mathcal{H}$ an orthonormal system. Prove that $x_n \to 0$ weakly (i.e., $x_n \rightharpoonup 0$).
- (ii) Let $A \subseteq [0, 2\pi]$ be a Lebesgue measurable set. Prove that

$$\lim_{n \to \infty} \int_A \sin(nt) \, dt = \lim_{n \to \infty} \int_A \cos(nt) \, dt = 0.$$

Exercise 7. Let X, Y, Z be Banach spaces, $T : X \to Y$ linear, $J : Y \to Z$ linear, bounded, and injective, and assume that $JT := J \circ T : X \to Z$ is bounded. Prove that T is also bounded.

Exercise 8. Assume that V and W are closed subspaces of the Hilbert space $(\mathcal{H}, \langle ., . \rangle)$. Given any closed subspace $U \subseteq \mathcal{H}$ let P_U denote the orthogonal projection onto U. Prove the following statements:

(i) $\forall x, y \in \mathcal{H} : \langle x, P_V y \rangle = \langle P_V x, y \rangle.$ (ii) $V \subseteq W \Rightarrow P_V = P_V P_W = P_W P_V.$ (iii) $V \perp W \Rightarrow P_{V \oplus W} = P_V + P_W.$ (iv) Assume $V \subseteq W$. Then $R := W \ominus V := W \cap V^{\perp}$ is closed and $P_R = P_W - P_V.$

Exercise 9. Let $\Omega \subseteq \mathbb{R}^n$ be measurable, $\mathbb{K} = \mathbb{R}$. Assume $k \in L^2(\Omega \times \Omega)$ satisfies: $\exists c_0 > 0$:

$$k(x,y) \ge c_0 > 0$$
 for a.e. $x, y \in \Omega$.

Prove that for all $f \in L^2(\Omega)$ there exists a unique solution $u \in L^2(\Omega)$ to the equation

$$\int_{\Omega} k(x, y) u(y) \, dy = f(x) \text{ for a.e. } x \in \Omega \,.$$

Exercise 10. Let $(f_n)_{n \in \mathbb{N}} \subseteq L^3(\mathbb{R})$ satisfy

$$\left|\int_{\mathbf{R}} g(x) f_n(x) \, dx\right| \le \left(1 + \|g\|_{L^{3/2}(\mathbf{R})}\right)^{2012} \quad \forall n \in \mathbf{N}, \forall g \in L^{3/2}(\mathbf{R}).$$

Prove: There exists C > 0:

$$\left|\int_{\mathbf{R}} g(x) f_n(x) \, dx\right| \le C \|g\|_{L^{3/2}(\mathbf{R})} \quad \forall n \in \mathbf{N}, \forall g \in L^{3/2}(\mathbf{R}).$$

Hint: Consider the maps $g \mapsto \int_{\mathbf{R}} g(x) f_n(x) dx$.

Exercise 11. Consider the real (!) Hilbert space ℓ_2 , and let

$$A = \left\{ \sum_{i=1}^{n} \alpha_i e_i \, \middle| n \in \mathbf{N}, \alpha_i \in \mathbf{R}, i = 1, \dots, n, \alpha_n > 0 \right\}$$

where $(e_n)_{n \in \mathbb{N}}$ is the standard basis from ℓ_2 . Let B = -A. Prove that A and B are convex disjoint sets, and that for any $x^* \in (\ell_2)^* \setminus \{0\}$ we have $x^*(A) = x^*(B) = \mathbb{R}$. What can we deduce?

Exercise 12. Let X be some real or complex vector space and $\|\cdot\|$ a norm on X. Prove that the following statements are equivalent:

(i) X is strictly normed, that is, for all $x, y \in X$ we have

 $||x + y|| = ||x|| + ||y|| \implies x \text{ and } y \text{ are linearly dependent.}$

(ii) The closed unit ball is strictly convex, that is, for all $x, y \in X$ we have

$$(||x|| = ||y|| = 1 \land x \neq y) \Rightarrow ||(1/2)(x+y)|| < 1.$$

(iii) Every closed convex set $K \subseteq X$ has at most one element minimizing the norm on K, that is,

$$\left(x, y \in K \land ||x|| = ||y|| = \inf_{v \in K} ||v||\right) \quad \Rightarrow \quad x = y.$$

Exercise 13. Let X be a complete metric space, and $f_n : X \to \mathbf{K}, n \in \mathbf{N}$, be a sequence of continuous functions for which there is a function $f : X \to \mathbf{K}$ such that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in X$, i.e., $f_n \to f$ pointwise on X.

- (i) Prove that there exist $V \subseteq X$, open and non-empty, and M > 0 such that $|f_n(x)| \leq M$ for all $x \in V$ and all $n \in \mathbf{N}$.
- (ii) Prove that for any $\varepsilon > 0$ there exist $V \subseteq X$, open and non-empty, and $p \in \mathbf{N}$ such that $|f(x) f_n(x)| \le \varepsilon$ for all $x \in V$ and all $n \ge p$.

Exercise 14. Let $f \in C^1(\mathbf{R})$ be 2π -periodic and real valued. Assume $\int_0^{2\pi} f(t) dt = 0$. Prove that

$$\int_0^{2\pi} |f(t)|^2 \, dt < \int_0^{2\pi} |f'(t)|^2 \, dt$$

except if $f(t) = a \cos t + b \sin t$ for some $a, b \in \mathbf{R}$.

Exercise 15. Let X be a Banach space and let $\{T_n\}_{n\in\mathbb{N}}$ and $\{S_n\}_{n\in\mathbb{N}}$ be sequences in B(X) such that $\forall x \in X$: $T_n x \to T x \land S_n x \to S x$, $n \to \infty$, where $T, S \in B(X)$. Prove that $\forall x \in X$: $T_n S_n x \to T S x$, $n \to \infty$.

Exercise 16. Prove that the following maps T, defined on $X := C([0, 1], \mathbf{R})$, are linear and bounded (with the supremum norm on X). Then compute their norm.

(i) $T: X \to X, Tf(x) := f(x)g(x)$ for some (given, fixed) $g \in C[0, 1]$.

(ii) For $p \in \mathbf{N}$, $0 = t_0 < t_1 < \cdots < t_p = 1$, $\alpha_0, \ldots, \alpha_p \in \mathbf{R} \setminus \{0\}$ (all fixed), let $T : X \to \mathbf{R}$, $Tf := \sum_{i=0}^{p} \alpha_i f(t_i).$

(iii)
$$T: X \to \mathbf{R}, Tf := \int_0^1 f(t) dt - \sum_{i=0}^p \alpha_i f(t_i)$$
, with the t_i 's and α_i 's as in (ii).

Exercise 17. (i) Let $V \subseteq X$ be a closed subspace of the normed vector space X and let $x \in X \setminus V$. Prove that there exists $f \in X'$ such that $f \upharpoonright_V = 0$ and $f(x) = \operatorname{dist}(x, V)$. (ii) Let $V \subseteq X$ be some subspace of the normed vector space X and assume that $\forall f \in X'$: $f \upharpoonright_V = 0 \Rightarrow f = 0$. Prove that V is dense in X.

Exercise 18. We consider the following two subspaces of ℓ_1 ,

$$U := \{ (t_n)_{n \in \mathbf{N}} \in \ell_1 \mid \forall n \in \mathbf{N} : t_{2n} = 0 \},\$$

$$V := \{ (s_n)_{n \in \mathbf{N}} \in \ell_1 \mid \forall n \in \mathbf{N} : s_{2n-1} = n \, s_{2n} \}.$$

Prove that U and V are closed but that their direct sum $U \oplus V$ is not closed.

Exercise 19. Consider the space $C^1[0,1]$, endowed with the uniform norm from the space C[0,1], and consider the differentiation operator $D: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$ defined by Df = f'.

- (i) Prove that D is linear but not continuous.
- (ii) Prove that D has closed graph. What can we deduce?

Exercise 20. Let X be a normed vector space and assume that X' is separable. Show that X is also separable.

Hint: If $\{f_n | n \in \mathbf{N}\}$ is dense in X', pick $x_n \in X$ such that $|f_n(x_n)| \ge ||f_n||/2$.

Exercise 21. Prove that the set $P = \{(x_n)_{n \in \mathbb{N}} \in \ell_2 \mid |x_n| < 1 \forall n \in \mathbb{N}\}$ is an open subset of ℓ_2 .

Exercise 22. We consider the space $C([0, 1], \mathbf{R})$ of real-valued continuous functions on [0, 1] with metric $d_{\infty}(f, g) := ||f - g||_{\infty} := \sup_{x \in [0, 1]} |f(x) - g(x)|$.

(i) Define the maps $\delta_0, I, J_p : C([0, 1], \mathbf{R}) \to \mathbf{R}$, where $p \ge 1$, by

$$\delta_0(f) := f(0), \quad I(f) := \int_0^1 f(x) \, dx, \quad J_p(f) := \int_0^1 |f(x)|^p \, dx,$$

for all $f \in C([0, 1], \mathbf{R})$. Prove that δ_0, I , and J_1 are Lipschitz continuous and that $J_p, p > 1$, is continuous but not uniformly continuous.

(ii) Let K denote the set of all $f \in C([0, 1], \mathbf{R})$ such that $\delta_0(f) = I(f) = 0$ and $\forall x, y \in [0, 1]$: $|f(x) - f(y)| \leq \sqrt{|x - y|}$. Prove that the restriction of $J_p, p \geq 1$, to K attains its maximum on K.

Exercise 23. Consider C[0,1] with the supremum norm. Let $E \subseteq C[0,1]$ be a closed linear subspace satisfying: $f \in E \Rightarrow f \in C^1[0,1]$. Prove that E is finite dimensional.

Hint: Prove that $D: E \to C[0, 1], Df := f'$, has closed graph.

Exercise 24. Let (M, d) be a complete metric space, $a_k \ge 0$, $k \in \mathbb{N}$, with $\sum_{k=1}^{\infty} a_k < \infty$, and $T: M \to M$ a map satisfying

$$d(T^k(x), T^k(y)) \le a_k d(x, y),$$

for all $x, y \in M$ and $k \in \mathbf{N}$, where $T^1 := T, T^{k+1} := T \circ T^k, k \in \mathbf{N}$. Prove that T has a unique fixpoint, i.e. there is exactly one $z \in M$ such that T(z) = z.

Exercise 25. Let $\mathcal{E} := \{e_i | i \in \mathbf{N}\}$ be an orthonormal system in the (separable) Hilbert space \mathcal{H} and denote the Fourier coefficients of $u \in \mathcal{H}$ by $\hat{u}(i) := \langle e_i, u \rangle, i \in \mathbf{N}$. Prove that \mathcal{E} is an orthonormal basis if and only if

$$\forall x, y \in \mathcal{H} : \quad \langle x, y \rangle = \sum_{i \in \mathbf{N}} \overline{\hat{x}(i)} \, \hat{y}(i) \,. \tag{2}$$

Exercise 26. Let \mathcal{H} be a Hilbert space, and assume the linear map $T: \mathcal{H} \to \mathcal{H}$ satisfies

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$
 for all $x, y \in \mathcal{H}$.

Prove that T is bounded.

Exercise 27. Let $p \in (1, \infty)$ and

$$M = \left\{ x = (x_n)_{n \in \mathbf{N}} \in \ell_p \, \big| \, \sum_{n=1}^{\infty} x_n = 0 \right\} \subseteq \ell_p \,.$$

Prove that $G \subseteq \ell_p$ is a dense linear subspace. Hint: Use Exercise 17(ii).

Exercise 28. Let $\mathcal{H} = L^2[\frac{1}{2}, 2]$ and $S : \mathcal{H} \to \mathcal{H}$ defined by $(Sf)(x) = x^{-1}f(x^{-1})$. Prove that S is an isometry.

Exercise 29. Let E, F be two Banach spaces with norms $\|\cdot\|_E, \|\cdot\|_F$. Let $T \in B(E, F)$ be such that R(T) is closed and dim $N(T) < \infty$. Let $|\cdot|$ denote another norm on E that is weaker than $\|\cdot\|_E$, i.e., $|x| \leq M \|x\|_E$ for all $x \in E$. Prove that there exists a constant C such that

$$||x||_E \le C(||Tx||_F + |x|) \text{ for all } x \in E.$$

Hint: Argue by contradiction.